JPH0334192B2 - - Google Patents

Info

Publication number
JPH0334192B2
JPH0334192B2 JP59079603A JP7960384A JPH0334192B2 JP H0334192 B2 JPH0334192 B2 JP H0334192B2 JP 59079603 A JP59079603 A JP 59079603A JP 7960384 A JP7960384 A JP 7960384A JP H0334192 B2 JPH0334192 B2 JP H0334192B2
Authority
JP
Japan
Prior art keywords
pbo
current collector
lead
present
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59079603A
Other languages
Japanese (ja)
Other versions
JPS60225362A (en
Inventor
Takaharu Akuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59079603A priority Critical patent/JPS60225362A/en
Publication of JPS60225362A publication Critical patent/JPS60225362A/en
Publication of JPH0334192B2 publication Critical patent/JPH0334192B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】 〔発明の技術的分野〕 本発明は鉛蓄電池用正極集電体、さらに詳しく
は、ペースト式鉛蓄電池における格子基板および
クラツド式鉛蓄電池における心金の材料の改良に
関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a positive electrode current collector for lead-acid batteries, and more particularly, to improvements in the material of the grid substrate in paste-type lead-acid batteries and the core metal in clad lead-acid batteries. It is.

〔発明の背景〕[Background of the invention]

従来、この種の鉛蓄電池集電体の素材には、
Pb−Sb系およびPb−Ca系を中心とした鉛合金あ
るいは純鉛が用いられていた。
Traditionally, materials for this type of lead-acid battery current collector include:
Lead alloys, mainly Pb-Sb and Pb-Ca, or pure lead were used.

これらの集電体は活物質の保持体としての役割
とともに十分な集電性能を有する必要があり、活
性質との接触境界面における電気抵抗の小さなこ
とが望まれる。しかるに従来この種の集電体を用
いた鉛蓄電池では、浮動充電法で長期間使用した
場合や、繰り返し充放電使用したとき、正極にお
いて集電体と活物質との境界面に電気抵抗の非常
に大きな硫酸鉛(PbSO4)の結晶が生成蓄積する
という欠点があつた。この硫酸鉛は、集電体が電
気化学的に酸化されて生成したβ−PbO2の還元
により生成蓄積されるものである。
These current collectors need to have sufficient current collection performance as well as serve as a holder for the active material, and are desired to have low electrical resistance at the interface of contact with the active material. However, in conventional lead-acid batteries that use this type of current collector, when used for a long period of time using the floating charging method or when repeatedly charged and discharged, a large amount of electrical resistance occurs at the interface between the current collector and the active material at the positive electrode. The drawback was that large lead sulfate (PbSO 4 ) crystals formed and accumulated. This lead sulfate is produced and accumulated by the reduction of β-PbO 2 produced by electrochemical oxidation of the current collector.

また浮動充電法による長期使用では、蓄電池は
過充電状態になるため、Pb−Sb系合金あるいは
Pb−Ca系合金を使用したとき、正極では酸化反
応が進行し合金中に含まれていたSbやCaが遊離
してくる。
In addition, during long-term use using the floating charging method, the storage battery will become overcharged, so Pb-Sb alloy or
When a Pb-Ca alloy is used, an oxidation reaction progresses at the positive electrode, and Sb and Ca contained in the alloy are liberated.

このためPb−Sb系合金の場合には、正極から
遊離したSbが負極上に析出してくる結果、負
極板には局部電池が生成し、自己放電が進行して
容量が低下する、Sbの水素過電圧は負極活物
質より小さいために、充電時に水素の発生が容易
になり、充放電効率が低下する、電解液中の水
の電気分解が進行し、電解液が減少するなどの悪
影響が生じるという欠点があつた。この悪影響は
古い電池ほどSbの析出量が増すため顕著である。
For this reason, in the case of Pb-Sb alloys, Sb released from the positive electrode precipitates on the negative electrode, resulting in the formation of a local battery on the negative electrode plate, which progresses self-discharge and reduces capacity. Since the hydrogen overvoltage is smaller than that of the negative electrode active material, hydrogen is easily generated during charging, resulting in negative effects such as a decrease in charging and discharging efficiency, progressing electrolysis of water in the electrolyte, and a decrease in the amount of electrolyte. There was a drawback. This adverse effect is more pronounced in older batteries because the amount of Sb precipitated increases.

一方、Pb−Ca系合金の場合においては、含有
されていたCaが遊離し、集電体と活物質の境界
に析出し、集電体全体を膨脹させ、その結果、機
械的強度を低下させる。はなはだしくは、集電体
の伸長による圧力低下のため電槽が破壊される事
故も生じる。
On the other hand, in the case of Pb-Ca alloys, the contained Ca is liberated and precipitates at the boundary between the current collector and the active material, causing the entire current collector to expand, resulting in a decrease in mechanical strength. . Furthermore, the pressure drop due to the elongation of the current collector may cause an accident in which the battery case is destroyed.

このように従来のPb−Sb系合金あるいはPb−
Ca系合金を集電体として用いた鉛蓄電池は、集
電体中のSbやCaが極板の酸化進行にともなつて
遊離してくる結果、上述のような悪影響を蓄電池
に与えるという重大な欠点があつた。
In this way, conventional Pb-Sb alloys or Pb-
Lead-acid batteries that use Ca-based alloys as current collectors have the serious problem of having the above-mentioned negative effects on the battery as a result of Sb and Ca in the current collector being liberated as the electrode plates oxidize. There were flaws.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みなされたものであり、
電気抵抗の大きな硫酸鉛が析出せず、またSb、
Caが遊離しない鉛蓄電池用正極集電体を提供す
ることを目的とする。さらに詳しくは、長期間、
充放電効率、容量の低下することなくし使用しえ
る鉛蓄電池用正極集電体を提供することを目的と
する。
The present invention has been made in view of the above points,
Lead sulfate with high electrical resistance does not precipitate, and Sb,
The purpose of the present invention is to provide a positive electrode current collector for a lead-acid battery that does not release Ca. For more details, long-term
The object of the present invention is to provide a positive electrode current collector for a lead-acid battery that can be used without deteriorating charging/discharging efficiency or capacity.

〔発明の概要〕[Summary of the invention]

したがつて本発明による鉛蓄電池用正極集電体
は、構成材料がα−PbO2であることを特徴とす
るものである。
Therefore, the positive electrode current collector for a lead-acid battery according to the present invention is characterized in that the constituent material is α-PbO 2 .

本発明によれば、α−PbO2よりなる集電体を
用いて鉛蓄電池を構成しているので、SbやCaを
含まない集電体を構成することができ、従来に見
られるようなSbやCaの遊離、析出が防止できる。
このため、Sbの自己放電、またはCaの析出によ
る集電体の膨張といつた障害を防止することがで
きる。さらに、本発明における集電体の構成材料
であるα−PbO2は、充電時に従来の集電体表面
に生成するβ−PbO2に比べ、極めてPbSO4へ変
化しにくいため、集電体と活物質間に電気抵抗の
大きなPbSO4の生成が防止され、集電体の寿命を
延長することができる。
According to the present invention, since a lead-acid battery is constructed using a current collector made of α-PbO 2 , it is possible to construct a current collector that does not contain Sb or Ca. The release and precipitation of Ca and Ca can be prevented.
Therefore, problems such as self-discharge of Sb or expansion of the current collector due to precipitation of Ca can be prevented. Furthermore, α-PbO 2 , which is the constituent material of the current collector in the present invention, is extremely difficult to change to PbSO 4 compared to β-PbO 2 that is generated on the surface of a conventional current collector during charging. The generation of PbSO 4 with high electrical resistance between active materials is prevented, and the life of the current collector can be extended.

〔発明の構成〕[Structure of the invention]

本発明をさらに詳しく説明する。 The present invention will be explained in more detail.

第1図はペースト式鉛蓄電池の正極板の側面図
であり、図中、1は格子基板、2は活物質を示
す。また第2図は、従来のペースト式極板におけ
るA−A′断面図を示し、第3図は本発明による
一実施例のA−A′断面図を示している。第2図
および第3図において、3は鉛ないし鉛合金製格
子基板格子、4はα−PbO2製格子基板格子を示
す。
FIG. 1 is a side view of a positive electrode plate of a paste type lead-acid battery, and in the figure, 1 indicates a grid substrate and 2 indicates an active material. Further, FIG. 2 shows a sectional view taken along the line AA' of a conventional paste-type electrode plate, and FIG. 3 shows a sectional view taken along the line AA' of an embodiment according to the present invention. In FIGS. 2 and 3, 3 indicates a lead or lead alloy lattice substrate lattice, and 4 indicates an α-PbO 2 lattice substrate lattice.

この実施例におけるペースト式鉛蓄電池は、集
電体である格子基板1に活物質2を設けてなるも
のであり、前述より明らかなように、本発明にお
ける格子基板1ないし格子4には、従来の格子3
と異なりSb元素やCa元素を全く含まないため、
格子基板1中に前記Sb、Caが遊離して電池の自
己放電量を増大させたり、格子基板を膨張させる
現象を生じる虞がなくなる。
The paste-type lead-acid battery in this embodiment has an active material 2 provided on a lattice substrate 1 which is a current collector.As is clear from the above, the lattice substrates 1 to 4 in the present invention are of the conventional type. grid 3
Unlike , it does not contain any Sb or Ca elements,
There is no possibility that the Sb and Ca will be liberated in the grid substrate 1 and increase the amount of self-discharge of the battery or cause the grid substrate to expand.

α−PbO2は、一般に、比伝導度10180/cm
(20℃)、比重9.87、結晶形が斜方晶系の金属酸化
物であり、鉛塩を電解酸化してえられる。α+
PbO2微粒子の加圧成型により、種々の形状に加
工可能である。
α-PbO 2 generally has a specific conductivity of 10180/cm
(20℃), specific gravity 9.87, crystalline form is orthorhombic metal oxide, obtained by electrolytic oxidation of lead salt. α+
By pressure molding PbO 2 fine particles, it can be processed into various shapes.

また、本発明による鉛蓄電池用正極集電体にお
いては、以下に述べるように、格子基板1と活物
質2との電気的接触を良好に維持することが可能
である。純鉛あるいは鉛合金製格子基板の酸化が
進行し、活物質と直接接触している格子基板1の
表面はβ−PbO2へ変化する。第4図にこのβ−
PbO2と本発明による格子基板1の構成材料であ
るα−PbO2の電気化学的還元性、すなわち
PbSO4への変化の容易さに関する試験結果を示し
た。参照電極としてHg/HgSO4を用いた。第4
図は、α−PbO2とβ−PbO2をカソード方向へ電
位走査したときの電流−電位曲線を示したもので
あり、慣例にしたがい、酸化電流を正、還元電流
を負とした。図中、Aは本発明によるα−PbO2
Bは従来の格子基板に生成するβ−PbO2を示す。
Furthermore, in the positive electrode current collector for lead-acid batteries according to the present invention, it is possible to maintain good electrical contact between the grid substrate 1 and the active material 2, as described below. Oxidation of the pure lead or lead alloy grid substrate progresses, and the surface of the grid substrate 1 that is in direct contact with the active material changes to β-PbO 2 . Figure 4 shows this β-
The electrochemical reducibility of PbO 2 and α-PbO 2 which is the constituent material of the lattice substrate 1 according to the present invention, i.e.
The test results regarding the ease of conversion to PbSO 4 were shown. Hg/HgSO 4 was used as a reference electrode. Fourth
The figure shows current-potential curves when the potentials of α-PbO 2 and β-PbO 2 were scanned in the cathode direction, and as is customary, the oxidation current was taken as positive and the reduction current was taken as negative. In the figure, A is α-PbO 2 according to the present invention,
B shows β-PbO 2 generated on a conventional lattice substrate.

この第4図より明らかなように、β−PbO2(B)
の走査においては、PbSO4への容易な還元をしめ
す大電流(ピーク)が観察された。これに対し、
α−PbO2(A)ではこの還元電流はほとんど観察さ
れず、β−PbO2に比べα−PbO2は極めてPbSO4
へ変化しにくいことがわかつた。
As is clear from this Figure 4, β-PbO 2 (B)
In the scan, a large current (peak) was observed indicating easy reduction to PbSO 4 . On the other hand,
This reduction current is hardly observed for α-PbO 2 (A), and compared to β-PbO 2 , α-PbO 2 is extremely PbSO 4
It was found that it is difficult to change to

また、第5図はα−PbO2およびβ−PbO2の特
性を調べるため、活物質としてα−PbO2、β−
PbO2を使用した電池を構成し、これらの電池の
充放電試験より両者の電気化学的性質の相違を測
定したグラフであり、図中、C1、C2、C3はそれ
ぞれ、第1回目、第2回目、第3回目の充電を示
し、D1、D2、D3、は第1回目、第2回目、第3
回目の放電を示している。また、AおよびBは第
4図と同様のものを示している。
In addition, Fig. 5 shows α-PbO 2 and β-PbO 2 as active materials in order to investigate the characteristics of α-PbO 2 and β-PbO 2 .
This is a graph showing the differences in electrochemical properties between batteries constructed using PbO 2 and charge/discharge tests of these batteries. , indicates the second and third charging, and D 1 , D 2 , and D 3 indicate the first, second, and third charging.
It shows the second discharge. Further, A and B indicate the same things as in FIG. 4.

この第5図より明らかなように、β−PbO2
活物質とした電池の前記β−PbO2量は大きく増
減し、β−PbO2とPbSO4間に電気化学的変化が
容易に進行するものの、α−PbO2を用いた電池
においては、前記α−PbO2量はほとんど増減せ
ず、PbSO4へ還元しにくいことが判る。したがつ
て、α−PbO2を格子基板(集電体)の構成素材
とした本発明による鉛蓄電池用正極集電体は、浮
動充電法による長期使用や充放電の繰り返しによ
つても活物質と格子基板との境界面に電気抵抗の
非常に大きなPbSO4が生成、蓄積することがな
く、格子基板と活物質間の良好な電気的接触性を
維持することができる。
As is clear from FIG. 5, the amount of β-PbO 2 in a battery using β-PbO 2 as an active material varies greatly, and electrochemical changes easily proceed between β-PbO 2 and PbSO 4 . However, in a battery using α-PbO 2 , the amount of α-PbO 2 hardly increases or decreases, indicating that it is difficult to reduce it to PbSO 4 . Therefore, the positive electrode current collector for lead-acid batteries according to the present invention, in which α-PbO 2 is used as the constituent material of the grid substrate (current collector), can be used for long periods of time using the floating charging method or by repeated charging and discharging. PbSO 4 with extremely high electrical resistance is not generated or accumulated at the interface between the lattice substrate and the lattice substrate, and good electrical contact between the lattice substrate and the active material can be maintained.

なお、本発明の構成および作用効果をペースト
式鉛蓄電池について説明したが、クラツド式鉛蓄
電池についても全く同一の作用効果を有すること
は明らかである。すなわち、クラツド式極板は終
電体である心金をフアイバなどの絶縁材で覆うと
ともに、この絶縁物と心金の間に活物質を充填し
たものであるが、この心金の構成素材をα−
PbO2とすることにより、前述のペースト式極板
と同様の効果を発揮しえる。
Although the structure and effects of the present invention have been described with respect to a paste type lead-acid battery, it is clear that the same effects can be obtained with respect to a closed type lead-acid battery. In other words, in a clad plate, a core metal that serves as a terminal conductor is covered with an insulating material such as fiber, and an active material is filled between this insulator and the core metal. −
By using PbO 2 , the same effect as the paste-type electrode plate described above can be achieved.

なお、本発明におけるα−PbO2製集電体は塩
基性電解液中における純鉛の電気化学酸化やα−
PbO2粒子のプレスおよびホツトプレス成形など
の手法により容易に製造可能である。
In addition, the current collector made of α-PbO 2 in the present invention can be used for electrochemical oxidation of pure lead in a basic electrolyte and α-PbO 2 current collector.
It can be easily manufactured using methods such as pressing PbO 2 particles and hot press molding.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による鉛蓄電池用
正極集電体においては集電体としてα−PbO2
用いているので、SbやCaを含まない集電体素材
を構成することができ、従来にみられるように、
SbやCaの遊離、析出が防止される。このため、
Sbの析出による自己放電、Caの析出による集電
体の膨張といつた障害を防止できる。さらに、本
発明による集電体の構成素材であるα−PbO2
充電時に従来の集電体の表面に生成するβ−
PbO2に比べ、極めてPbSO4へ変化しにくいため、
本発明においては、集電体とかつ物質間に電気抵
抗の大きなPbSO4の生成が防止され、集電体の寿
命を延長することができる。
As explained above, since α-PbO 2 is used as the current collector in the positive electrode current collector for lead-acid batteries according to the present invention, it is possible to configure a current collector material that does not contain Sb or Ca, and As seen in
The release and precipitation of Sb and Ca is prevented. For this reason,
It is possible to prevent problems such as self-discharge due to Sb deposition and expansion of the current collector due to Ca deposition. Furthermore, α-PbO 2 , which is the constituent material of the current collector according to the present invention, is a component of the β-PbO 2 that is generated on the surface of a conventional current collector during charging.
Compared to PbO 2 , it is extremely difficult to change to PbSO 4 ,
In the present invention, the generation of PbSO 4 with high electrical resistance between the current collector and the substance is prevented, and the life of the current collector can be extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ペースト式極板の側面図、第2図は
従来の極板のA−A′断面図、第3図は本発明に
よる極板のA−A′断面図、第4図および第5図
は本発明による格子基板の構成素材であるα−
PbO2と従来の格子基板表面に生成するβ−PbO2
のPbSO4への還元性の相違を示した図である。 1…格子基板(集電体)、2…活物質、3…純
鉛または鉛合金製格子基板格子、4…α−PbO2
製格子基板格子。
FIG. 1 is a side view of a paste-type electrode plate, FIG. 2 is a sectional view taken along line A-A' of a conventional electrode plate, FIG. 3 is a cross-sectional view taken along line A-A' of the electrode plate according to the present invention, and FIGS. FIG. 5 shows α-
PbO 2 and β-PbO 2 generated on the surface of a conventional lattice substrate
FIG. 3 is a diagram showing the difference in the reducibility of PbSO 4 to PbSO 4 . 1... Grid substrate (current collector), 2... Active material, 3... Pure lead or lead alloy grid substrate lattice, 4... α-PbO 2
Made of lattice board lattice.

Claims (1)

【特許請求の範囲】 1 構成材料がα−PbO2であることを特徴とす
る鉛蓄電池用正極集電体。 2 形状が格子状であることを特徴とする特許請
求の範囲第1項記載の鉛蓄電池用正極集電体。 3 形状が棒状(心金)であることを特徴とする
特許請求の範囲第1項記載の鉛蓄電池用正極集電
体。
[Scope of Claims] 1. A positive electrode current collector for a lead-acid battery, characterized in that the constituent material is α-PbO 2 . 2. The positive electrode current collector for a lead-acid battery according to claim 1, which has a grid-like shape. 3. The positive electrode current collector for a lead-acid battery according to claim 1, which has a rod-like shape (mandrel).
JP59079603A 1984-04-20 1984-04-20 Lead storage battery Granted JPS60225362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59079603A JPS60225362A (en) 1984-04-20 1984-04-20 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59079603A JPS60225362A (en) 1984-04-20 1984-04-20 Lead storage battery

Publications (2)

Publication Number Publication Date
JPS60225362A JPS60225362A (en) 1985-11-09
JPH0334192B2 true JPH0334192B2 (en) 1991-05-21

Family

ID=13694587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59079603A Granted JPS60225362A (en) 1984-04-20 1984-04-20 Lead storage battery

Country Status (1)

Country Link
JP (1) JPS60225362A (en)

Also Published As

Publication number Publication date
JPS60225362A (en) 1985-11-09

Similar Documents

Publication Publication Date Title
US2883443A (en) Lead-acid storage battery
JPH10188963A (en) Sealed lead-acid battery
JPH0334192B2 (en)
JP3764978B2 (en) Manufacturing method of lead acid battery
JP3637603B2 (en) Lead acid battery
JP2002198085A (en) Lead storage battery
JP3094423B2 (en) Lead storage battery
JPH10302782A (en) Cathode pole plate for lead acid battery
JP2581424Y2 (en) Anode plate for lead-acid battery
JPH0750616B2 (en) Lead acid battery
JP2578633B2 (en) Zinc electrode for alkaline storage batteries
JP2787058B2 (en) Method for manufacturing electrode plate for lead-acid battery
JPH0475628B2 (en)
JPS6164078A (en) Alkaline zinc storage battery
JP3648761B2 (en) How to charge sealed lead-acid batteries
JP2518090B2 (en) Lead acid battery
Janakiraman et al. Lead-cadmium alloy for lead-acid battery-effect of additives on cycling
JPH0234758Y2 (en)
JPH11144719A (en) Sealed lead-acid battery
JPS61198574A (en) Lead storage battery
JPS636990B2 (en)
JP2964555B2 (en) Battery storage method for lead-acid batteries
JPS6386369A (en) Lead storage battery
JPS6113578A (en) Lead storage battery
JPH088093B2 (en) Lead acid battery