JPH0333674B2 - - Google Patents

Info

Publication number
JPH0333674B2
JPH0333674B2 JP56197353A JP19735381A JPH0333674B2 JP H0333674 B2 JPH0333674 B2 JP H0333674B2 JP 56197353 A JP56197353 A JP 56197353A JP 19735381 A JP19735381 A JP 19735381A JP H0333674 B2 JPH0333674 B2 JP H0333674B2
Authority
JP
Japan
Prior art keywords
diamond
sintered body
less
volume
iron group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56197353A
Other languages
Japanese (ja)
Other versions
JPS5899169A (en
Inventor
Tetsuo Nakai
Shuji Yatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56197353A priority Critical patent/JPS5899169A/en
Publication of JPS5899169A publication Critical patent/JPS5899169A/en
Publication of JPH0333674B2 publication Critical patent/JPH0333674B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/08Application of shock waves for chemical reactions or for modifying the crystal structure of substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/062Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

現在、伸線用ダイスや非鉄金属プラスチツク、
セラミツクの切削用に、ダイヤモンドが70容量%
を越した焼結体が市販されている。これらの中で
もダイヤモンド粒度が細かい焼結体は、特に銅線
などの比較的軟かい線材を伸線するダイスに使用
した場合、伸線後の線表面は非常になめらかで好
評を博している。しかしながら、これらの市販の
焼結体は高温になるような条件下たとえばセラミ
ツクの切削や掘削工具として使用した場合その耐
熱性に問題があり、満足できる性能を出すことが
できない。また硬度の高い線材たとえば真鍮メツ
キされた高炭素鋼線の伸線ではダイヤモンド粒子
が欠損したり脱落し、強度面でも問題があり使用
することが不可能である。 本発明は前述した焼結ダイヤモンド工具の欠点
を改良することにより、耐熱性にすぐれかつ高強
度の焼結ダイヤモンド工具の製造法に関する。 まず市販のCoを結合材として用いたダイヤモ
ンド焼結体の耐熱性が劣る原因を調査するため加
熱試験を行つた。その結果、加熱温度約600℃以
上ではダイヤモンド焼結体内にマイクロクラツク
が発生しはじめ約800℃以上では一部のダイヤモ
ンドがグラフアイトするのが観察された。加熱時
ダイヤモンド焼結体中にマイクロクラツクが発生
するのは結合材として用いているCoの熱膨張係
数は13.8×10-6であるのに対し、ダイヤモンドの
熱膨張係数は1.5〜4.8×10-6と低いため、この差
によりダイヤモンド焼結体内部に熱応力が発生
し、マイクロクロツクが生じるものと考えられ
る。一方ダイヤモンドがグラフアイト化するの
は、結合材であるCoはダイヤモンド合成時の触
媒であるため加熱によりダイヤモンドが逆変態し
て、グラフアイト化したのであろう。したがつて
焼結ダイヤモンド工具の耐熱性を向上させるに
は、特開昭53−114589に開示されている如く結合
材であるCoを酸処理等の方法によりダイヤモン
ド焼結体中より除去すれば良い。 本発明者等はこれを確認するため特開昭53−
114589に開示されている方法で追試を行つた結
果、確かに耐熱性の向上は認められたが、ダイヤ
モンド焼結体の強度が著しく低下する欠点がある
ことがわかつた。そこで本発明者等は強度低下を
伴わずに耐熱性のすぐれたダイヤモンド焼結体を
開発すべく鋭意研究を重ねた。その結果、粒度、
1μm以上のダイヤモンド粒子を衝撃波法により
得られた0.1μm以下好ましくは0.01μ以下の超微
粒のダイヤモンド粒子、および/またはこの集合
体、および粒度1μm以下の周期律表4a、5a、6a
族の炭化物、窒化物または、これらの固溶体粉末
の一種または二種以上と鉄族金属を結合材として
用いた焼結体は耐熱性、強度共すぐれることを発
見した。 本発明で得られた焼結体が耐熱性、強度共すぐ
れる理由は次の如く考えられる。通常ダイヤモン
ド粒子の焼結はダイヤモンド粉末と鉄族金属等の
結合材の混合粉末あるいはダイヤモンド粒子のみ
を加圧した後、ダイヤモンドが安定でかつ鉄族金
属等の結合材の液相が発生する温度以上に加熱
し、ダイヤモンド粒界に鉄族金属等の結合材の液
相を侵入させる。このとき、ダイヤモンド粒子の
一部が結合材中に溶解するとともにダイヤモンド
粒界に析出してダイヤモンド同志を結合させる。
しかしダイヤモンド粒子は強度が高く超高圧に加
圧してもダイヤモンド粒子が破砕あるいは変形し
て理論密度にならず、空孔が残つたままであり、
この部分に多量の結合材が侵入する。ところが、
衝撃波法により得られた0.1μm以下超微粒のダイ
ヤモンド粉末あるいはこの集合体と1μm以下の
周期律表4a5a、6a族の炭化物、窒化物、あるい
はこれらの固溶体粉末の一種または二種以上の結
合材の混合粉末と1μm以上のダイヤモンド粉末
を用いれば、加圧時に1μm以上のダイヤモンド
粒子の間隙を結合材の混合粉末が埋め、理論密度
に近い値となる。したがつて加熱時に間隙に侵入
する鉄族金属の量は非常に少なくなる。さらに衝
撃波法により得られたダイヤモンド粒子は0.1μm
以下と超微粒であるため表面エネルギが高く、微
量の鉄族金属の触媒の存在下で1μm以上のダイ
ヤモンド粒子と結合材、及び結合材同志を強固に
結合させる。しかしながら、衝撃波法により得ら
れた超微粒のダイヤモンド粒子は前述した如く表
面エネルギが高いため、粒成長する場合がある
が、本発明で得られた焼結体は、周期律表4a、
5a、6a族の炭化物、窒化物あるいはこれらの固
溶体を含有するため、これらが粒成長抑制剤とし
て作用する。以上の如く本発明で得られた焼結体
は微量の鉄族金属により1μm以上のダイヤモン
ド粒子を強固に結合させるとともに、粒成長のな
い均一な組織となるため耐熱性と強度にすぐれて
いるものと考えられる。 本発明で使用する粗粒のダイヤモンド粒度は
1μm以上が良い。1μm以下であると焼結体の耐
摩耗性に問題が生じる場合がある。また1μm以
上のダイヤモンド粒子の含有量は容量で20〜90%
が好ましい。1μm以上のダイヤモンド粒子の含
有量が20%未満であると耐摩耗性が悪くなる。一
方1μm以上のダイヤモンド粒子の含有量が90%
を越すと1μm以上のダイヤモンド粒子の間隙に
埋まる。衝撃波法により得られた0.1μm以下の超
微粒のダイヤモンド粒子と周期律表4a、5a、6a
族の炭化物、窒化物、あるいはこれらの固溶体の
量が不足し、鉄族金属の含有量が増加するため、
耐熱性が劣る。また衝撃波法により得られた0.1μ
m以下の超微粒ダイヤモンド粒子の含有量は結合
材中の容積で50〜95%が好ましい。この含有量が
50%未満であると結合材の耐摩耗性が不足し、一
方95%を超えると、結合材中の周期律表4a、5a、
6a、族の炭化物、窒化物またはこれらの固溶体
の量が減少するため、衝撃波法により得られた超
微粒のダイヤモンド粒子が粒成長することがあ
る。本発明で得られた焼結体の鉄族金属の含有量
は耐熱性を向上させるためには5%以下が良い。
特に鉄族金属の含有量が3%以下になるとさらに
良い。 本発明に使用するダイヤモンド原料粉末として
は粒度1μm以上のものは合成ダイヤモンドまた
は天然ダイヤモンドのいずれでも良い。 このダイヤモンド粉末と衝撃波法により得られ
た超微粒ダイヤモンド粒子あるいは、この集合体
と周期律表4a、5a、6a族の炭化物、窒化物、ま
たは固溶体および鉄族金属粉末をボールミル等の
手段を用いて均一に混合する。この鉄族金属は予
め混合せずに焼結時に外部より溶浸せしめても良
い。混合した粉末を超高圧高温装置にダイヤモン
ドが安定な条件下で焼結する。このとき使用した
鉄族金属と炭化物や窒化物の共晶液相の出現温度
以上で焼結する必要がある。 本発明により得られたダイヤモンド焼結体は高
強度の線材を線引きする場合、焼結ダイヤモンド
ダイス内面には高圧力が発生するが、ダイヤモン
ド焼結体の外径が小さく肉厚がうすくなる場合
は、伸線中にダイヤモンド焼結体が縦方向に割れ
ることがある。このような場合はダイヤモンド焼
結体の外周を超硬合金等の支持体で包囲してダイ
ヤモンド焼結体の外周から予圧を加えることによ
り伸線中の縦割れを防止することが可能である。 本発明で得られた焼結体の用途としては、ダイ
スの他に切削工具や掘削工具にも使用できる。こ
の場合、ダイヤモンド焼結体の靱性をさらに向上
させるため、超硬合金等の支持体に超高圧焼結中
に接合させることも可能である。 以下実施例により、具体的に説明する。 実施例 1 粒度8〜16μmのダイヤモンド粉末、衝撃波法
により得られた粒度0.01μmのダイヤモンド粉末
平均粒度0.5μmのWC粉末及びCo粉末を容積で、
75:17:5:3に混合した。この完成粉末を外径
14mm、内径10mmのTa製の容器に充填し、超高圧
高温装置を用いて圧力55kb、温度1400゜で10分間
焼結した。焼結体を取り出して組織を観察したと
ころ粒度8〜16μのダイヤモンド粒子は衝撃波法
により得られた超微粒のダイヤモンド粒子とWC
及びCoより成る結合材を介して強固に結合して
おり、均一な組織を示していた。次にダイヤモン
ド焼結体の比重を測定したところ4.28であり、完
粉配合組成の焼結体であつた。このダイヤモンド
焼結体を用いて真空中で加熱テストした。比較の
ため、市販の粒度30〜60μmのダイヤモンド焼結
体(85〜90容積%ダイヤモンドとCoより成る)
も同様にテストした。その結果、本発明のダイヤ
モンド焼結体は1000℃に加熱してもマイクロクラ
ツクの発生はほとんどなく、ダイヤモンドのグラ
フアイト化も検出されなかつた。一方市販のダイ
ヤモンド焼結体は600℃付近でマイクロクラツク
が発生し出し800℃以上ではダイヤモンドのグラ
フアイト化が検出された。 実施例 2 粒度30〜60μmのダイヤモンド粒子、衝撃波法
により得られた0.1μm以下の超微粒のダイヤモン
ド粒子の集合体(Mo.W)Cを容積で80:15:5
の割合いに混合した。この完成粉末を外径14mm内
径10mmのMo製の容器に充填し、更にその上に0.2
mmのNi−Coの合金板を置いた。これを超高圧装
置内に入れ55kb、1450℃で10分間焼結した。焼
結体を取り出し、比重測定より、Ni−Coの含有
量を推定したところ容積で2.7%であつた。この
焼結体の抗折力を測定したところ162Kg/mm2であ
つた。比較のため実施例1で用いた粒度30〜60μ
mの市販のダイヤモンド焼結体を玉水処理して
Coを溶出したものの抗折力は80Kg/mm2であつた。 実施例 3 表1に示す組成の結合材粉末を作成した。 これらの結合材粉末と、1μm以上のダイヤモ
ンド粒子を表2に示す割合いで混合した。これら
の粉末を外径14mm、内径10mmのTa製の容器に
WC−6%Co組成の超硬合金の円板とTi箔を入
れた後充填し、圧力55kb、温度1500℃で焼結し
た。焼結体を取り出して組織を観察したところ、
イの
Currently, wire drawing dies, non-ferrous metal plastics,
70% diamond by volume for cutting ceramics
Sintered bodies exceeding 100% are commercially available. Among these, sintered bodies with fine diamond grains have been well received, especially when used in dies for drawing relatively soft wire materials such as copper wire, as the wire surface after drawing is extremely smooth. However, when these commercially available sintered bodies are used under high-temperature conditions, such as ceramic cutting or excavation tools, they have problems with their heat resistance and are unable to provide satisfactory performance. Furthermore, when drawing a wire with high hardness, such as a brass-plated high carbon steel wire, the diamond particles are damaged or fall off, which poses problems in terms of strength, making it impossible to use the wire. The present invention relates to a method for manufacturing a sintered diamond tool having excellent heat resistance and high strength by improving the above-described drawbacks of the sintered diamond tool. First, we conducted a heating test to investigate the cause of the poor heat resistance of commercially available diamond sintered bodies using Co as a binder. As a result, microcracks were observed to occur in the diamond sintered body at heating temperatures of about 600°C or higher, and some diamonds were observed to graphite at heating temperatures of about 800°C or higher. Microcracks occur in diamond sintered bodies when heated because the coefficient of thermal expansion of Co, which is used as a binder, is 13.8×10 -6 , while the coefficient of thermal expansion of diamond is 1.5 to 4.8×10. -6 , it is thought that this difference causes thermal stress to occur inside the diamond sintered body, causing microclocks. On the other hand, diamond turns into graphite because the binding material Co is a catalyst during diamond synthesis, so diamond undergoes reverse transformation due to heating and becomes graphite. Therefore, in order to improve the heat resistance of a sintered diamond tool, Co, which is a binder, can be removed from the diamond sintered body by a method such as acid treatment, as disclosed in JP-A-53-114589. . In order to confirm this, the present inventors
As a result of conducting additional tests using the method disclosed in No. 114589, an improvement in heat resistance was certainly observed, but it was found that there was a drawback in that the strength of the diamond sintered body was significantly reduced. Therefore, the present inventors have conducted intensive research in order to develop a diamond sintered body with excellent heat resistance without decreasing strength. As a result, the particle size,
Ultrafine diamond particles of 0.1 μm or less, preferably 0.01 μm or less, obtained by shock wave method using diamond particles of 1 μm or more, and/or aggregates thereof, and periodic table 4a, 5a, 6a with particle size of 1 μm or less
It has been discovered that a sintered body using one or more of iron group carbides, nitrides, or solid solution powders of iron group metals as a binder has excellent heat resistance and strength. The reason why the sintered body obtained by the present invention has excellent heat resistance and strength is considered as follows. Normally, diamond particles are sintered after pressurizing a mixed powder of diamond powder and a binder such as an iron group metal, or only diamond particles, at a temperature above which the diamond is stable and a liquid phase of the binder such as an iron group metal occurs. The liquid phase of the binder, such as iron group metal, penetrates into the diamond grain boundaries. At this time, some of the diamond particles dissolve in the binder and precipitate at the diamond grain boundaries, thereby bonding the diamonds together.
However, diamond particles have high strength, and even if they are pressurized to ultra-high pressure, the diamond particles will be crushed or deformed and will not reach the theoretical density, leaving pores.
A large amount of binding material enters this area. However,
A combination of ultrafine diamond powder of 0.1 μm or less obtained by the shock wave method or an aggregate thereof, and a binder of one or more of carbides, nitrides, or solid solution powders of groups 4a5a and 6a of the periodic table of 1 μm or less. If mixed powder and diamond powder of 1 μm or more are used, the binder mixed powder will fill the gaps between the diamond particles of 1 μm or more when pressurized, resulting in a value close to the theoretical density. Therefore, the amount of iron group metal that enters the gap during heating is very small. Furthermore, the diamond particles obtained by the shock wave method were 0.1μm.
Because it is an ultra-fine particle, it has a high surface energy, and in the presence of a small amount of iron group metal catalyst, it firmly bonds the diamond particles of 1 μm or more, the binder, and the binder to each other. However, since the ultrafine diamond particles obtained by the shock wave method have high surface energy as described above, grain growth may occur, but the sintered body obtained by the present invention is
Since it contains group 5a and 6a carbides, nitrides, or solid solutions thereof, these act as grain growth inhibitors. As described above, the sintered body obtained by the present invention has diamond particles of 1 μm or more firmly bound by a small amount of iron group metal, and has a uniform structure without grain growth, so it has excellent heat resistance and strength. it is conceivable that. The coarse diamond grain size used in the present invention is
1μm or more is better. If it is less than 1 μm, problems may arise in the wear resistance of the sintered body. In addition, the content of diamond particles of 1 μm or more is 20 to 90% by volume.
is preferred. If the content of diamond particles of 1 μm or more is less than 20%, wear resistance will deteriorate. On the other hand, the content of diamond particles larger than 1 μm is 90%.
If it exceeds 1 μm, it will fill in the gaps between diamond particles of 1 μm or more. Ultrafine diamond particles of 0.1 μm or less obtained by shock wave method and periodic table 4a, 5a, 6a
The amount of iron group carbides, nitrides, or their solid solutions is insufficient, and the content of iron group metals increases.
Poor heat resistance. Also, 0.1μ obtained by shock wave method
The content of ultrafine diamond particles with a diameter of m or less is preferably 50 to 95% by volume in the binder. This content is
If it is less than 50%, the wear resistance of the binder will be insufficient, while if it exceeds 95%, the periodic table 4a, 5a,
Because the amount of group 6a carbides, nitrides, or solid solutions thereof is reduced, ultrafine diamond particles obtained by the shock wave method may undergo grain growth. The content of iron group metal in the sintered body obtained in the present invention is preferably 5% or less in order to improve heat resistance.
In particular, it is even better if the content of iron group metals is 3% or less. The diamond raw material powder used in the present invention may be either synthetic diamond or natural diamond with a particle size of 1 μm or more. This diamond powder and ultrafine diamond particles obtained by the shock wave method, or this aggregate, carbides, nitrides, or solid solutions of groups 4a, 5a, and 6a of the periodic table, and iron group metal powder are mixed using means such as a ball mill. Mix evenly. This iron group metal may be infiltrated from the outside during sintering without being mixed in advance. The mixed powder is sintered in an ultra-high-pressure, high-temperature device under conditions where diamond is stable. At this time, it is necessary to sinter at a temperature higher than the temperature at which a eutectic liquid phase of the iron group metal, carbide, or nitride appears. When the diamond sintered body obtained by the present invention is drawn from a high-strength wire, high pressure is generated on the inner surface of the sintered diamond die, but when the outer diameter of the diamond sintered body is small and the wall thickness is thin, , the diamond sintered body may crack in the longitudinal direction during wire drawing. In such a case, it is possible to prevent vertical cracking during wire drawing by surrounding the outer periphery of the diamond sintered body with a support such as a cemented carbide and applying preload from the outer periphery of the diamond sintered body. The sintered body obtained by the present invention can be used not only for dies but also for cutting tools and excavating tools. In this case, in order to further improve the toughness of the diamond sintered body, it is also possible to bond it to a support such as cemented carbide during ultra-high pressure sintering. This will be specifically explained below using examples. Example 1 Diamond powder with a particle size of 8 to 16 μm, diamond powder with a particle size of 0.01 μm obtained by shock wave method, WC powder and Co powder with an average particle size of 0.5 μm, by volume,
The ratio was 75:17:5:3. The outer diameter of this finished powder is
It was filled into a Ta container with a diameter of 14 mm and an inner diameter of 10 mm, and sintered for 10 minutes at a pressure of 55 kb and a temperature of 1400° using an ultra-high pressure and high temperature device. When the sintered body was taken out and its structure was observed, diamond particles with a particle size of 8 to 16μ were found to be the same as ultrafine diamond particles obtained by the shock wave method and WC.
It was strongly bonded via a bonding material consisting of and Co, and exhibited a uniform structure. Next, the specific gravity of the diamond sintered body was measured and found to be 4.28, indicating that it was a sintered body with a complete powder composition. A heating test was conducted in vacuum using this diamond sintered body. For comparison, a commercially available diamond sintered body with a particle size of 30 to 60 μm (consisting of 85 to 90 volume% diamond and Co)
was similarly tested. As a result, even when the diamond sintered body of the present invention was heated to 1000°C, almost no microcracks were generated, and no graphitization of the diamond was detected. On the other hand, in commercially available diamond sintered bodies, microcracks were generated at around 600°C, and graphitization of the diamond was detected at temperatures above 800°C. Example 2 Diamond particles with a particle size of 30 to 60 μm, an aggregate of ultrafine diamond particles of 0.1 μm or less obtained by shock wave method (Mo.W) C were mixed in a volume of 80:15:5
The mixture was mixed in the following proportions. This finished powder was filled into a Mo container with an outer diameter of 14 mm and an inner diameter of 10 mm, and 0.2
A Ni-Co alloy plate of mm was placed. This was placed in an ultra-high pressure device and sintered to a size of 55kb at 1450°C for 10 minutes. The sintered body was taken out and the Ni-Co content was estimated to be 2.7% by volume from the specific gravity measurement. The transverse rupture strength of this sintered body was measured and found to be 162 Kg/mm 2 . Particle size 30-60μ used in Example 1 for comparison
Tamamizu treatment of commercially available diamond sintered bodies of
The transverse rupture strength of the product from which Co was eluted was 80 Kg/mm 2 . Example 3 A binder powder having the composition shown in Table 1 was prepared. These binder powders and diamond particles of 1 μm or more were mixed in the proportions shown in Table 2. Place these powders in a Ta container with an outer diameter of 14 mm and an inner diameter of 10 mm.
A disk of cemented carbide with a WC-6% Co composition and a Ti foil were placed and then filled, and sintered at a pressure of 55 kb and a temperature of 1500°C. When we took out the sintered body and observed its structure, we found that
i's

【表】 焼結体はダイヤモンドが粒成長していたが、他
の焼結体は均一な組織を示した。次にこれらの焼
結体を用いて切削工具のバイトを作成し、圧縮強
度1200Kg/cm2の安山岩を速度20m/分、切込み1
mm送り0.3mm/回転で湿式で30分間切削した。そ
の結果を表2に示す。比較のため市販の粒度80〜
100μmのダイヤモンド焼結体も同様にしてテス
トした。
[Table] The sintered body had diamond grain growth, but the other sintered bodies showed a uniform structure. Next, a cutting tool bit was made using these sintered bodies, and andesite with a compressive strength of 1200 kg/cm 2 was cut at a speed of 20 m/min with a depth of cut of 1.
Wet cutting was performed for 30 minutes at a mm feed of 0.3 mm/rotation. The results are shown in Table 2. For comparison, commercially available particle size 80 ~
A 100 μm diamond sintered body was also tested in the same manner.

【表】 実施例 4 実施例1で作成した完粉を内径3mmのWC−6
%Coより成る超硬合金に充填して圧力55kb、温
度1450℃で焼結した。この焼結体を用いて0.250
mmの穴径のダイスを作成し、真鍮メツキした鋼線
を速度800m/分潤滑油中で伸線した。比較のた
め粒度30〜60μmの市販のダイヤモンド焼結体の
ダイスも作成しテストした。その結果、本発明焼
結体は5.1t伸線可能であつたのに対し、市販のダ
イヤモンド焼結体ダイスは1.3tしか伸線できなか
つた。 実施例 5 実施例3で作成したこの焼結体を用いて切削用
のチツプを作成した。これを用いてAl−25%Si
を速度250m/分切込み0.3mm送り0.15mm/回転で
1時間切削した。なお比較のため市販の粒度3〜
4μmのダイヤモンド焼結体も切削テストを行つ
た。その結果本発明の焼結体の逃げ面摩耗巾は
0.047mmであつたのに対し市販のダイヤモンド焼
結体は0.095mmであつた。
[Table] Example 4 The finished powder prepared in Example 1 was transferred to WC-6 with an inner diameter of 3 mm.
%Co and sintered at a pressure of 55kb and a temperature of 1450℃. 0.250 using this sintered body
A die with a hole diameter of mm was prepared, and a brass-plated steel wire was drawn in lubricating oil at a speed of 800 m/min. For comparison, a commercially available diamond sintered die with a particle size of 30 to 60 μm was also prepared and tested. As a result, the sintered body of the present invention was able to draw 5.1 tons of wire, whereas the commercially available diamond sintered body die could only draw 1.3 tons of wire. Example 5 The sintered body produced in Example 3 was used to produce a cutting chip. Using this, Al−25%Si
was cut for 1 hour at a speed of 250 m/min with a depth of cut of 0.3 mm and a feed of 0.15 mm/rotation. For comparison, commercially available particle size 3~
A cutting test was also conducted on a 4μm diamond sintered body. As a result, the flank wear width of the sintered body of the present invention is
The diameter was 0.047 mm, whereas the diameter of the commercially available diamond sintered body was 0.095 mm.

Claims (1)

【特許請求の範囲】 1 粒度1μm以上のダイヤモンド粉末を容積で
20〜90%含有し、残部の結合材が容積で50〜95%
の衝撃波法により得られた0.1μm以下の超微粒ダ
イヤモンド粒子および/またはこれらの集合体、
および粒度1μm以下の周期律表第4a、5a、6a族
の炭化物、窒化物および/またはこれらの固溶体
粉末の一種または二種以上と鉄族金属の混合粉末
を作成し、超高圧高温装置を用いてダイヤモンド
が安定な高温高圧下でホツトプレスすることを特
徴とする工具用ダイヤモンド焼結体の製造法。 2 混合する鉄族金属の割合が容積で5%以下で
ある特許請求の範囲第1項記載の工具用ダイヤモ
ンド焼結体の製造法。 3 粒度1μm以上のダイヤモンド粉末を容積で
20〜95%含有し、残部の結合材が容積で50〜95%
の衝撃波法により得られた0.1μm以下の超微粒ダ
イヤモンド粒子、および/またはこれらの集合
体、1μm以下の周期律表第4a、5a、6a族の炭化
物、窒化物および/またはこれらの固溶体粉末の
一種または二種以上の混合粉末を作成し、超高圧
高温装置を用いてダイヤモンドが安定な高温、高
圧下でホツトプレスすることにより外部より鉄族
金属を侵入させて、焼結することを特徴とする工
具用ダイヤモンド焼結体の製造法。 4 ホツトプレス中に侵入する鉄族金属の割合が
焼結体中の容積で5%以下である特許請求の範囲
第3項記載の工具用ダイヤモンド焼結体の製造
法。
[Claims] 1 Diamond powder with a particle size of 1 μm or more by volume
Contains 20 to 90%, with the remaining binder being 50 to 95% by volume.
Ultrafine diamond particles of 0.1 μm or less and/or aggregates thereof obtained by the shock wave method of
A mixed powder of iron group metal and one or more of carbides, nitrides, and/or solid solution powders of groups 4a, 5a, and 6a of the periodic table with a particle size of 1 μm or less is prepared, and the mixture is prepared using an ultra-high pressure and high temperature device. A method for producing a diamond sintered body for tools, which is characterized by hot pressing under high temperature and high pressure where the diamond is stable. 2. The method for producing a diamond sintered body for tools according to claim 1, wherein the proportion of the iron group metal to be mixed is 5% or less by volume. 3 Diamond powder with a particle size of 1 μm or more by volume
Contains 20 to 95%, with the remaining binder being 50 to 95% by volume.
Ultrafine diamond particles of 0.1 μm or less and/or aggregates thereof obtained by the shock wave method of The method is characterized in that a mixed powder of one or more types is prepared and then hot-pressed using an ultra-high-pressure and high-temperature device at high temperatures and pressures where the diamond is stable, allowing iron group metals to enter from the outside and sintering. A method for manufacturing diamond sintered bodies for tools. 4. The method for producing a diamond sintered body for tools according to claim 3, wherein the proportion of iron group metals that penetrate into the hot press is 5% or less by volume of the sintered body.
JP56197353A 1981-12-07 1981-12-07 Diamond sintered body for tool and manufacture Granted JPS5899169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197353A JPS5899169A (en) 1981-12-07 1981-12-07 Diamond sintered body for tool and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197353A JPS5899169A (en) 1981-12-07 1981-12-07 Diamond sintered body for tool and manufacture

Publications (2)

Publication Number Publication Date
JPS5899169A JPS5899169A (en) 1983-06-13
JPH0333674B2 true JPH0333674B2 (en) 1991-05-17

Family

ID=16373068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197353A Granted JPS5899169A (en) 1981-12-07 1981-12-07 Diamond sintered body for tool and manufacture

Country Status (1)

Country Link
JP (1) JPS5899169A (en)

Also Published As

Publication number Publication date
JPS5899169A (en) 1983-06-13

Similar Documents

Publication Publication Date Title
US4650776A (en) Cubic boron nitride compact and method of making
EP0174546B1 (en) Diamond sintered body for tools and method of manufacturing the same
JP2004505786A (en) Manufacturing method of polishing products containing diamond
US20040062928A1 (en) Method for producing a sintered, supported polycrystalline diamond compact
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
JP7188726B2 (en) Diamond-based composite material using boron-based binder, method for producing the same, and tool element using the same
GB2519671A (en) Superhard constructions & methods of making same
JPH0333675B2 (en)
JP2523452B2 (en) High strength cubic boron nitride sintered body
CN111266573B (en) Preparation method of polycrystalline cubic boron nitride composite sheet
JPH083131B2 (en) Method for manufacturing diamond sintered body for tool
JPS627149B2 (en)
JPS6125761B2 (en)
JPH0333674B2 (en)
JPS6350401B2 (en)
JPS6311414B2 (en)
JPS6049589B2 (en) Composite sintered body for tools and its manufacturing method
JPS6146540B2 (en)
CN114728853B (en) Polycrystalline diamond with iron-containing binder
JPS6257681B2 (en)
JPS5899168A (en) Diamond sintered body for tool and manufacture
JPS638072B2 (en)
JPS5891056A (en) Diamond sintered body for tools and manufacture
JPH0312123B2 (en)
JPH0377151B2 (en)