JPH0334023B2 - - Google Patents

Info

Publication number
JPH0334023B2
JPH0334023B2 JP57028804A JP2880482A JPH0334023B2 JP H0334023 B2 JPH0334023 B2 JP H0334023B2 JP 57028804 A JP57028804 A JP 57028804A JP 2880482 A JP2880482 A JP 2880482A JP H0334023 B2 JPH0334023 B2 JP H0334023B2
Authority
JP
Japan
Prior art keywords
flaw
signal
detection
data
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57028804A
Other languages
Japanese (ja)
Other versions
JPS58146848A (en
Inventor
Shinya Tanifuji
Yasuo Morooka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57028804A priority Critical patent/JPS58146848A/en
Publication of JPS58146848A publication Critical patent/JPS58146848A/en
Publication of JPH0334023B2 publication Critical patent/JPH0334023B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 本発明は渦流探傷装置に係わり、特に金属表面
の傷を検出する渦流探傷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an eddy current flaw detection device, and more particularly to an eddy current flaw detection device for detecting flaws on metal surfaces.

渦流探傷法は金属被検体とコイルを対置せし
め、コイルの電磁作用により被検体の表面に渦電
流を発生させる。被検体の表面に欠陥部があると
渦電流の大きさが変化し、2次的にコイルのイン
ピーダンスが変化する。このコイルのインピーダ
ンス変化を検出し欠陥の有無を判別する。
In the eddy current flaw detection method, a metal object to be inspected and a coil are placed opposite each other, and eddy currents are generated on the surface of the object by the electromagnetic action of the coil. If there is a defect on the surface of the object, the magnitude of the eddy current changes, and the impedance of the coil changes secondarily. The impedance change of this coil is detected to determine whether there is a defect or not.

第1図に従来の渦流探傷装置の代表的な一例を
示す、発振器1の正弦波出力は検出コイル2,3
に印加される。両検出コイル2,3はインピーダ
ンスブリツジ回路を構成している。検出コイル2
3は通常第2図のように被検体4に対向して配置
される。被検体4の検出コイル2の対向面に欠陥
4′があると検出コイル2のインピーダンスが変
化しブリツジ回路の出力が変化する。この変化分
を増幅器5で増幅し、検波器6にてこの変化分を
取り出す。以下、この回路を検出回路と呼ぶこと
にする。
Figure 1 shows a typical example of a conventional eddy current flaw detection device.The sine wave output of the oscillator 1 is
is applied to Both detection coils 2 and 3 constitute an impedance bridge circuit. Detection coil 2
3 is usually placed facing the subject 4 as shown in FIG. If there is a defect 4' on the opposite surface of the detection coil 2 of the subject 4, the impedance of the detection coil 2 changes and the output of the bridge circuit changes. This variation is amplified by an amplifier 5 and extracted by a detector 6. Hereinafter, this circuit will be referred to as a detection circuit.

ところで、被検体は検出コイルに比べてはるか
に大きいので被検体の全面を探傷するには、第3
図aに示したように検出コイルを多数台並べる多
数台並置方式あるいは第3図bのように検出コイ
ルを回転しながらスキヤンする回転プローブ方式
がとられる。前者の多数台並置方式は駆動部が単
純であるという利点はあるが、各コイル毎に検出
回路が必要でコストが非常に高くなり、かつ全検
出回路の検出感度を同じレベルに揃えることが困
難といつた問題がある。一方、後者の回転プロー
ブ方式は検出コイルの駆動機構が若干複雑になる
という問題はあるけれども、コストが安く検出感
度の整定という問題がないため前者に比べ実際的
である。
By the way, the object to be inspected is much larger than the detection coil, so in order to detect the entire surface of the object, the third
A multi-parallel arrangement method in which a large number of detection coils are arranged side by side as shown in FIG. The former method of arranging multiple devices in parallel has the advantage that the drive unit is simple, but it requires a detection circuit for each coil, making the cost extremely high, and it is difficult to align the detection sensitivity of all detection circuits to the same level. There is a problem. On the other hand, although the latter rotating probe method has the problem that the drive mechanism for the detection coil is somewhat complicated, it is cheaper and does not have the problem of setting detection sensitivity, so it is more practical than the former.

しかしながら従来の回転プローブ方式では傷の
位置や方向を正しく求めることが難しいといつた
問題がある。第4図aのように被検体4が矢印方
向に移動し傷4′()→()→()と移動
したとき、検波回路6の出力は時間とともに第4
図bのように変化する。同図bから分るように回
転プローブ2の1回転毎に傷信号が発生してい
る。領域()は回転プローブ2の軌跡と傷が交
叉するので、領域()の大きさがわかれば傷の
大きさの判定が可能となる。しかし、第4図bの
()、()、()の領域を区別することは難し
く、その上傷の方向を決めることは更に困難とな
る。
However, the conventional rotating probe method has a problem in that it is difficult to accurately determine the position and direction of the flaw. When the subject 4 moves in the direction of the arrow as shown in FIG.
It changes as shown in Figure b. As can be seen from figure b, a flaw signal is generated every rotation of the rotary probe 2. Since the area ( ) intersects the trajectory of the rotating probe 2 and the flaw, the size of the flaw can be determined if the size of the area ( ) is known. However, it is difficult to distinguish between the regions (), (), and () in FIG. 4b, and it is even more difficult to determine the direction of the flaw.

本発明の目的はかかる従来方式の欠点に鑑み、
傷の検出精度を大幅に向上することを可能にする
渦流探傷装置を提供することにある。
In view of the drawbacks of the conventional method, the purpose of the present invention is to
An object of the present invention is to provide an eddy current flaw detection device that makes it possible to significantly improve flaw detection accuracy.

本発明は傷検出回路で検出した時系列信号を被
検体表面の信号分布に変換し、該信号分布から傷
の位置、大きさ、向き等の傷の特徴を抽出する信
号処理装置を設けたことを特徴とする。
The present invention is provided with a signal processing device that converts a time series signal detected by a flaw detection circuit into a signal distribution on the surface of the object to be examined, and extracts flaw characteristics such as the flaw position, size, and direction from the signal distribution. It is characterized by

第5図に本発明を回転プローブ型渦流探傷装置
による連続鋳造鋼片の探傷に適用した実施例を示
す。
FIG. 5 shows an embodiment in which the present invention is applied to flaw detection of a continuously cast steel billet using a rotating probe type eddy current flaw detection device.

第5図において4は金属鋼片、100は回転プ
ローブ、200,300は第1図の検出回路と同
等の機能を有する検出回路、400は傷の大き
さ、位置を判別する信号処理装置、500は検出
状態を表示するビユア、600は金属鋼片の走行
速度計、700は回転プローブ100の回転角θ
の検出計である。
In FIG. 5, 4 is a metal steel piece, 100 is a rotating probe, 200 and 300 are detection circuits having the same function as the detection circuit in FIG. 1, 400 is a signal processing device for determining the size and position of a flaw, and 500 600 is a travel speedometer made of a metal piece; 700 is a rotation angle θ of the rotary probe 100;
This is a detection meter.

第6図に回転プローブ100の詳細を示す。1
01は回転軸、102は回転軸101を回転させ
るモータ、103は固定側アーム、106は回転
側アーム、104,105,107,108は固
定側と回転子側で信号を授受するための回転トラ
ンス、109は回転方向に対し並行に配置された
一対の検出コイル、110は回転方向に対し直角
に配置された一対の検出コイルである。検出コイ
ル109は回転トランス107と104を通じて
固定アーム側に電気的に接続されている。同様に
検出コイル110は回転トランス108と105
を通じて固定側アームと電気的に接続されてい
る。回転軸101の回転速度はモータ102によ
り制御できる。したがつて、回転軸101に固定
された回転側アーム106と検出コイル109,
110の回転速度はモータ102によつて制御で
きる。
FIG. 6 shows details of the rotating probe 100. 1
01 is a rotating shaft, 102 is a motor that rotates the rotating shaft 101, 103 is a stationary side arm, 106 is a rotating side arm, 104, 105, 107, and 108 are rotating transformers for transmitting and receiving signals between the stationary side and the rotor side. , 109 are a pair of detection coils arranged parallel to the rotation direction, and 110 are a pair of detection coils arranged perpendicular to the rotation direction. The detection coil 109 is electrically connected to the fixed arm side through rotary transformers 107 and 104. Similarly, the detection coil 110 is connected to the rotating transformers 108 and 105.
It is electrically connected to the fixed side arm through. The rotational speed of the rotating shaft 101 can be controlled by the motor 102. Therefore, the rotating arm 106 fixed to the rotating shaft 101 and the detection coil 109,
The rotational speed of 110 can be controlled by motor 102.

第5図に戻り信号検出回路200は回転プロー
ブ100内の一対の検出コイル109のインピー
ダンス変化をブリツジ回路で取り出し検波信号
naとして出力する。同様に信号検出回路300
は一対の検出コイル110のインピーダンス変化
を検波信号nbとして出力する。
Returning to FIG. 5, the signal detection circuit 200 extracts the impedance change of the pair of detection coils 109 in the rotary probe 100 using a bridge circuit and outputs a detected signal.
Output as na. Similarly, the signal detection circuit 300
outputs the impedance change of the pair of detection coils 110 as a detection signal n b .

ここで、本発明の理解を容易にするために連続
鋳造鋼片に最も多く見られる鋼片の進行方向に並
行な傷と直角な傷に対する検波信号na、nbの特性
について説明する。
Here, in order to facilitate understanding of the present invention, the characteristics of the detection signals n a and n b for flaws parallel to and perpendicular to the traveling direction of the steel billet, which are most commonly found in continuously cast steel billets, will be described.

第7図に鋼片進行方向に並行な傷の周辺におけ
る検波信号na、nbの変化を示す。信号naは傷Fを
境界にして片側に正の値、反対側に負の値を持つ
ようになる。信号naの極値は傷Fの両側において
傷Fに並行して尾根状に伸びている。この極値間
の距離は大概検出コイル109を構成する2つの
コイル間の距離に等しくなる。傷Fはこの極値の
中間にあることは容易にわかるが、傷Fの端部を
この出力分布から決めるのはかなり難しい。これ
に対し信号nbは傷Fの端部付近に極値を持つよう
になる。したがつて、傷Fの端部は信号nbから比
較的簡単に決めることができるが、信号nbでは2
つの極値が互いに関連あるものであるかどうか決
定することはできない。先に述べたように信号na
の極値は傷に沿つて伸びているので、信号nbの極
値が同一傷の端部かどうかを決定する手がかりを
与えてくれる。すなわち、信号na、nbの両信号か
ら傷Fの端部、すなわち傷Fの長さを決定するこ
とができる。
FIG. 7 shows changes in the detection signals n a and n b around the flaw parallel to the direction of steel billet travel. The signal n a has a positive value on one side of the boundary of the flaw F and a negative value on the other side. The extreme values of the signal n a extend in a ridge shape on both sides of the flaw F in parallel to the flaw F. The distance between these extreme values is approximately equal to the distance between the two coils constituting the detection coil 109. Although it is easy to see that the flaw F is between these extreme values, it is quite difficult to determine the edge of the flaw F from this power distribution. On the other hand, the signal n b has an extreme value near the edge of the flaw F. Therefore, the edge of flaw F can be determined relatively easily from signal n b , but 2
It is not possible to determine whether the two extreme values are related to each other. As mentioned earlier the signal n a
Since the extreme values of n extend along the scratch, they provide a clue to determine whether the extreme values of the signal n b are at the edge of the same scratch. That is, the end of the flaw F, that is, the length of the flaw F can be determined from both the signals n a and n b .

第8図に鉄片の進行方向に直角な傷Fの周辺に
おける検波信号na,nbの変化を示す。両信号na
nbの特性は第7図の場合と逆になつていることが
わかる。すなわち、傷Fの連続性は信号nbから、
傷Fの端部は信号naから決定することができる。
FIG. 8 shows changes in the detection signals n a and n b around the flaw F perpendicular to the direction of movement of the iron piece. Both signals n a ,
It can be seen that the characteristics of n b are opposite to those in Figure 7. In other words, the continuity of flaw F is determined from signal n b ,
The edge of the wound F can be determined from the signal n a .

なお、第7図、第8図における数値は傷ポテン
シヤル値を示す。
Note that the numerical values in FIGS. 7 and 8 indicate scratch potential values.

同様の検討を色々なケースに関して行つた結果
次の結論が得られた。
As a result of conducting similar studies on various cases, the following conclusions were reached.

(1) 信号na,nbのうち一方が傷の端部に極値をも
ち、他方の極値が傷の連続性を表わす。
(1) One of the signals n a and n b has an extreme value at the edge of the scratch, and the other extreme value represents the continuity of the scratch.

(2) 一対の検出コイル間の距離に比べ長い傷の場
合信号na間の極値間距離daと信号nbの極値距離
dbのうち、長い方に対応する信号の極値が傷端
部に相当する。
(2) In the case of a scratch that is longer than the distance between a pair of detection coils, the distance between the extreme values of signal n a d a and the distance between the extreme values of signal n b
The extreme value of the signal corresponding to the longer one of d and b corresponds to the wound edge.

(3) 一対の検出コイル対間の距離に比べ短かい傷
の場合、極値間距離daとdbは共に一対のコイル
間距離dpにはほぼ等しい値となる。
(3) In the case of a flaw that is shorter than the distance between the pair of detection coils, the distances between extreme values d a and d b are both approximately equal to the distance d p between the pair of coils.

さて、第5図に戻り、信号処理装置400の詳
細構成を第9図において説明する。
Now, returning to FIG. 5, the detailed configuration of the signal processing device 400 will be explained with reference to FIG. 9.

第9図において410はデータを入力するデー
タ入力部、420は被検体表面にとつた直交格子
に入力データを割りあてる信号変換記憶部、43
0は傷の判別を行う認識部である。データ入力記
憶部410ならびに420を構成する各要素のう
ち401は回転角モニタ部、402はデータ入力
部、403は検出コイル位置演算部、404は傷
ポテンシヤル演算部、405は傷判定部、406
は傷信号の出力処理部である。回転角モニタ部4
01は回転角の検出計700の角度信号を入角モ
ニタ部401は回転角の検出計700の角度信号
を入力して、回転角Δが一定角tθだけ変化する毎
にデータ入力部402に対しデータ入力指令を出
力する。データ入力部402はこのデータ入力指
令を受けると、信号検出回路200と300の出
力信号na、nbならびに金属鋼片4の走行速度計6
00の速度信号VをA−D変換して入力する。デ
ータ入力部402では入力データVを用いて金属
鋼片4の先端から回転プローブ中心までの距離
(鋼片移動距離)Lを次式で演算する。
In FIG. 9, 410 is a data input unit for inputting data, 420 is a signal conversion storage unit for allocating input data to an orthogonal grid on the surface of the subject, and 43
0 is a recognition unit that discriminates scratches. Among the elements constituting the data input storage sections 410 and 420, 401 is a rotation angle monitor section, 402 is a data input section, 403 is a detection coil position calculation section, 404 is a flaw potential calculation section, 405 is a flaw determination section, 406
is a flaw signal output processing section. Rotation angle monitor section 4
01 inputs the angle signal from the rotation angle detector 700, and the input angle monitor unit 401 inputs the angle signal from the rotation angle detector 700, and inputs the input signal to the data input unit 402 every time the rotation angle Δ changes by a certain angle tθ. Outputs data input commands. Upon receiving this data input command, the data input section 402 outputs the output signals n a and n b of the signal detection circuits 200 and 300 as well as the traveling speedometer 6 of the metal steel piece 4.
The speed signal V of 00 is A-D converted and input. The data input unit 402 uses the input data V to calculate the distance L from the tip of the metal steel piece 4 to the center of the rotating probe (the distance the steel piece moves) using the following equation.

L=L′+V・Δτ ただしL′は前回データを入力したときの移動距
離、Δτは前回から今回までの経過時間である。
L=L'+V・Δτ Where L' is the distance traveled when the data was input last time, and Δτ is the elapsed time from the previous time to this time.

検出コイル位置演算部403はデータ入力部4
02でデータを入力した時点の検出コイル109
と110の位置を決定する。x、y軸を第10図
のようにとつたとき、検出コイル109の位置
(xa、ya)を次式から計算する。
The detection coil position calculation section 403 is the data input section 4
Detection coil 109 at the time of inputting data in step 02
and the position of 110 is determined. When the x and y axes are taken as shown in FIG. 10, the position (x a , ya) of the detection coil 109 is calculated from the following equation.

xa=RR−RRcos(θ+θp) ya=L+RRsin(θ+θp) ここで、RRは回転プローブの半径、θは回転
角、θpは鋼片4の先端が回転プローブの中心を通
過したタイミングにおける回転角である。
x a = RR - RRcos (θ + θ p ) y a = L + RRsin (θ + θ p ) where RR is the radius of the rotating probe, θ is the rotation angle, and θ p is the timing when the tip of the steel piece 4 passes through the center of the rotating probe is the rotation angle at .

同様に、検出コイル110の位置(xb、yb)
を次式で計算する。
Similarly, the position of the detection coil 110 (x b , yb)
is calculated using the following formula.

xb=RR+RRcos(θ+θp) yb=L−RRsin(θ+θp) さらに、検出コイル位置演算部403は第11
図のようにとつた直交格子空間において座棟
(xa、ya)を最も皿い所にある格子点の番号(Ia
Ja)に変換するため次の整数値に換算する。
x b = RR + RRcos (θ + θ p ) y b = L−RRsin (θ + θ p ) Furthermore, the detection coil position calculation unit 403
In the orthogonal grid space taken as shown in the figure , the number of the grid point (I a ,
J a ) to the next integer value.

Ia′=Xa/Δx,Ja′=ya/Δy このとき Ia=Ia′(ifxa−Ia′Δx≦Δx/2) Ia′+1(ifxa−Ia′Δx>Δx/2) Ja=Ja′(ifya−Ja′Δy≦Δy/2) Ja′+1(ifya−Ja′Δy>Δy/2) 同様にして検出コイル110の座標(xb,yb
もその近傍の格子点の番号(Ib,Jb)に挽算す
る。傷ポテンシヤル演算部404では先ず信号ni
(i=aまたはb)を量子化信号Ni(整数)に変
換する。
I a ′=X a /Δx, J a ′=y a /Δy In this case, I a =I a ′(ifx a −I a ′Δx≦Δx/2) I a ′+1(ifx a −I a ′Δx >Δx/2) J a = J a ′ (ify a −J a ′Δy≦Δy/2) J a ′+1 (ify a −J a ′Δy>Δy/2) Similarly, the coordinates of the detection coil 110 ( xb , yb )
is also subtracted to the number (I b , J b ) of the neighboring grid point. The flaw potential calculation unit 404 first calculates the signal n i
(i=a or b) is converted into a quantized signal N i (integer).

Ni=ni/Δn+0.5 ここでΔnは信号の量子化単位を表わすもので、
次式で決まる定数である。
N i =n i /Δn+0.5 Here, Δn represents the quantization unit of the signal,
It is a constant determined by the following formula.

Δn=(ni MAX−ni MIN)/m ni MAX、ni MIN:信号niの入力 レベルの最大値と最小値、 m:信号のレベル数 例えば、検波数naについてみると、na MAX、na M
INが100と−100で、mが5のとき量子化信号Na
次のような値となる。
Δn=(n i MAX − n i MIN )/m n i MAX , n i MIN : Maximum and minimum values of input level of signal n i , m : Number of signal levels For example, looking at the detection number na, n a MAX , n a M
When IN is 100 and -100 and m is 5, the quantized signal N a has the following value.

Na=2…(60<na≦100) 1…(20<na≦60) 0…(−20<na≦20) −1…(−60<na≦−20) −2…(−100<na≦−60) 次に傷ポテンシヤル演算部404では量子化信
号Na、Nbを検出コイル位置演算部403で計算
した格子点(Ia、Ja),(Ib、Jb)に割りあてる。
いいかえると検出コイル109の傷ポテシヤルデ
ータを格納するメモリエリアの第(Ia、Ja)番地
に量子化信号Naを格納し、検出コイル110の
傷ポテンシヤルデータを格納するメモリエリアの
第(Ib、Jb)番地に量子化信号Nbを格納する。た
だし、鋼片の移動速度や回転プローブの回転速度
によつては同じ番地に何度かデータが割り当てら
れることがある。このような場合にはデータNa
Nbを格納するにあたり、先ず(Ia、Ja)番地と
(Ib,Jb)番地に既に格納されているデータNa′、
Nb′と比較する。そして、Na、Nbの絶対値が
Na′、Nb′の絶対値よりそれぞれ大きい場合の
み、該当番地の内容をNa、Nbに書きかえる。あ
る傷が回転プローブ下を通過した後のメモリエリ
アの内容を第12図に示す。検出コイル110の
極値は同図bに示すように傷端部に表われてお
り、一方、検出コイル109の極値は傷に沿つて
伸びており、第7図の傷信号分布を良く似た結果
が得られている。傷判定部405では先ず検出コ
イル109に関する傷ポテンシヤルデータから極
値探索をおこなう。鋼片4が移動して直交格子の
第J列が回転プローブ下を通りすぎると第J列の
データは変化しなくなる。このとき第J列のデー
タから正負の極値を探索し、第J列の極値以外の
データをゼロクリアする。このようにして鋼片4
が移動していくと第12図の丸で囲んだデータだ
けが残る。
N a =2…(60<n a ≦100) 1…(20<n a ≦60) 0…(−20<n a ≦20) −1…(−60<n a ≦−20) −2… (-100<n a ≦ -60) Next, the flaw potential calculation unit 404 converts the quantized signals N a and N b to the grid points (I a , J a ), (I b , J b ).
In other words, the quantized signal N a is stored at address (I a , J a ) of the memory area where the flaw potential data of the detection coil 109 is stored, and the quantized signal N a is stored at the address (I a , J a ) of the memory area where the flaw potential data of the detection coil 110 is stored. The quantized signal N b is stored at address I b , J b ). However, data may be assigned to the same address several times depending on the moving speed of the steel piece and the rotational speed of the rotary probe. In such a case, the data N a ,
To store N b , first the data N a ′ already stored at addresses (I a , J a ) and (I b , J b ),
Compare with N b ′. Then, the absolute values of N a and N b are
Only when the absolute values are larger than the absolute values of N a ′ and N b ′, respectively, the contents of the corresponding address are rewritten to N a and N b . FIG. 12 shows the contents of the memory area after a certain flaw has passed under the rotating probe. The extreme value of the detection coil 110 appears at the edge of the wound, as shown in FIG. results have been obtained. The flaw determination unit 405 first searches for extreme values from flaw potential data regarding the detection coil 109. When the steel piece 4 moves and the Jth column of the orthogonal grid passes under the rotating probe, the data in the Jth column no longer changes. At this time, positive and negative extreme values are searched from the data in the J-th column, and data other than the extreme values in the J-th column are cleared to zero. In this way, the steel piece 4
As the data moves, only the data circled in Figure 12 remains.

一方、検出コイル110の傷ポテンシヤルデー
タから次のようにして極値を探索する。第J列の
各データの絶対値を第(J−1)列の各データの
絶対値と比較し、もし前者の方が大きければ第
(J−1)列のデータをゼロクリアする。このよ
うな動作を繰返えせば第12図の丸で囲んだもの
が残る。
On the other hand, an extreme value is searched for from the flaw potential data of the detection coil 110 as follows. The absolute value of each data in the Jth column is compared with the absolute value of each data in the (J-1)th column, and if the former is larger, the data in the (J-1)th column is cleared to zero. If these operations are repeated, the area circled in FIG. 12 will remain.

傷判定部405では第12図の丸で囲んだ極値
を「1」とおき、それ以外のデータをゼロとし、
この2つのデータを重ねる。これにより第13図
に太線で示すような傷の存在範囲が求まる。
The flaw determination unit 405 sets the extreme value circled in FIG. 12 as "1" and sets the other data as zero.
Overlap these two data. As a result, the range of flaws as shown by the thick line in FIG. 13 can be determined.

次に第13図のように対向する辺間の距離da
dbを計算する。距離aa,dbがともにコイル間距離
dpより小さいときには傷は破線内のエリア内にあ
るとみなすことができる。一方、距離daがdbとdp
より大の場合には、daを傷の長さとし、傷幅dw
次式で定義する。
Next, as shown in Fig. 13, the distance d a between the opposing sides,
Calculate d b . Distance a a and d b are both distances between coils
When d is smaller than p , the flaw can be considered to be within the area within the broken line. On the other hand, the distance d a is d b and d p
If it is larger, d a is the length of the flaw, and the flaw width d w is defined by the following formula.

dw= db−dp…(if db>dp+Δd) Δd…(if da≦dp+Δd) ここでΔdは線幅の最小単位で、これは表示と
の関係で定めて定数である。このとき傷は第13
図の破線内にあるとみなすことができる。逆に、
距離dbがdaとdpより大の場合には傷の長さはdb
で、傷幅はda−dpとみなすことができる。このよ
うな処理により破線外のデータがゼロとなり、傷
位置が明確に決まる。傷判定部405で、鋼片4
の移動に応じてこのような信号処理を連続的にお
こなうことにより鋼片上の傷の分布を検出するこ
とができる。
d w = d b − d p …(if d b > d p + Δd) Δd…(if d a ≦d p + Δd) Here, Δd is the minimum unit of line width, which is determined as a constant in relation to the display. It is. At this time, the wound is the 13th
It can be considered to be within the dashed line in the figure. vice versa,
If the distance d b is greater than d a and d p , the length of the scar is d b
So, the scratch width can be considered as d a − d p . Through such processing, data outside the broken line becomes zero, and the flaw position is clearly determined. In the flaw determination unit 405, the steel piece 4
By continuously performing such signal processing according to the movement of the steel piece, it is possible to detect the distribution of flaws on the steel piece.

傷信号の出力処理部406は傷判定部405で
検出した傷分布のパターンをビユア500に表示
する。また、図示しない自動傷手入れ装置が設け
られている場合にはこの傷分布情報を自動傷手入
れ装置に出力する。
The flaw signal output processing unit 406 displays the flaw distribution pattern detected by the flaw determination unit 405 on the viewer 500. Further, if an automatic scratch care device (not shown) is provided, this scratch distribution information is output to the automatic scratch care device.

以上述べたように本発明では、連続鋳造鋼片の
縦割れや横われていつた傷を正確に検出すること
ができるので、鋼片に対する手入れ作業を正確に
行なうことができる。
As described above, according to the present invention, it is possible to accurately detect vertical cracks and horizontal scratches in a continuously cast steel billet, so maintenance work on the steel billet can be performed accurately.

第5図の実施例では検出回路200,300の
出力が正の値と負の値をとる場合について説明し
た。第14図aに第4図bの()の領域の出力
波形の一部を拡大したものを示す。この信号波形
で信号が正から負に変化する点はほぼ傷の位置に
対応する。したがつてこのように符号が変化する
点を直交座標に変換してやれば、この点の集合は
第7図の検波信号naのポテンシヤル値+8と−
8の間に集まる。すなわち、傷の位置と大きさを
推定する情報として用いることができる。
In the embodiment shown in FIG. 5, a case has been described in which the outputs of the detection circuits 200 and 300 take positive and negative values. FIG. 14a shows an enlarged view of a part of the output waveform in the area () in FIG. 4b. In this signal waveform, the point where the signal changes from positive to negative approximately corresponds to the position of the flaw. Therefore, if we convert the points where the sign changes in this way into rectangular coordinates, the set of these points will be the potential values +8 and - of the detected signal na in Figure 7.
Gather between 8. In other words, it can be used as information for estimating the position and size of a flaw.

また、検出回路の種類によつては第14図aの
検出信号を同図bのように積分したりあるいは同
図cのように全波整流して出力する。このような
場合にも入力信号を直交座標に変換した後、その
信号分布から傷の特徴を抽出することができる。
例えば第14図bのように積分した信号の場合に
は、積分値のピークに相当する極値の分布を求め
る方式を用いることもできるし、この分布の空間
微分を行ない符号が正から負にかわる点を抽出
し、その集合として特徴を抽出することもでき
る。
Further, depending on the type of detection circuit, the detection signal shown in FIG. 14a is integrated as shown in FIG. 14b, or is output after full-wave rectification as shown in FIG. 14c. Even in such a case, after converting the input signal into orthogonal coordinates, the characteristics of the flaw can be extracted from the signal distribution.
For example, in the case of an integrated signal as shown in Figure 14b, it is possible to use a method to find the distribution of extreme values corresponding to the peak of the integrated value, or to perform spatial differentiation of this distribution and change the sign from positive to negative. It is also possible to extract points that change and extract features as a set.

以上のように本発明によれば、傷信号の平面的
分布から傷信号の特徴を検出するので、高精度の
傷検出が可能となる。
As described above, according to the present invention, since the characteristics of the flaw signal are detected from the planar distribution of the flaw signal, highly accurate flaw detection is possible.

なお、上述の実施例は回転プローブ方式の場合
を説明したが、第3図aのように並列配置した一
対の検出コイルを用いる場合には、各コイル対に
結合された各検出回路の時系列信号を入力し、各
コイル対の位置に対応する直交格子にデータを割
りあてることは回転プローブ方式に比べてはるか
に簡単に実現できる。したがつて、本発明をプロ
ーブの多数台並置方式に適用できることは明らか
である。
Although the above embodiment describes the case of a rotating probe system, when a pair of detection coils arranged in parallel as shown in Fig. 3a is used, the time series of each detection circuit coupled to each coil pair Inputting a signal and allocating the data to an orthogonal grid corresponding to the position of each coil pair is much easier than using a rotating probe method. Therefore, it is clear that the present invention can be applied to a system in which a large number of probes are arranged side by side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は渦流探傷装置の代表的な一例回路構成
図、第2図は検出コイルの配置図、第3図は従来
の探傷方式の説明図、第4図aは回路プローブ方
式のプローブと傷の位置関係図、第4図bは傷検
出信号の波形図、第5図は本発明の一実施例を示
す回路構成図、第6図は回転プローブ部分の詳細
構成図、第7図、第8図は検出コイルによる傷ポ
テンシヤル特性図、第9図は信号処理装置の詳細
構成図、第10図は鋼片とx−y座標の関係図、
第11図は直交座標とデータ検出点の関係図、第
12図は直交格子点の傷ポテンシヤルの一例図、
第13図は傷の存在範囲と分布状態を示す一例
図、第14図は検波信号の波形図である。 4……金属鋼片、100……回転プローブ、2
00,300……検出回路、400……信号処理
装置。
Figure 1 is a circuit configuration diagram of a typical example of an eddy current flaw detection device, Figure 2 is a layout diagram of a detection coil, Figure 3 is an explanatory diagram of a conventional flaw detection method, and Figure 4a is a circuit probe type probe and flaws. Fig. 4b is a waveform diagram of a flaw detection signal, Fig. 5 is a circuit configuration diagram showing an embodiment of the present invention, Fig. 6 is a detailed configuration diagram of the rotating probe portion, Figs. Figure 8 is a characteristic diagram of the flaw potential due to the detection coil, Figure 9 is a detailed configuration diagram of the signal processing device, Figure 10 is a diagram of the relationship between the steel piece and the x-y coordinates,
Figure 11 is a diagram of the relationship between orthogonal coordinates and data detection points, Figure 12 is an example diagram of the flaw potential of orthogonal grid points,
FIG. 13 is an example diagram showing the extent and distribution of flaws, and FIG. 14 is a waveform diagram of a detection signal. 4...Metal steel piece, 100...Rotating probe, 2
00,300...Detection circuit, 400...Signal processing device.

Claims (1)

【特許請求の範囲】 1 互いに直交する一対の検出コイルによつて金
属被検体に渦電流を発生させる回転プローブと、 前記一対の検出コイルのインピーダンス変化を
検出する検出回路と、 前記インピーダンス変化の検出値の時系列信号
をサンプリングして入力するデータ入力手段と、
前記被検出体表面にとつた直交格子座標の格子点
に各サンプリングデータを割当てる信号変換記憶
手段と、該信号変換記憶手段の処理によつて得ら
れる信号分布の極値分布を求め、該極値分布より
傷の端部と連続性を識別し、傷の位置、大きさ、
方向を決定する傷認識手段とを有する信号処理装
置 とから成ることを特徴とする渦流探傷装置。
[Scope of Claims] 1. A rotating probe that generates an eddy current in a metal object by a pair of mutually orthogonal detection coils, a detection circuit that detects an impedance change of the pair of detection coils, and a detection circuit that detects the impedance change. data input means for sampling and inputting a time series signal of values;
Signal conversion storage means for allocating each sampling data to grid points of orthogonal grid coordinates taken on the surface of the object to be detected, and determining the extreme value distribution of the signal distribution obtained by the processing of the signal conversion storage means, and determining the extreme value distribution. Identify the edge and continuity of the flaw from the distribution, and determine the location, size, and
1. An eddy current flaw detection device comprising: a flaw recognition means for determining a direction; and a signal processing device having flaw recognition means for determining a direction.
JP57028804A 1982-02-26 1982-02-26 Eddy current test equipment Granted JPS58146848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57028804A JPS58146848A (en) 1982-02-26 1982-02-26 Eddy current test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57028804A JPS58146848A (en) 1982-02-26 1982-02-26 Eddy current test equipment

Publications (2)

Publication Number Publication Date
JPS58146848A JPS58146848A (en) 1983-09-01
JPH0334023B2 true JPH0334023B2 (en) 1991-05-21

Family

ID=12258605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57028804A Granted JPS58146848A (en) 1982-02-26 1982-02-26 Eddy current test equipment

Country Status (1)

Country Link
JP (1) JPS58146848A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027591A (en) * 1973-07-09 1975-03-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027591A (en) * 1973-07-09 1975-03-20

Also Published As

Publication number Publication date
JPS58146848A (en) 1983-09-01

Similar Documents

Publication Publication Date Title
Andrieux et al. Identification of planar cracks by complete overdetermined data: inversion formulae
US4295092A (en) Apparatus for and method of detecting and measuring corrosion damage in pipe
US2405133A (en) Method and means for measuring surface roughness
CN105548348A (en) An online detecting method for metal wire surface detects and a detecting device
CN205426851U (en) Metal wire surface defect on -line measuring device
Placko et al. Eddy current sensors for nondestructive inspection of graphite composite materials
CN206073931U (en) Contour detecting gauge head and detector
JPH0334023B2 (en)
JP3649659B2 (en) Eddy current inspection signal identification method and apparatus using this method
US4837510A (en) Device for suppression and/or separation of signals due to magnetic oxide scales in hot cast billets
JPH0641938B2 (en) Nondestructive measurement method for zirconium alloy materials
JP3964061B2 (en) Method and apparatus for flaw detection by magnetic measurement
JP3091556B2 (en) Method and apparatus for measuring conductor thickness
JPS5850407A (en) Device for measuring bending of tube body end part
RU2769074C1 (en) Measuring apparatus
JPH0833374B2 (en) Method and apparatus for detecting foreign layer in metal
Lopera et al. A new speed measurement system
JPH04282451A (en) Method for judging corrosive deterioration of two-layer metal wire material
Galouz et al. Non-Contact Wire Diameter Measurement Using Magnetic Fields: A Study and Design
JPS5818602B2 (en) Corrosion wear detection method
Zaitsev et al. Condition Monitoring and Fault Diagnosis Systems of Power Generators with Non-Contact Shaft Runout Electrocapacitive Transducer
Rerup et al. The response of electrostatic probes via the/spl lambda/-function
JPH0481653A (en) Eddy current flaw detection method
SU933145A1 (en) Apparatus for determining rolled stock out-of-roundness
Tachibana et al. Shape Meter Using Image Processing Technology for Hot Rolling