JPH0333211A - Boiling water-resistant polyvinyl alcohol-based fiber and production thereof - Google Patents

Boiling water-resistant polyvinyl alcohol-based fiber and production thereof

Info

Publication number
JPH0333211A
JPH0333211A JP16561789A JP16561789A JPH0333211A JP H0333211 A JPH0333211 A JP H0333211A JP 16561789 A JP16561789 A JP 16561789A JP 16561789 A JP16561789 A JP 16561789A JP H0333211 A JPH0333211 A JP H0333211A
Authority
JP
Japan
Prior art keywords
pva
polymerization
solvent
polymer
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16561789A
Other languages
Japanese (ja)
Other versions
JP2728737B2 (en
Inventor
Hirofumi Sano
洋文 佐野
Toshimi Yoshimochi
吉持 駛視
Hideo Kawakami
秀男 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP16561789A priority Critical patent/JP2728737B2/en
Publication of JPH0333211A publication Critical patent/JPH0333211A/en
Application granted granted Critical
Publication of JP2728737B2 publication Critical patent/JP2728737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject fiber useful for a reinforcing material of a large-sized tire for high speed, a net, a rope, etc., by blending two kinds of PVA-based polymers respectively having a specified polymerization degree in a specified condition, dissolving the resultant mixture in a solvent, spinning using the dry wet spinning method or the wet spinning method, removing the solvent and subsequently carrying out high-drawing at a high temperature. CONSTITUTION:A PVA-based polymer having >=3000 average polymerization degree is blended with another PVA-based polymer having >=15000 average polymerization degree and >=5000 difference between the polymerization degree thereof and that of the former polymer so that the content of the latter polymer may be >=10wt.%, preferably 20-80wt.%. The resultant mixture is dissolved in a solvent, spun by the dry wet spinning method or the wet spinning method and drawn at >235 deg.C after removal of almost all the above mentioned solvent so that the total draw ratio may be >=18, thus obtaining the objective fiber having >=140 deg.C dissolution temperature in boiling water under 20mg/d load and >=20g/d single filament tensile strength.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐熱水性のポリビニルアルコール(以下PVA
と略記)系繊維釦よびその製造法に関するものであう、
特に産業資材用によび複合材の強化用の用途分野でも高
温での耐熱水性や、水雰囲気下での耐摩擦性等が要求さ
れる用途に適したPVA系繊維を得ようとするものであ
る。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to hot water-resistant polyvinyl alcohol (hereinafter referred to as PVA).
(abbreviated as ) type fiber buttons and their manufacturing method.
The aim is to obtain PVA-based fibers that are suitable for applications that require hot water resistance at high temperatures and abrasion resistance in a water atmosphere, especially in the fields of industrial materials and reinforcement of composite materials. .

(従来の技術) 従来PVA系繊維はボリアミド、ポリエステル。(Conventional technology) Conventional PVA fibers are polyamide and polyester.

ポリアクリロニトリル系繊維に比べて強度1弾性率が高
く、その主用途である産業資材用繊維として利用されて
いる以外にも、アスベスト繊維代替としてセメント補強
用RIIA等にも利用されてきている。
It has a higher strength and modulus of elasticity than polyacrylonitrile fibers, and in addition to its main use as fiber for industrial materials, it has also been used as a substitute for asbestos fiber in RIIA for reinforcing cement.

最近の技術では、さらに高強度高弾性率を有する耐熱水
性に優れたPVA系繊維を得る方法として、高分子量ポ
リエチレンのゲル紡糸−超延伸の考え方を応用した。@
開昭59−130314号。
In recent technology, the concept of gel spinning and super-stretching of high molecular weight polyethylene has been applied as a method for obtaining PVA fibers with high strength, high modulus, and excellent hot water resistance. @
Kaisho 59-130314.

特開昭61−1υ8711号が提案されている。しかし
ながら、これらの方法では高強度高弾性率のPVA系繊
維は得られても、一部の用途分野で要求されるような高
度な耐熱水性を具備することはできなかった。
JP-A-61-1υ8711 has been proposed. However, although these methods yield PVA-based fibers with high strength and high modulus, they cannot provide the high degree of hot water resistance required in some application fields.

すなわち、PVA系ポリマーは本来親水性であるために
、これを繊維化しても耐水性に問題があり、従来はアセ
タール化処理等の水不溶化処理を行なってきた。最近の
高強力PVA繊維では水の影響を受けやすい非晶部分の
分子配向も進み、水に対する寸法安定性は上述の水不溶
化処理を行なわなくても達成できるようになった。しか
し、例えば120℃の熱水中ではたち筐ち溶断じ、オー
トクレーブ養生のセメント成形物の補強材や湿潤状態で
摩擦をうけやすいローブ、高圧ゴムボースやオイルブレ
ーキホースさらには大型乗用車タイヤなどの補強材に対
しては未だ不満足であった。
That is, since PVA-based polymers are inherently hydrophilic, even if they are made into fibers, there is a problem in water resistance, and conventionally, water insolubilization treatments such as acetalization treatments have been performed. In recent high-strength PVA fibers, the molecular orientation of the amorphous portion that is susceptible to the effects of water has advanced, and dimensional stability against water can now be achieved without the above-mentioned water insolubilization treatment. However, for example, reinforcing materials for cement moldings cured in autoclaves, lobes that are susceptible to friction in wet conditions, high-pressure rubber bows, oil brake hoses, and large passenger car tires, etc. I was still dissatisfied with it.

また特開昭61−289112号公報1%開昭62−2
63307号公報などのように重量平均重合度が200
00以上のPVA系繊維も公知であるが製造コストが高
くなり、かつ結晶化が十分進まず耐熱水性の満足したも
のは得られていなかった。
Also, Japanese Patent Application Laid-open No. 61-289112 (1989-289112)
The weight average degree of polymerization is 200 as in Publication No. 63307, etc.
00 or higher PVA-based fibers are also known, but their production costs are high and their crystallization does not progress sufficiently, making it impossible to obtain fibers with satisfactory hot water resistance.

(発明が解決しようとする課題) 従って本発明は熱水溶解温度の向上した耐熱水性PVA
系繊維を得んとするものであり、しかも製造コストを高
めることのない技術を提供せんとするものである。
(Problems to be Solved by the Invention) Therefore, the present invention provides hot water resistant PVA with improved hot water dissolution temperature.
The purpose of this invention is to provide a technique for obtaining fibers without increasing production costs.

(課題を解決するための手段) すなわち本発明は5 111)平均重合度3000以上のPVA系ポリマーに
平均重合度15000以上のPVA系ポリマーを少なく
とも10重重量板上含みかつ両ポリマーの平均重合度差
が5000以上である繊繍であって。
(Means for Solving the Problems) That is, the present invention provides 5 111) A PVA polymer having an average polymerization degree of 3000 or more and a PVA polymer having an average polymerization degree of 15000 or more on at least 10 weight plates, and an average polymerization degree of both polymers. The embroidery has a difference of 5000 or more.

20η/d下での熱水溶解温度が140℃以上、単繊維
引張強度が209/d以上の耐熱水性PVA系繊維。
A hot water resistant PVA fiber having a hot water dissolution temperature of 140° C. or higher and a single fiber tensile strength of 209/d or higher under 20 η/d.

(2)重合度差が5000以上ある平均重合度3000
以上のPVA系ポリマーと平均重合1i 15000以
上のPVA系ポリマーとを、後者ポリマーを少なくとも
1offit%以上含むように混合して溶剤にm解し、
常法により乾湿式または湿式にて紡糸し。
(2) Average degree of polymerization is 3000 with a difference in degree of polymerization of 5000 or more
The above PVA-based polymer and a PVA-based polymer with an average polymerization ratio of 15,000 or more are mixed so as to contain at least 1 offit% of the latter polymer, and dissolved in a solvent,
Spun by dry or wet method using conventional methods.

該溶剤をほとんど除去したあと235℃を超える温度で
総延伸倍率18倍以上になるように延伸することを特徴
とする耐熱水性PVA系繊維の製造法。」 に関するものである。
A method for producing hot water-resistant PVA-based fibers, which comprises removing most of the solvent and then stretching the fibers at a temperature exceeding 235° C. to a total stretching ratio of 18 times or more. ”.

本発明の要件は次の点にある。The requirements of the present invention are as follows.

1)平均重合度3000以上のPVAに平均重合度15
000以上のPVAを少なくとも10重重量風上含みか
つ両ポリマーの平均重合度差が5000以上である混合
PVAを溶剤に溶解する。
1) PVA with an average polymerization degree of 3000 or more and an average polymerization degree of 15
A mixed PVA containing at least 10% by weight of PVA of 0.000 or more and having an average degree of polymerization difference between the two polymers of 5000 or more is dissolved in a solvent.

2)乾湿式tたは湿式紡糸にて凝固させる際に急冷によ
る均一ゲル化が起るようにする。
2) When coagulating by dry-wet spinning or wet spinning, uniform gelation is caused by rapid cooling.

3)常法により湿延伸、抽出、乾燥などを施し。3) Perform wet stretching, extraction, drying, etc. using conventional methods.

溶剤をほとんど除去したあと高温で高倍率に乾熱延伸す
る。
After removing most of the solvent, the film is dry-stretched at high temperature and at a high magnification.

本発明の特徴は、高重合度PVAが含まれる事により結
晶と結晶を貫通したタイ分子が多く非晶都が強化される
ことになり熱水に対する抵抗力が高まる。特に重合度の
異なるPVAを混合することで低重合度PvAの高結晶
性、高重合度PVAのタイ分子数増加の相乗効果により
熱水溶解温度140℃以上といつ従来にない耐熱水PV
A系繊維が得られ、セメント補強材でオートクレーブ養
生可能となり、また耐熱水性の必要な高速用大型タイヤ
の補強材、スチームを使用するゴムホースの補強材、熱
水のかかる網、ローブ等への適用カ可能となる。
The feature of the present invention is that by containing PVA with a high degree of polymerization, there are many tie molecules penetrating the crystals and the amorphous core is strengthened, thereby increasing the resistance to hot water. In particular, by mixing PVA with different polymerization degrees, the synergistic effect of the high crystallinity of low polymerization degree PvA and the increase in the number of tie molecules of high polymerization degree PVA allows the hot water dissolution temperature to be 140℃ or higher, which is unprecedented for hot water PV.
A-based fibers are obtained, which can be autoclaved as a cement reinforcing material, and can be applied to reinforcing materials for large high-speed tires that require hot water resistance, reinforcing materials for rubber hoses that use steam, nets and robes that are exposed to hot water, etc. becomes possible.

以下本発明の内容をさらに詳細に説明する。The contents of the present invention will be explained in more detail below.

本発明にいうPVA系ポリマーとは30℃の水溶液で粘
度法により求めた平均重合度が3000以上のものであ
り、ケン化度が99.5モルφ以上で分岐度の低い直鎖
状のものである。本発明の場合2種のPVA系ポリマー
の混合物を使用するのであるが、平均重合度3000以
上、好筐しくに5000以上で、20000以下のポリ
マー(Alに平均重合度15000以上好ましくは20
000以上のポリマー(B)を少なくとも10重量嘩以
上好筐し<Fi20〜80重量貸含むようにする。また
両ポリマーの平均重合度差は5000以上、好ましくは
8000以上である。高重合度ポリマー(B)が10重
′Jjk%未満では高強度、高耐熱水性を得ることは難
しい。また両ポリマーの平均重合度差が5000未満で
は本発明の言う低重合度ポリマー(A)の高延伸、高結
晶性と高重合度ポリマー(B)の結晶間タイ分子数の増
大とのバランスがとれず、高強度高耐水性の2つを満足
する繊維が得がたい。
The PVA-based polymer referred to in the present invention is a polymer with an average degree of polymerization of 3000 or more determined by a viscosity method in an aqueous solution at 30°C, a linear polymer with a saponification degree of 99.5 mol φ or more, and a low degree of branching. It is. In the case of the present invention, a mixture of two types of PVA-based polymers is used, and the average degree of polymerization is 3,000 or more, preferably 5,000 or more, and 20,000 or less (Al has an average polymerization degree of 15,000 or more, preferably 20,000 or more).
The polymer (B) of 000 or more should be contained in an amount of at least 10% by weight and <Fi20 to 80% by weight. Further, the average degree of polymerization difference between both polymers is 5,000 or more, preferably 8,000 or more. If the content of the highly polymerized polymer (B) is less than 10% by weight, it is difficult to obtain high strength and high hot water resistance. If the average degree of polymerization difference between the two polymers is less than 5,000, the balance between the high stretching and high crystallinity of the low polymerization degree polymer (A) and the increase in the number of intercrystalline tie molecules of the high polymerization degree polymer (B) referred to in the present invention is not achieved. It is difficult to obtain a fiber that satisfies two requirements: high strength, high water resistance, and high strength.

またホウ酸、酸化防止剤、顔料、油剤などを添加しても
何ら問題ないが添加量は性能低下を起こさない程度に押
えるのが好ましい。
Further, there is no problem in adding boric acid, antioxidants, pigments, oils, etc., but it is preferable to limit the amount added to an extent that does not cause performance deterioration.

PVA系ポリマーの溶剤としては何でもよくグリセリン
、エチレングリコール、ジエチレングリコール、トリエ
チレングリコール、iJメチレングリコール、プロピレ
ングリコール、ブタンジオール、3−メチルペンタン−
1,3,5−)す′オールなどの多価アルコール、ジメ
チルホルムアミド。
Any solvent for PVA polymers may be used, including glycerin, ethylene glycol, diethylene glycol, triethylene glycol, iJ methylene glycol, propylene glycol, butanediol, and 3-methylpentane.
Polyhydric alcohols such as 1,3,5-)su'ol, dimethylformamide.

ジメチルスルホキシド、ジエチレントリアミン水および
これら2s以上の混合溶剤などがあげられるが特に急冷
により生成繊維がゲル化するような多価アルコールが好
ましい。
Examples include dimethyl sulfoxide, diethylene triamine water, and mixed solvents of these for 2 seconds or more, but polyhydric alcohols that gel the produced fibers by rapid cooling are particularly preferred.

紡糸方式は乾湿式または湿式いずれでもよいが急冷によ
り均一ゲル繊維を得るには乾湿式が望ましい。
The spinning method may be a dry-wet method or a wet-spinning method, but a wet-dry method is preferable in order to obtain uniform gel fibers by rapid cooling.

凝固浴はアルコール、アセトン、アルカリ水溶液など何
でもよいが均一ゲル繊維の生成しゃすいアルコール/溶
剤混合系が好普しい。均一ゲル化を起こすには凝固浴中
に100重量部上の該溶剤を含有させゆっくりと凝固さ
せるのが好ましい。
The coagulation bath may be any alcohol, acetone, alkaline aqueous solution, etc., but an alcohol/solvent mixed system that produces uniform gel fibers is preferred. In order to cause homogeneous gelation, it is preferable to contain 100 parts by weight of the solvent in the coagulation bath and coagulate slowly.

さらに凝固温度を20’C以下にして急冷効果を得るの
が好オしい。
Furthermore, it is preferable to set the solidification temperature to 20'C or lower to obtain a rapid cooling effect.

湿延伸はしてもしなくてもよいが、好筐しぐは3倍以上
である。これは繊維間の膠着を少なくシ。
Wet stretching may or may not be done, but the good housing strength is 3 times or more. This reduces adhesion between fibers.

微結晶をこわして非晶化するためである。This is to break the microcrystals and make them amorphous.

次いで溶剤の抽出を行なうが抽出剤としてはアルコール
、水いずれでもよい。
Next, solvent extraction is performed, and the extractant may be either alcohol or water.

その後乾燥を行なうが、乾燥は結晶化を抑え膠着を防ぐ
ために130℃以下で行ない、抽出乾燥工程で該溶剤の
ほとんど全部を除去する。
Drying is then carried out at 130° C. or lower to suppress crystallization and prevent sticking, and almost all of the solvent is removed in the extraction drying step.

最後に235℃以上の高温で乾熱延伸を行なう。Finally, dry heat stretching is performed at a high temperature of 235° C. or higher.

延伸方式は例でもよ(IJi、2段以上、乾熱、オイル
バス、チッ素ガス中ゾーン延伸などのいずれでもよい。
Any stretching method may be used (IJi, two or more stages, dry heat, oil bath, nitrogen gas zone stretching, etc.).

延伸温度235℃未満では配向結晶化が不十分で熱水に
より分子鎖が乱れやすく耐熱水性が低下する。延伸は総
延伸倍率18倍以上になるように行なう。18倍未満で
は分子鎖の配向が不十分で耐熱水性が低下しまた強度も
低下したものとなる。
If the stretching temperature is lower than 235°C, oriented crystallization will be insufficient and the molecular chains will be easily disturbed by hot water, resulting in a decrease in hot water resistance. Stretching is performed at a total stretching ratio of 18 times or more. If it is less than 18 times, the orientation of the molecular chains will be insufficient, resulting in decreased hot water resistance and strength.

以下実施例により不発明を具体的に説明するが。The non-invention will be specifically explained below with reference to Examples.

本発明は実施例のみに限定されるものではない。The present invention is not limited only to the examples.

な釦以下に述べる実施例中における各種の物性値、パラ
メーターは以下の方法で測定されたものである。
Various physical property values and parameters in the Examples described below were measured by the following methods.

1)PVAの粘度平均重合度pA JIS  K6726に準じ、30℃の水溶液の極限粘
度〔η〕の測定値より次式によって算出した。
1) Viscosity average degree of polymerization pA of PVA Calculated from the measured value of the intrinsic viscosity [η] of an aqueous solution at 30° C. according to the following formula according to JIS K6726.

lag PA = 1.631sg ((η)X 10
’/8.29 )2)単繊維引張強伸度、弾性率 予めv4湿された繊維を試長10ので、0.25f/d
の初荷重訃よびsow、”分の引張速度にて破断強伸度
および初期弾性率を求め、5点以上の平均値を採用した
lag PA = 1.631sg ((η)X 10
'/8.29) 2) Tensile strength and elongation of single fiber, elastic modulus of pre-wetted fiber with v4 sample length 10, 0.25 f/d
The breaking strength and elongation and initial elastic modulus were determined at the initial load and the tensile speed of "sow", and the average value of 5 or more points was adopted.

3)熱水溶解温度 単繊維25本にデニール当り2■の荷重をかけ、水を満
したガラス製円筒状密封容器の中間に吊し、!わりより
水を一定速度で加熱昇温させていき、繊維の収量率が1
()多に達した時筐たは溶断した時の温度で最高値WT
bを採用した。
3) Hot water melting temperature A load of 2 cm per denier was applied to 25 single fibers, and they were suspended in the middle of a sealed cylindrical glass container filled with water. By heating water at a constant rate, the fiber yield rate is 1.
() Maximum value WT at the temperature when the casing or fuse is reached
b was adopted.

実施例】 平jli[l1280000PVA2OfiJt部に対
して、平均重合度17000のPVA7(1重量部を混
合したもの″!c4.5重漫嘩になるようにグリセリン
に180℃にて溶解した。次いで該溶液を190℃にし
て孔径0.151111.ホール数8oのノズルよう吐
出させ25m下の凝固浴に落下せしめて乾湿式紡糸を行
なった。凝固浴組成はメタノール/グリセリン−80/
20であり、温度は0℃とした。
Example: A mixture of 1 part by weight of PVA7 with an average degree of polymerization of 17,000 per part of 280,000 PVA2 was dissolved in glycerin at 180°C to give a 4.5-polymer mixture.Then, the solution was heated to 190°C and discharged through a nozzle with a hole diameter of 0.151111 and a number of holes of 8° and dropped into a coagulation bath 25 m below to perform wet-dry spinning.The coagulation bath composition was methanol/glycerin-80/
20, and the temperature was 0°C.

次いで40℃に保ったメタノール浴中で溶剤を抽出する
とともに3.5m/分のローラー速度で引取り4倍の湿
延伸を行なった。引続きメタノール抽出したあと95℃
の熱風で乾燥した。最後に252℃の温度でm延伸倍率
20.0倍となるよう延伸を行なった。得られた延伸糸
の荷重20111F/d下での熱水溶解温度は162℃
、単繊維引張強度は24.1f / dと高耐熱水性、
高強度の繊維となった。
Next, the solvent was extracted in a methanol bath kept at 40° C., and the film was taken up and wet stretched 4 times at a roller speed of 3.5 m/min. After subsequent methanol extraction, 95°C
dried with hot air. Finally, stretching was carried out at a temperature of 252° C. so that the m-stretching ratio was 20.0 times. The resulting drawn yarn had a hot water dissolution temperature of 162°C under a load of 20111F/d.
, single fiber tensile strength is 24.1 f/d and high hot water resistance,
The result is a high-strength fiber.

比較例1として実施例1で最後の乾熱延伸温度を220
℃とした場合を実施した。総延伸倍率は16.8倍にし
かならず繊維の白化が生じた。得られた延伸糸の荷重2
0岬/d下での熱水溶解温度は141℃と耐熱水性も低
いものとなり、tた単繊維引張強度は19.0f/dと
これも低いものになった0 実施例2 平均重合度4000のP’/Aと平均重合度28000
のPVAをそれぞれ60重量嘩、40重量優となるよう
に混合したものを、濃度8重量算になるように水に添加
し、同時にホウ酸を0.5重量%/PVA加えて100
℃にて溶解した。次いで該溶液を70℃にして、組成を
NaOHl Of /j水、 NJL2SO4200f
/I水にし10℃に保った凝固浴に吐出させ湿式紡糸を
行なった。次いで空中で3倍延伸してからアルカリを中
和したあとNazSaa 300 f7190℃の熱水
で1.8倍延伸し30℃に保った水浴中で溶剤抽出を行
なった。110℃で乾燥した後248℃の熱風炉で4倍
延伸した。得られた延伸糸の荷重20η/d下での熱水
溶解温度は154℃。
As Comparative Example 1, the final dry heat stretching temperature in Example 1 was set to 220
The case where the temperature was ℃ was carried out. The total stretching ratio was only 16.8 times, and whitening of the fibers occurred. Load 2 of the obtained drawn yarn
The hot water dissolution temperature at 0 cape/d was 141°C, which was low in hot water resistance, and the single fiber tensile strength was 19.0 f/d, which was also low.Example 2 Average degree of polymerization: 4000 P'/A and average degree of polymerization of 28,000
A mixture of PVA of 60% by weight and 40% by weight, respectively, was added to water to give a concentration of 8% by weight, and at the same time, 0.5% by weight of boric acid/PVA was added to make 100% PVA.
Dissolved at ℃. The solution was then brought to 70°C and the composition was NaOHl Of /j water, NJL2SO4200f
/I water and discharged into a coagulation bath kept at 10° C. for wet spinning. Next, the film was stretched 3 times in the air, the alkali was neutralized, and then stretched 1.8 times with NazSaa 300 f7 hot water at 190°C, followed by solvent extraction in a water bath maintained at 30°C. After drying at 110°C, it was stretched 4 times in a hot air oven at 248°C. The hot water dissolution temperature of the obtained drawn yarn under a load of 20 η/d was 154°C.

単繊維引張強度は21.5 f/dと高耐熱性、高強度
の繊細となった。
The single fiber tensile strength was 21.5 f/d, making it highly heat resistant, strong and delicate.

実施例3 平均重合度7700のPVAと平均重合度18000の
PVAの等重量混合物をlO重重量圧なるようにジメチ
ルスルホキシドに90℃にて溶解した。
Example 3 A mixture of equal weights of PVA with an average degree of polymerization of 7,700 and PVA with an average degree of polymerization of 18,000 was dissolved in dimethyl sulfoxide at 90° C. to a pressure of 10% by weight.

次いで該溶液を50℃にして乾湿式紡糸を行なった。凝
固浴組成はエタノール/ジメチルスルホキシド= 70
/30であり、温度は10℃とした。
Next, the solution was heated to 50° C. and wet-dry spinning was performed. Coagulation bath composition is ethanol/dimethyl sulfoxide = 70
/30, and the temperature was 10°C.

次いで50℃に保ったエタノール中で溶剤を抽出した。The solvent was then extracted in ethanol kept at 50°C.

170℃の乾熱で7倍延伸したあと245℃の乾熱ヒー
ターで3倍延伸した。得られた延伸糸の荷1120叩/
d下での熱水溶解温度は150℃。
It was stretched 7 times with dry heat at 170°C, and then stretched 3 times with a dry heat heater at 245°C. Load of the obtained drawn yarn 1120 strokes/
The hot water dissolution temperature under d is 150°C.

単繊維弓 張強度22.0f/d と高いものであった。monofilament bow Tensile strength 22.0f/d It was very expensive.

%許出願人 株式会社 ク ラ レ 代 理 人% permit applicant Co., Ltd. nine La Re teenager Reason Man

Claims (2)

【特許請求の範囲】[Claims] (1)平均重合度3000以上のポリビニルアルコール
系ポリマーに平均重合度15000以上のポリビニルア
ルコール系ポリマーを少なくとも10重量%以上含みか
つ両ポリマーの平均重合度差が5000以上である繊維
であつて、荷重20mg/d下での熱水溶解温度が14
0℃以上、単繊維引張強度が20g/d以上の耐熱水性
ポリビニルアルコール系繊維
(1) A fiber containing at least 10% by weight of a polyvinyl alcohol polymer with an average degree of polymerization of 15,000 or more in a polyvinyl alcohol polymer with an average degree of polymerization of 3,000 or more, and the difference in the average degree of polymerization between the two polymers is 5,000 or more, and the load The hot water dissolution temperature under 20 mg/d is 14
Heat-resistant water-resistant polyvinyl alcohol fiber with a single fiber tensile strength of 20 g/d or more at 0°C or higher
(2)重合度差が5000以上ある平均重合度3000
以上のポリビニルアルコール系ポリマーと平均重合度1
800以上のポリビニルアルコール系ポリマーとを、後
者ポリマーを少なくとも10重量%以上含むように混合
して溶剤に溶解し、常法により乾湿式または湿式にて紡
糸し、該溶剤をほとんど除去したあと235℃を超える
温度で総延伸倍率18倍以上になるように延伸すること
を特徴とする耐熱水性ポリビニルアルコール系繊維の製
造法。
(2) Average degree of polymerization is 3000 with a difference in degree of polymerization of 5000 or more
The above polyvinyl alcohol polymer and average degree of polymerization 1
A polyvinyl alcohol-based polymer of 800 or more is mixed with a polyvinyl alcohol-based polymer containing at least 10% by weight of the latter polymer, dissolved in a solvent, spun using a dry-wet method or a wet method using a conventional method, and after removing most of the solvent, the mixture is heated at 235°C. 1. A method for producing hot water-resistant polyvinyl alcohol fibers, which comprises stretching the fibers at a total stretching ratio of 18 times or more at a temperature exceeding .
JP16561789A 1989-06-27 1989-06-27 Hot water-resistant polyvinyl alcohol fiber and method for producing the same Expired - Lifetime JP2728737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16561789A JP2728737B2 (en) 1989-06-27 1989-06-27 Hot water-resistant polyvinyl alcohol fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16561789A JP2728737B2 (en) 1989-06-27 1989-06-27 Hot water-resistant polyvinyl alcohol fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0333211A true JPH0333211A (en) 1991-02-13
JP2728737B2 JP2728737B2 (en) 1998-03-18

Family

ID=15815770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16561789A Expired - Lifetime JP2728737B2 (en) 1989-06-27 1989-06-27 Hot water-resistant polyvinyl alcohol fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2728737B2 (en)

Also Published As

Publication number Publication date
JP2728737B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
JP2763932B2 (en) Method for producing thermoplastic polymer fiber
JPH0759763B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
JP4801200B2 (en) Method for producing wholly aromatic polyamide filament and wholly aromatic polyamide filament produced by the method
JP2588579B2 (en) Polyvinyl alcohol fiber excellent in hot water resistance and method for producing the same
JPS60126312A (en) High-strength and high-modulus polyvinyl alcohol based fiber and production thereof
JP4172888B2 (en) Monofilament and method for producing the same
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS6197415A (en) Polyacrylonitrile fiber having high strength and modulus
JPH0233314A (en) High-tenacity polyvinyl alcohol based fiber and production thereof
JPH0333211A (en) Boiling water-resistant polyvinyl alcohol-based fiber and production thereof
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JP2537962B2 (en) Polyvinyl alcohol fiber suitable for reinforcement
JP2765951B2 (en) Glossy high-strength polyvinyl alcohol fiber and method for producing the same
JP2905545B2 (en) High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance
JP2503037B2 (en) Polyvinyl alcohol fiber with excellent flex fatigue
JPS63190010A (en) Production of high-tenacity polyvinyl alcohol based fiber
JP2553129B2 (en) Polyvinyl alcohol fiber with good fatigue resistance
JPH03279412A (en) Method for spinning polyvinyl alcohol-based fiber
JPH01266212A (en) Production of high-tenacity polyvinyl alcohol fiber
JPH02169709A (en) Method for drawing polyvinyl alcohol-based fiber
JPH08284013A (en) Polyvinyl alcohol monofilament yarn having excellent hot-water resistance, high strength and high initial modulus of elasticity
JPH02251608A (en) Production of polyvinyl alcohol-based fiber
JPH0233316A (en) Polyamide fiber having high strength and modulus and production thereof
JPH04240208A (en) Production of high-elastic modulus polyvinyl alcoholic fiber
JPH0473212A (en) Production of polyester fiber having high strength and high elastic modulus