JPH0333802Y2 - - Google Patents

Info

Publication number
JPH0333802Y2
JPH0333802Y2 JP11184085U JP11184085U JPH0333802Y2 JP H0333802 Y2 JPH0333802 Y2 JP H0333802Y2 JP 11184085 U JP11184085 U JP 11184085U JP 11184085 U JP11184085 U JP 11184085U JP H0333802 Y2 JPH0333802 Y2 JP H0333802Y2
Authority
JP
Japan
Prior art keywords
pressure
relief valve
operated
pilot
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11184085U
Other languages
Japanese (ja)
Other versions
JPS6221163U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11184085U priority Critical patent/JPH0333802Y2/ja
Publication of JPS6221163U publication Critical patent/JPS6221163U/ja
Application granted granted Critical
Publication of JPH0333802Y2 publication Critical patent/JPH0333802Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野) 本考案は、油圧パワーシヨベルのコントロール
バルブに適用される油圧回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hydraulic circuit applied to a control valve of a hydraulic power shovel.

〔従来の技術〕[Conventional technology]

本考案に類似する従来技術は特になく、新しい
範ちゆうに属するものである。
There is no prior art similar to the present invention, and it belongs to a new category.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

油圧ポンプの吐出流量を変更せず、走行スピー
ドをアツプする為には走行モータの理論行程容積
qthを小さくすればよい。一般的に走行モータの
始動時は高負荷圧となり、この圧力は回路システ
ム圧Pmaxで決定される。従つて、走行スピード
アツプの為走行モータの理論行程容積qthを小さ
くし、回路システム圧を従来通りとしておくと走
行モータの容量低減量を△qthとすれば、走行モ
ータの出力トルクは、(定数)×(qth−△qth)×
Pmaxとなり、従来の出力トルク(定数)×qth×
Pmaxより低下する事になる。この不具合を解決
する為には、始動時の高負荷圧時に容量を従来通
りqthとし、定常走行になつて負荷圧が低下して
くると容量を減少させる可変容量モータを用いれ
ば良いが、この機構付モータは一般に高価であ
る。従つて本考案は、モータの容量を固定式とし
たまゝ容量を従来より若干小さくし、車速を早め
得ると共に回路システム圧を昇圧させて始動時出
力トルクの低下を防止することができ、又走行モ
ータと他のアクチユエータを同時に操作した時回
路システム圧の昇圧を他のアクチユエータの疲労
寿命低下を防止する為解除できる、低価格な回路
システムを提供しようとするものである。
In order to increase the traveling speed without changing the discharge flow rate of the hydraulic pump, the theoretical stroke volume of the traveling motor is
Just make qth smaller. Generally, when the travel motor is started, the load pressure is high, and this pressure is determined by the circuit system pressure Pmax. Therefore, if the theoretical stroke volume qth of the travel motor is reduced in order to increase the travel speed, and the circuit system pressure remains the same as before, then if the capacity reduction amount of the travel motor is △qth, the output torque of the travel motor will be (constant )×(qth−△qth)×
Pmax, conventional output torque (constant) x qth x
It will be lower than Pmax. In order to solve this problem, it is possible to use a variable displacement motor that sets the capacity to qth as before when the load pressure is high at startup, and decreases the capacity when the load pressure decreases during steady running. Mechanical motors are generally expensive. Therefore, the present invention makes it possible to make the capacity of the motor slightly smaller than the conventional one while keeping the capacity of the motor fixed, to increase the vehicle speed, increase the circuit system pressure, and prevent the output torque from decreasing at the time of starting. The present invention aims to provide a low-cost circuit system capable of canceling the increase in circuit system pressure when a travel motor and other actuators are operated simultaneously in order to prevent a reduction in the fatigue life of other actuators.

〔問題点を解決するための手段〕[Means for solving problems]

(1) 定常走行時の走行車速を早める為、走行モー
タの理論行程容積を小さくする。(当初容積を
qthとし、低減量を△qthとし、ポンプ吐出量を
Qとすると、モータの回転速度は△N=Q/
(qth−△qth)−Q/qthだけ速くなる。) (2) 走行用操作弁、その他アクチユエータ用操作
弁にパイロツト圧発生機構を設け、走行操作の
みの時に回路メインリリーフ弁の設定圧を上
げ、走行とその他操作弁を同時操作した時に該
設定圧を通常圧に低下させる。(通常設定圧を
Pmax、昇圧分を△Pとする。モータの出力ト
ルクT=(定数)Pmax×qth=(定数)×(Pmax
+△P)×(qth−△q)となる様に△Pを設定
すれば、上記(1)に示すモータ容量低減時にも、
当初と同等のモータ出力トルクを得る。) 〔作用〕 走行モータが低負荷となる定常走行時の車速が
増加し、又走行中に他のアクチユエータに加わる
油圧を低下させる事が出来る。
(1) In order to increase the vehicle speed during steady driving, reduce the theoretical stroke volume of the travel motor. (Initial volume
qth, the reduction amount is △qth, and the pump discharge amount is Q, then the motor rotation speed is △N=Q/
It becomes faster by (qth - △qth) - Q/qth. ) (2) A pilot pressure generation mechanism is installed in the travel operation valve and other actuator operation valves to increase the set pressure of the circuit main relief valve when only travel operation is performed, and to increase the set pressure when travel and other operation valves are operated simultaneously. to normal pressure. (Normally set pressure
Pmax, and the boosting amount is △P. Motor output torque T = (constant) Pmax x qth = (constant) x (Pmax
If △P is set so that +△P) x (qth - △q), even when the motor capacity is reduced as shown in (1) above,
Obtain the same motor output torque as the original. ) [Function] The vehicle speed increases during steady running when the load on the traveling motor is low, and the hydraulic pressure applied to other actuators during running can be reduced.

〔実施例〕〔Example〕

第1図に於て、油圧パワーシヨベルの左右走行
用クローラを回転させ走行させる左右個別の走行
モータ10,11を制御し回転方向を決定する操
作弁3,6を何れか又は両方を切換える。ポンプ
1,2の圧油の一部がチエツク弁19,20及び
絞り21を経て各スプールのパイロツト部27,
16,17,18,28,29,30の中立フア
ンクシヨンにより、リターンラインTへドレンと
して落ちていたものが、上記操作により27乃至
16が閉止となるため、絞り21を流れる油流が
なくなる。この為、通路23はポンプ1乃至2の
高圧側吐出圧と等しい高圧即ち通路53の圧力が
発生する。又、ポンプ1,2の圧油の一部がチエ
ツク弁19,20及び絞り22を経て通路62よ
りパイロツト部17,18,28,29,30の
中立フアンクシヨンによりリターンラインTへド
レンとして落ちている為、通路62は低圧となつ
ている。走行モータ10,11はその慣性負荷の
為、起動時は高圧となるが、その圧力はリリーフ
弁25のセツト圧により決定される。25の圧力
設定はバネ25aのプリセツト荷重で決定される
が、このプリセツト長さを調整する両ロツドシリ
ンダ26の26b室へ通路23の高圧が作用し、
26a室は通路62の低圧と継がつている為、ロ
ツド26cはバネ25aのプリセツト長さを小さ
くし、荷重を大きくする側へ移動し停止する。こ
の為、リリーフ弁25のセツト圧は通常設定値
Pmaxより△Pだけ昇圧する。故に、走行モータ
10,11の起動時圧力は高圧となる。前記の如
く、車速を早める為走行モータの容量を小さくし
た分だけ、この昇圧機能を付加するとモータ出力
トルクは従来と同様と出来る。又、更に走行モー
タ以外のアクチユエータ12,13,14,15
等を操作しようとして対応する操作弁4,7,
5,8,9の何れかを切換えるとパイロツト部1
7,28,18,29,30の対応するものが、
通路62よりリターンラインTへの還流をしや断
する為、絞り22を流れるパイロツト油流がなく
なり、通路62は通路53の圧力、即ち通路23
の圧力と等しくなる。両ロツドシリンダ26の2
6a,26b室の圧力が等しくなる為、バネ25
aによりロツド26cは図中上方へ移動し、バネ
25aのプリセツト長は通常設定値となる。但
し、両ロツドシリンダ26の26a,26b室は
同じ受圧面積を有するものとする。この為、左右
の走行モータ10,11の何れか又は両方と他の
アクチユエータ12〜15を同時に操作するとリ
リーフ弁25の設定圧が他のアクチユエータの疲
労寿命を阻害しないレベルに低減されうることに
なる。又、更に、走行用操作弁は中立のまゝで他
のアクチユエータのみ操作する場合、絞り21,
22の後流のパイロツト油は通路65で合流して
いる為、パイロツト部17,18,28,29,
30の何れが切換つても、リターンラインTへの
還流をしや断される為、通路62,23の圧力は
等しくなり、リリーフ弁25のセツト圧は通常設
定値となり、他のアクチユエータの疲労寿命は阻
害されない。上記絞り21,22を流れるパイロ
ツト油流は、主たるポンプ1,2の吐出油の一部
を利用したが第2図に示すパイロツト用のポンプ
60の吐出ラインに絞り21,22を設けても同
じ機能となる。61はパイロツト部の圧力上限値
を決めるリリーフ弁である。リリーフ弁25の通
常設定圧を昇圧させる機構は第3図に示す様にリ
リーフ弁のベントラインに通常設定圧を決めるパ
イロツトリリーフ弁71及び昇圧時の圧力を決め
るパイロツトリリーフ弁72を設置し、通路23
の圧力が走行用操作弁3,6の何れか又は両方が
切換つた為上昇した時閉位置に切換わるバルブ7
0に、パイロツトリリーフ弁71を接続する事で
も同じ機能となる。即ち、通路23に圧力が立
ち、通路62に圧力が立たない時はバルブ70は
閉位置となり、リリーフ弁25の圧力はパイロツ
トリリーフ弁72で決まり、走行昇圧する事にな
る。又、通路23及び通路62に同圧が立つ時
は、バルブ70はバネ力により開位置となり、パ
イロツトリリーフ弁72より低い設定の通常設定
圧を決めるパイロツトリリーフ弁71により、リ
リーフ弁25の圧力が設定され、ポンプ1,2の
吐出圧は通常設定圧を上回る事がない。又、第3
図の昇圧切換機構中絞り21,22を流れるパイ
ロツト油流は主たるポンプ1,2の吐出油を利用
したが、第4図に示すパイロツト用のポンプ60
の吐出ラインに絞り21,22を設けても同じ機
能となる。
In FIG. 1, either or both of the operation valves 3 and 6, which control the left and right travel motors 10 and 11 that rotate and travel the left and right crawlers of the hydraulic power shovel and determine the rotation direction, are switched. A portion of the pressure oil from the pumps 1 and 2 passes through the check valves 19 and 20 and the throttle 21 and then reaches the pilot portion 27 of each spool.
Due to the neutral functions 16, 17, 18, 28, 29, and 30, the oil that had been drained to the return line T is closed by the above operation, so that the oil flow through the throttle 21 is eliminated. Therefore, a high pressure equal to the high-pressure side discharge pressure of the pumps 1 and 2, that is, a pressure in the passage 53, is generated in the passage 23. Also, part of the pressure oil from the pumps 1 and 2 passes through the check valves 19 and 20 and the throttle 22, and drops as drain from the passage 62 to the return line T by the neutral functions of the pilot sections 17, 18, 28, 29, and 30. Therefore, the pressure in the passage 62 is low. The travel motors 10 and 11 are under high pressure when started due to their inertial loads, and this pressure is determined by the set pressure of the relief valve 25. The pressure setting of 25 is determined by the preset load of the spring 25a, but the high pressure of the passage 23 acts on the chamber 26b of both rod cylinders 26 that adjusts the preset length.
Since the chamber 26a is connected to the low pressure of the passage 62, the rod 26c decreases the preset length of the spring 25a, moves to the side where the load is increased, and stops. For this reason, the set pressure of the relief valve 25 is the normal setting value.
Increase the voltage by △P from Pmax. Therefore, the pressure at the time of starting the travel motors 10, 11 becomes high. As mentioned above, the motor output torque can be kept the same as before by adding this boost function to the extent that the capacity of the travel motor is reduced in order to increase the vehicle speed. Furthermore, actuators 12, 13, 14, 15 other than the travel motor
When attempting to operate the corresponding operation valves 4, 7, etc.
When any of 5, 8, and 9 is switched, the pilot section 1
The corresponding ones of 7, 28, 18, 29, 30 are
Since the return flow from the passage 62 to the return line T is cut off, the flow of pilot oil flowing through the restriction 22 disappears, and the passage 62 absorbs the pressure of the passage 53, that is, the pressure of the passage 23.
is equal to the pressure of Both rod cylinders 26-2
Since the pressures in chambers 6a and 26b are equal, the spring 25
a causes the rod 26c to move upward in the figure, and the preset length of the spring 25a becomes the normal setting value. However, it is assumed that chambers 26a and 26b of both rod cylinders 26 have the same pressure receiving area. Therefore, when one or both of the left and right travel motors 10, 11 and the other actuators 12 to 15 are operated simultaneously, the set pressure of the relief valve 25 can be reduced to a level that does not impede the fatigue life of the other actuators. . Furthermore, when operating only other actuators while the traveling operation valve remains neutral, the throttle 21,
Since the pilot oil downstream of 22 joins in the passage 65, the pilot oil flows in the pilot parts 17,18,28,29,
30, the flow back to the return line T is immediately cut off, so the pressures in the passages 62 and 23 become equal, the set pressure of the relief valve 25 becomes the normal setting value, and the fatigue life of other actuators is reduced. is not inhibited. The pilot oil flow flowing through the above-mentioned throttles 21 and 22 uses part of the discharge oil of the main pumps 1 and 2, but the same result can be obtained by providing the throttles 21 and 22 in the discharge line of the pilot pump 60 shown in FIG. It becomes a function. 61 is a relief valve that determines the upper limit of the pressure of the pilot section. As shown in Fig. 3, the mechanism for increasing the normal set pressure of the relief valve 25 is to install a pilot relief valve 71 that determines the normal set pressure and a pilot relief valve 72 that determines the pressure at the time of pressure increase in the vent line of the relief valve. 23
Valve 7 that switches to the closed position when the pressure increases due to switching of either or both of travel operation valves 3 and 6.
The same function can be obtained by connecting the pilot relief valve 71 to 0. That is, when pressure is built up in the passage 23 and not in the passage 62, the valve 70 is in the closed position, and the pressure in the relief valve 25 is determined by the pilot relief valve 72, and the pressure increases during running. Further, when the same pressure is established in the passage 23 and the passage 62, the valve 70 is in the open position by the spring force, and the pressure of the relief valve 25 is reduced by the pilot relief valve 71 which determines the normal set pressure lower than the pilot relief valve 72. The discharge pressure of pumps 1 and 2 does not normally exceed the set pressure. Also, the third
The pilot oil flow flowing through the throttles 21 and 22 in the boost switching mechanism shown in the figure uses the discharge oil of the main pumps 1 and 2, but the pilot pump 60 shown in FIG.
The same function can be achieved even if throttles 21 and 22 are provided in the discharge line.

〔考案の効果〕[Effect of idea]

回路システム圧力を決定するリリーフ弁の設定
圧力を左右走行モータの何れか又は全てを駆動す
る時に昇圧させ、昇圧後の圧力値とモータの容量
の積が昇圧前の圧力値とモータの容量との積と等
価となるように、モータの容量を小さく設定する
事により、従来と同様のモータ起動トルクを得る
と共に、車体が定常走行状態となつた時の車速を
早める事が出来る。又、更に走行モータ以外のア
クチユエータを走行と連動させる時には、前記リ
リーフ弁の昇圧を解除し、前記走行モータ以外の
アクチユエータの疲労寿命を阻害させる事がない
様に設定し得る。
The set pressure of the relief valve that determines the circuit system pressure is increased when driving any or all of the left and right travel motors, and the product of the pressure value after the pressure increase and the motor capacity is the pressure value before the pressure increase and the motor capacity. By setting the capacity of the motor small so as to be equivalent to the product, it is possible to obtain the same motor starting torque as before and to increase the vehicle speed when the vehicle body is in a steady running state. Furthermore, when an actuator other than the travel motor is linked to travel, the pressure increase of the relief valve can be canceled so that the fatigue life of the actuator other than the travel motor is not impaired.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本考案建設機械の油圧回路
の夫々異つた実施例を示す。 1,2……ポンプ、3〜9……操作弁、10,
11……走行モータ、12〜15……その他アク
チユエータ、16〜18,27〜30……パイロ
ツト部、19,20……チエツク弁、21,22
……絞り、23,50,51,53,62,65
……通路、25……リリーフ弁、25a……バ
ネ、26……両ロツドシリンダ、26a,26b
……圧力室、26c……ロツド、61……リリー
フ弁、70……切換えバルブ、71,72……パ
イロツトリリーフ弁、60……ポンプ。
1 to 4 show different embodiments of the hydraulic circuit of the construction machine of the present invention. 1, 2...pump, 3-9...operation valve, 10,
11... Travel motor, 12-15... Other actuators, 16-18, 27-30... Pilot section, 19, 20... Check valve, 21, 22
...Aperture, 23, 50, 51, 53, 62, 65
... Passage, 25 ... Relief valve, 25a ... Spring, 26 ... Both rod cylinders, 26a, 26b
...Pressure chamber, 26c...Rod, 61...Relief valve, 70...Switching valve, 71, 72...Pilot relief valve, 60...Pump.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 走行用クローラを駆動する2個のポンプと、前
記ポンプの吐出回路に個々に設置された走行モー
タと、その他のアクチユエータと、各々のアクチ
ユエータを駆動操作する操作弁とを有する油圧回
路に於て、各操作弁に操作弁本体と共に切換わる
パイロツト弁を設け、更に前記ポンプの吐出圧力
の上限値を決定する回路リリーフ弁の圧力設定値
を調整する装置を設け、前記走行モータの1個又
は2個を駆動操作した時に前記調整装置をリリー
フ弁の圧力が上昇する様に作動させ、前記走行モ
ータ又はその他アクチユエータの何れかを操作切
換えた時に、前記調整装置をリリーフ弁圧力の昇
圧が解除されるように作動させることを特徴とす
る建設機械の油圧回路。
In a hydraulic circuit having two pumps that drive traveling crawlers, traveling motors individually installed in the discharge circuits of the pumps, other actuators, and operation valves that drive and operate each actuator, Each operation valve is provided with a pilot valve that switches together with the operation valve body, and further provided with a device for adjusting the pressure setting value of a circuit relief valve that determines the upper limit value of the discharge pressure of the pump, and one or two of the travel motors The adjusting device is operated so that the pressure of the relief valve increases when the drive motor is operated, and the adjusting device is operated so that the pressure increase of the relief valve is released when the drive motor or other actuator is operated. A hydraulic circuit for construction machinery, characterized in that it is operated by.
JP11184085U 1985-07-23 1985-07-23 Expired JPH0333802Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11184085U JPH0333802Y2 (en) 1985-07-23 1985-07-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11184085U JPH0333802Y2 (en) 1985-07-23 1985-07-23

Publications (2)

Publication Number Publication Date
JPS6221163U JPS6221163U (en) 1987-02-07
JPH0333802Y2 true JPH0333802Y2 (en) 1991-07-17

Family

ID=30992140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11184085U Expired JPH0333802Y2 (en) 1985-07-23 1985-07-23

Country Status (1)

Country Link
JP (1) JPH0333802Y2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503482B2 (en) * 2005-04-12 2010-07-14 株式会社クボタ Working machine hydraulic system
JP4795875B2 (en) * 2006-07-06 2011-10-19 ナブテスコ株式会社 Booster circuit for construction machinery, supply part for booster circuit for construction machinery
JP5248005B2 (en) * 2006-11-09 2013-07-31 古河ユニック株式会社 Stack type control valve for on-board crane
JP6045419B2 (en) * 2013-03-27 2016-12-14 Kyb株式会社 Hydraulic control device
DE102014207669A1 (en) * 2014-04-23 2015-10-29 Putzmeister Engineering Gmbh Control system for a hydraulic machine
WO2021228437A1 (en) * 2020-05-15 2021-11-18 Eaton Intelligent Power Limited Hydraulic system valve control

Also Published As

Publication number Publication date
JPS6221163U (en) 1987-02-07

Similar Documents

Publication Publication Date Title
JP2503246B2 (en) Hydraulic supply device for hydraulic suspension
JPS6358140B2 (en)
JPH0333802Y2 (en)
JPH0333801Y2 (en)
JP2525386Y2 (en) Variable displacement hydraulic motor control device for hydraulically driven vehicle
JPH0210802Y2 (en)
JPH0514882Y2 (en)
JPH04258505A (en) Driving control device for hydraulic construction machine
JPS61139561A (en) Hydraulic steering device for vehicle
JPS63203434A (en) Variable speed gear for traveling motor
JPH0612316Y2 (en) Hydraulic transmission
JP2532317Y2 (en) Travel control device for crawler type vehicles
JP2724888B2 (en) Control circuit of variable displacement hydraulic motor
JPH0338518Y2 (en)
JPS6126435Y2 (en)
JPH0587713B2 (en)
JPH03365U (en)
JPH0335858Y2 (en)
JPH08142701A (en) Control device for fluid type transmission-mounted vehicle
JP3286147B2 (en) Construction machine hydraulic circuit
JPS61130601A (en) Brake equipment for hydraulic motor
JPH0512083Y2 (en)
KR950005291Y1 (en) Hydrauric moving system for porclain
JPH0335859Y2 (en)
JPH0244612Y2 (en)