JPH0333095A - Production of diamond tool by vapor phase synthesis - Google Patents
Production of diamond tool by vapor phase synthesisInfo
- Publication number
- JPH0333095A JPH0333095A JP16642589A JP16642589A JPH0333095A JP H0333095 A JPH0333095 A JP H0333095A JP 16642589 A JP16642589 A JP 16642589A JP 16642589 A JP16642589 A JP 16642589A JP H0333095 A JPH0333095 A JP H0333095A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- substrate
- brazing material
- film
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 50
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 49
- 239000012808 vapor phase Substances 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 230000015572 biosynthetic process Effects 0.000 title claims description 7
- 238000003786 synthesis reaction Methods 0.000 title claims description 7
- 238000005219 brazing Methods 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 29
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 6
- 230000008018 melting Effects 0.000 claims abstract description 6
- 238000002844 melting Methods 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 40
- 238000005240 physical vapour deposition Methods 0.000 claims description 5
- 238000005266 casting Methods 0.000 claims 1
- 238000005498 polishing Methods 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 26
- 239000002184 metal Substances 0.000 abstract description 8
- 229910052751 metal Inorganic materials 0.000 abstract description 8
- 238000001308 synthesis method Methods 0.000 abstract description 3
- 238000000151 deposition Methods 0.000 abstract description 2
- 238000010884 ion-beam technique Methods 0.000 abstract description 2
- 239000000945 filler Substances 0.000 abstract 2
- 229910018054 Ni-Cu Inorganic materials 0.000 abstract 1
- 229910018481 Ni—Cu Inorganic materials 0.000 abstract 1
- 229910052737 gold Inorganic materials 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 23
- 238000005520 cutting process Methods 0.000 description 9
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 241000218202 Coptis Species 0.000 description 2
- 235000002991 Coptis groenlandica Nutrition 0.000 description 2
- 229910017770 Cu—Ag Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 244000062175 Fittonia argyroneura Species 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002649 leather substitute Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
[産業上の利用分野]
本発明は気相合成ダイヤモンド工具の新規な製造方法に
関するものである。さらに詳しくいえば、本発明は、気
相合成ダイヤモンド薄膜が基体に強固に接着して成る切
削工具や耐摩耗工具などの気相合成ダイヤモンド工具を
効率よく製造する方法に関するものである。
〔従来の技術〕
従来、非鉄材料や非金属材料の切削加工工具又は高耐摩
耗性を要する耐摩耗工具には超硬合金、多結晶焼結体ダ
イヤモンド及び天然若しくは合皮の単結晶ダイヤモンド
などが用いられている。
このうち、ダイヤモンド工具は高硬度、高耐摩耗性及び
被削材との耐溶着性に優れているなどの特徴を有するこ
とから、例えば切削バイト、スローアウェイチップ、ド
リル、エンドミルなどの切削工具や、硬度と耐摩耗性を
必要とする耐摩耗工具などとして用いられている。
他方、近午ダイヤモンド合皮技術は著しい発展を遂げ、
気相合成法によるダイヤモンド薄膜を金属製工具基体又
は超硬合金製工具基体上に析出させて、切削工具や耐摩
耗工具の用途に適用しようとする新しい試みがなされて
いる。
しかしながら、従来の気相合成ダイヤモンド工具の製造
方法においては、ダイヤモンド膜が鉄系金属基体上には
析出しにくいなど、基体の種類により大きく影響を受け
、基体材質の制限を免れない上、形成されたダイヤモン
ド膜と工具基体との接着性は必ずしも強固ではなく、例
えば超硬合金基体上にダイヤモンド膜を設けt;切削用
チップは、切削加工中にダイヤモンド膜が剥離するなど
の欠点がある。
このように、気相合成ダイヤモンド膜を装着して成る実
用的な工具はこれまで見い出されていないのが実状であ
る。
[発明が解決しようとする課題]
本発明は、このような従来の気相合成ダイヤモンド工具
の製造方法が有する欠点を克服し、気相合成ダイヤモン
ド膜を、工具基体の種類に制約を受けることなく、かつ
工具基体と強固に接着させて成る気相合成ダイヤモンド
工具を提供することを目的としてなされt;ものである
。
[課題を解決するための手段]
本発明者らは、前記目的を達成するために鋭意研究を重
ねた結果、基体表面上に、ダイヤモンドが析出しやすい
ロウ材層を予め設けたのち、この上にダイヤモンドを気
相合成法により膜状に析出させ、次いで該ロウ材層を溶
融することにより、その目的を達成しうろことを見い出
し、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、工具基体表面にロウ材層を設けた
のち、その上にダイヤモンドを気相合成法により膜状に
析出させ、次いでロウ材層を溶融させて、該基体とダイ
ヤモンド膜とを接着させることを特徴とする気相合成ダ
イヤモンド工具の製造方法を提供するものである。
以下、本発明の詳細な説明する。
本発明方法においては、まず工具基体表面にロウ材層が
設けられる。このロウ材については、基体との濡れ性が
良好で、かつダイヤモンドが析出しやすい上、通常のダ
イヤモンドの気相合成温度である600℃以上、好まし
くは600〜1300℃、より好ましくは800〜11
00°Cの融点を有するものであればよく、特に制限は
ない。このようなロウ材としては、例えばAu −N
1−Cu系、Au−Cu−Ag系、Au−Ni−Cr系
、Au−Ta系などの金糸ロウ材や、その他銀糸ロウ材
などが挙げられるが、これらの中でAu含有量が70〜
90重量%の金糸ロウ材が好適である。まt;、これら
のロウ材は使用する工具基体の種類に応じて適宜選択さ
れる。
基体表面に、これらのロウ材から成る層を設ける方法に
ついては特に制限はなく、例えば基体表面上でロウ材を
溶融して流延させたのち、ロウ材表面を研磨加工して数
十μm程度の均一な厚さに仕上げる方法、あるいは基体
表面上に、ロウ材層膜を真空蒸着法、イオンブレーティ
ング法、スパッタリング法、プラズマ法などの物理蒸着
法(PVD法)や化学蒸着法(CVD法)により、数十
μm程度の厚さに形成させる方法などの中から任意の方
法を選択して用いることができる。
これらの方法の中で、基体表面が曲面や複雑形状を有す
る場合には、PVD法やCVD法によりロウ材層を設け
るのが有利である。
本発明方法においては、次に、このようにして工具基体
表面に設けられたロウ材層の上に、気相合成法によりダ
イヤモンドを、通常1〜1000μmの厚さに膜状に析
出させる。この厚さが1μm未満では使用時にクラック
や破損が生じやすいし、1000μmを超えるとその厚
さの割には工具としての性能上の向上は認められず、む
しろ皮膜に時間がかかりすぎて、効率が低下するように
なり、好ましくない。このロウ材層上にダイヤモンド膜
を析出させる方法については特に制限はなく、従米ダイ
ヤモンド膜相戊長法として慣用されている方法、例えば
熱分解CVD法、プラズマCVD法、イオンビームCV
D法などの化学蒸着法や物理蒸着法を採用することがで
きる。
次に、このようにして、ロウ材層を介してダイヤモンド
膜が設けられた基体を、真空中で加熱して該ロウ材層を
溶融させ、ダイヤモンド膜を基体に強固に接着させる。
本発明方法は、例えば切削バイト、スローアウエイチッ
プ、ドリル、エンドミルなどの切削工具や、硬度と耐摩
耗性を必要とする耐摩耗機械部品、治具類などの製造に
適用することができる。[Industrial Application Field] The present invention relates to a novel method for manufacturing a vapor-phase synthetic diamond tool. More specifically, the present invention relates to a method for efficiently manufacturing vapor-phase synthetic diamond tools, such as cutting tools and wear-resistant tools, in which a vapor-phase synthetic diamond thin film is firmly adhered to a substrate. [Prior Art] Conventionally, tools for cutting non-ferrous and non-metallic materials or wear-resistant tools that require high wear resistance include cemented carbide, polycrystalline sintered diamond, and natural or synthetic single-crystal diamond. It is used. Among these, diamond tools have characteristics such as high hardness, high wear resistance, and excellent adhesion resistance with work materials, so they can be used for cutting tools such as cutting tools, indexable tips, drills, and end mills. It is used as wear-resistant tools that require hardness and wear resistance. On the other hand, diamond synthetic leather technology has made remarkable progress in recent years.
New attempts have been made to deposit a diamond thin film by vapor phase synthesis on a metal tool substrate or a cemented carbide tool substrate and apply it to cutting tools and wear-resistant tools. However, in the conventional manufacturing method of vapor-phase synthetic diamond tools, diamond films are difficult to deposit on iron-based metal substrates, are greatly affected by the type of substrate, are subject to limitations of the substrate material, and are difficult to form. The adhesion between a diamond film and a tool base is not necessarily strong; for example, cutting tips in which a diamond film is provided on a cemented carbide base have drawbacks such as the diamond film peeling off during cutting. Thus, the reality is that no practical tool equipped with a vapor-phase synthetic diamond film has been found so far. [Problems to be Solved by the Invention] The present invention overcomes the drawbacks of the conventional method for producing a vapor-phase synthetic diamond tool, and can produce a vapor-phase synthetic diamond film without being restricted by the type of tool substrate. The object of the present invention is to provide a vapor-phase synthetic diamond tool which is firmly bonded to a tool base. [Means for Solving the Problems] As a result of extensive research to achieve the above object, the present inventors have previously provided a brazing material layer on the surface of a substrate, on which diamonds tend to precipitate, and then It was discovered that the object could be achieved by precipitating diamond in the form of a film using a vapor phase synthesis method and then melting the brazing material layer, and based on this knowledge, the present invention was completed. That is, in the present invention, after providing a brazing material layer on the surface of a tool base, diamond is deposited in the form of a film on the surface by vapor phase synthesis, and then the brazing material layer is melted to bond the base material and the diamond film. The present invention provides a method for manufacturing a vapor-phase synthetic diamond tool, which is characterized by bonding. The present invention will be explained in detail below. In the method of the present invention, a brazing material layer is first provided on the surface of the tool base. This brazing material has good wettability with the substrate and easy precipitation of diamond, and is 600°C or higher, which is the usual vapor phase synthesis temperature for diamond, preferably 600 to 1300°C, more preferably 800 to 11°C.
There is no particular restriction as long as it has a melting point of 00°C. As such a brazing material, for example, Au-N
Examples include gold thread brazing materials such as 1-Cu series, Au-Cu-Ag series, Au-Ni-Cr series, and Au-Ta series, and other silver thread brazing materials.
90% by weight gold thread brazing material is preferred. These brazing materials are appropriately selected depending on the type of tool base to be used. There are no particular restrictions on the method of providing a layer made of these brazing materials on the surface of the substrate; for example, the brazing material is melted and cast on the surface of the substrate, and then the surface of the brazing material is polished to a thickness of about several tens of micrometers. A method of finishing a brazing material layer to a uniform thickness on the substrate surface, or by applying a physical vapor deposition method (PVD method) such as a vacuum evaporation method, ion blasting method, sputtering method, or plasma method, or a chemical vapor deposition method (CVD method) ), any method can be selected and used, such as a method of forming the film to a thickness of about several tens of μm. Among these methods, when the substrate surface has a curved surface or a complicated shape, it is advantageous to provide the brazing material layer by PVD or CVD. In the method of the present invention, diamond is then deposited in the form of a film with a thickness of usually 1 to 1000 μm by vapor phase synthesis on the brazing material layer thus provided on the surface of the tool base. If the thickness is less than 1 μm, cracks and breakage will easily occur during use, and if it exceeds 1000 μm, there will be no improvement in performance as a tool considering the thickness, but rather it will take too much time to form the coating, making it more efficient. This is undesirable as it causes a decrease in There are no particular restrictions on the method for depositing the diamond film on this brazing material layer, and methods commonly used as the conventional diamond film phase elongation method, such as pyrolysis CVD, plasma CVD, ion beam CV
A chemical vapor deposition method such as the D method or a physical vapor deposition method can be employed. Next, the substrate on which the diamond film is provided with the brazing material layer interposed in this manner is heated in a vacuum to melt the brazing material layer and firmly adhere the diamond film to the substrate. The method of the present invention can be applied, for example, to the production of cutting tools such as cutting tools, throw-away tips, drills, and end mills, as well as wear-resistant mechanical parts and jigs that require hardness and wear resistance.
次に、実施例により本発明をさらに詳細に説明するが本
発明はこれらの例によってなんら限定されるものではな
い。
実施例1
超硬合金基体(SPGN421)上に、Au −Ni−
Cr系のロウ材をI O−’ 〜10−’To r r
の真空中で溶融させ、超硬合金基体表面を濡らしたのち
、基体の寸法形状に合わせてロウ材を約50μmの均一
な厚さとなるように研磨加工して、第1図に示すように
、工具基体1上にロウ材層2を設けた。
次いで、このロウ材層2上に、第2図に示すようにEA
CVD法により、基体温度800℃、CH,とH!との
混合比1:99(容量基準)、圧力40 T Or r
s流量50SCCM、反応時間4Hrの合成条件で、
厚さl0μmのダイヤモンド膜3を形成させた。
次に、これを10”’ 〜10−’To r rの真空
中で1050”0に加熱してロウ材層を溶融させ、第3
図に示すように、ロウ付は部4を介してダイヤモンド膜
3を基体に強固に接着させ、気相合成ダイヤモンドチッ
プを作成した。
実施例2
一般機械用超硬合金製ドリル()3−45L)の刃失部
にAu−Cu−Ag系のロウ材を真空蒸着しt;のち、
実施例1と同様にダイヤモンドを10μmの厚さにFR
膜した。
次いで、ロウ材層をlO”Torrの真空中、1000
℃で溶融させ、超硬合金製ドリル基体とダイヤモンド膜
とをロウ付けして、ダイヤモンド膜を装着しt;ドリル
を作成した。
実施例3
ステンレス鋼製基体(マシンホルダー)上に、Ti−C
u−Ag系のロウ材を10”’ 〜N。
”[’ o r rの真空中で溶融させたのち実施例1
と同様に約30μmの均一な厚さになるように研磨加工
した。次いでこの基体表面へEACVD法により基体温
度700 ’C%CHaと部2との混合比2:98(容
量基準)、圧力5 QTo r r、流量50SCCM
、反応時間20Hrの条件でダイヤモンドを30μm厚
さに成膜した。
次に、ロウ材層を10−’ 〜10−’To r rの
真空中、900°Cで溶融させ、ステンレス鋼製マシン
ホルダー基体とダイヤモンド膜とをロウ付けしたのち、
ダイヤモンド膜表面をスカイ7盤にて研磨加工して、第
4図に示すようなステンレス鋼製基体1の表面にロウ付
は部4を介してダイヤモンド膜3が強固に接着して成る
耐摩耗治具を作成しt: 。
〔発明の効果〕
本発明によれば、膜状ダイヤモンドを工具基体の種類に
制約されることなく、しかも基体と強固に接着させるこ
とができるので、実用的な気相合成ダイヤモンド工具を
容易に製造することができる。Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples in any way. Example 1 Au-Ni- on a cemented carbide substrate (SPGN421)
Cr-based brazing material I O-' ~ 10-'To r r
After melting in a vacuum and wetting the surface of the cemented carbide base, the brazing material was polished to a uniform thickness of approximately 50 μm according to the size and shape of the base, as shown in Figure 1. A brazing material layer 2 was provided on a tool base 1. Next, on this brazing material layer 2, EA is applied as shown in FIG.
By CVD method, substrate temperature is 800℃, CH, and H! Mixing ratio 1:99 (volume basis), pressure 40 T Or r
s flow rate 50SCCM, reaction time 4Hr synthesis conditions,
A diamond film 3 having a thickness of 10 μm was formed. Next, this is heated to 1050"0 in a vacuum of 10"' to 10-' Torr to melt the brazing material layer, and the third
As shown in the figure, the diamond film 3 was firmly adhered to the substrate via the brazing portion 4, thereby producing a vapor phase synthetic diamond chip. Example 2 Au-Cu-Ag brazing material was vacuum-deposited on the missing blade part of a cemented carbide drill (3-45L) for general machinery;
As in Example 1, FR was made of diamond to a thickness of 10 μm.
It was filmed. Next, the brazing material layer was heated in a vacuum of 10” Torr at 1000
℃, and the cemented carbide drill base and the diamond film were brazed and the diamond film was attached to create a drill. Example 3 Ti-C on a stainless steel substrate (machine holder)
Example 1 After melting the u-Ag-based brazing material in a vacuum of 10''~N.
Similarly, it was polished to a uniform thickness of about 30 μm. Next, the surface of this substrate was subjected to EACVD at a substrate temperature of 700'C% CHa and a mixing ratio of Part 2 of 2:98 (by volume), a pressure of 5 QTorr, and a flow rate of 50 SCCM.
A diamond film was formed to a thickness of 30 μm under conditions of a reaction time of 20 hours. Next, the brazing material layer was melted at 900°C in a vacuum of 10-' to 10-' Torr, and the stainless steel machine holder base and diamond film were brazed together.
The surface of the diamond film is polished using a Sky 7 disc and then brazed onto the surface of the stainless steel base 1 as shown in FIG. Create the ingredients: . [Effects of the Invention] According to the present invention, it is possible to firmly adhere the film-like diamond to the tool base without being restricted by the type of the tool base, so that a practical vapor-phase synthetic diamond tool can be easily manufactured. can do.
第1図、第2図及び第3図は、本発明方法による工具製
造の手順の1例を示す工程説明図、第4図は本発明方法
により得られた気相合成ダイヤモンド工具の1例の斜視
図である。
図中符号1は工具基体、2はロウ材層、3はダイヤモン
ド膜、4はロウ付は部である。1, 2, and 3 are process explanatory diagrams showing an example of the tool manufacturing procedure according to the method of the present invention, and FIG. 4 is an illustration of an example of a vapor-phase synthetic diamond tool obtained by the method of the present invention. FIG. In the figure, numeral 1 is a tool base, 2 is a brazing material layer, 3 is a diamond film, and 4 is a brazing part.
Claims (1)
イヤモンドを気相合成法により膜状に析出させ、次いで
ロウ材層を溶融させて、該基体とダイヤモンド膜とを接
着させることを特徴とする気相合成ダイヤモンド工具の
製造方法。 2 工具基体表面上でロウ材を溶融して流延させたのち
、ロウ材表面を研磨加工することにより、工具基体表面
にロウ材層を設ける請求項1記載の製造方法。 3 物理蒸着法又は化学蒸着法により、工具基体表面に
ロウ材層を設ける請求項1記載の製造方法。[Claims] 1. After providing a brazing material layer on the surface of a tool base, diamond is deposited in the form of a film on it by vapor phase synthesis, and then the brazing material layer is melted to form a diamond film on the base material. A method for manufacturing a vapor-phase synthetic diamond tool, characterized by bonding. 2. The manufacturing method according to claim 1, wherein the brazing material layer is provided on the surface of the tool base by melting and casting the brazing material on the surface of the tool base and then polishing the surface of the brazing material. 3. The manufacturing method according to claim 1, wherein the brazing material layer is provided on the surface of the tool base by a physical vapor deposition method or a chemical vapor deposition method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16642589A JPH0333095A (en) | 1989-06-28 | 1989-06-28 | Production of diamond tool by vapor phase synthesis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16642589A JPH0333095A (en) | 1989-06-28 | 1989-06-28 | Production of diamond tool by vapor phase synthesis |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0333095A true JPH0333095A (en) | 1991-02-13 |
Family
ID=15831184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16642589A Pending JPH0333095A (en) | 1989-06-28 | 1989-06-28 | Production of diamond tool by vapor phase synthesis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0333095A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5359170A (en) * | 1992-02-18 | 1994-10-25 | At&T Global Information Solutions Company | Apparatus for bonding external leads of an integrated circuit |
US9194189B2 (en) | 2011-09-19 | 2015-11-24 | Baker Hughes Incorporated | Methods of forming a cutting element for an earth-boring tool, a related cutting element, and an earth-boring tool including such a cutting element |
-
1989
- 1989-06-28 JP JP16642589A patent/JPH0333095A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5359170A (en) * | 1992-02-18 | 1994-10-25 | At&T Global Information Solutions Company | Apparatus for bonding external leads of an integrated circuit |
US9194189B2 (en) | 2011-09-19 | 2015-11-24 | Baker Hughes Incorporated | Methods of forming a cutting element for an earth-boring tool, a related cutting element, and an earth-boring tool including such a cutting element |
US9771497B2 (en) | 2011-09-19 | 2017-09-26 | Baker Hughes, A Ge Company, Llc | Methods of forming earth-boring tools |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01153228A (en) | Vapor phase composite method for producing diamond tool | |
JP3504675B2 (en) | Method of coating adherent diamond film on ultra-hard tungsten carbide support | |
US5529805A (en) | Method for manufacturing a diamond article | |
WO2005011902A1 (en) | Diamond film coated tool and process for producing the same | |
JP2651947B2 (en) | Diamond thin film coating member and diamond thin film coating method | |
JP2592761B2 (en) | Rotary cutting tool and manufacturing method thereof | |
JPH0621360B2 (en) | Diamond-coated sintered bond excellent in peel resistance and method for producing the same | |
JP2840788B2 (en) | Surface protective film containing diamond component | |
JPH0333095A (en) | Production of diamond tool by vapor phase synthesis | |
JPH06509844A (en) | Tools with wear-resistant diamond blades, their manufacturing method and their use | |
JP2829310B2 (en) | Method for producing vapor phase synthetic diamond tool | |
JP3380294B2 (en) | Tool with ultra-hard film and method of manufacturing the same | |
KR101243686B1 (en) | Scriber cutter wheel and method for manufacturing the same | |
JPH04157157A (en) | Production of artificial diamond coated material | |
JP2020507012A (en) | Solid diamond material coating method | |
JP2964669B2 (en) | Boron nitride coated hard material | |
US20020015794A1 (en) | Coating of ultra-hard materials | |
JPS62120903A (en) | Sintered diamond for tool | |
JP2004306153A (en) | Single crystal diamond cutting tool | |
JP2813243B2 (en) | Manufacturing method of polycrystalline diamond tool | |
JPH01210201A (en) | Vapor phase synthesized diamond film installed tool | |
JPH0516004A (en) | Cutting tool and manufacture thereof | |
JPH0354180A (en) | Production of diamond-coated sintered material | |
JP2717594B2 (en) | Diamond coated cutting tool and method of manufacturing the same | |
JPH05237708A (en) | Diamond coated cutting tool excellent in antiwear property and method for manufacturing the same |