JP3380294B2 - Tool with ultra-hard film and method of manufacturing the same - Google Patents

Tool with ultra-hard film and method of manufacturing the same

Info

Publication number
JP3380294B2
JP3380294B2 JP16128093A JP16128093A JP3380294B2 JP 3380294 B2 JP3380294 B2 JP 3380294B2 JP 16128093 A JP16128093 A JP 16128093A JP 16128093 A JP16128093 A JP 16128093A JP 3380294 B2 JP3380294 B2 JP 3380294B2
Authority
JP
Japan
Prior art keywords
film
ultra
hard film
hard
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16128093A
Other languages
Japanese (ja)
Other versions
JPH0679503A (en
Inventor
桂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP16128093A priority Critical patent/JP3380294B2/en
Publication of JPH0679503A publication Critical patent/JPH0679503A/en
Application granted granted Critical
Publication of JP3380294B2 publication Critical patent/JP3380294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗性に優れた超硬
質膜付工具およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tool with a super hard film having excellent wear resistance and a method for manufacturing the tool.

【0002】[0002]

【従来技術】ダイヤモンド、立方晶窒化硼素等の超硬質
材料は、従来大規模な超高圧プレス装置により作成して
いた。しかし、気相合成法によれば、これらの材料が簡
便な方法により得られることから、気相合成法によるダ
イヤモンドや立方晶窒化硼素等の超硬質材料は、今後、
広範囲にわたる応用が期待されている(特開昭60−5
4995号公報等参照)。
2. Description of the Related Art Ultra-hard materials such as diamond and cubic boron nitride have hitherto been produced by a large-scale ultra-high pressure press machine. However, according to the vapor phase synthesis method, since these materials can be obtained by a simple method, ultra-hard materials such as diamond and cubic boron nitride by the vapor phase synthesis method will be used in the future.
A wide range of applications are expected (JP-A-60-5).
4995, etc.).

【0003】しかし、超硬質膜は、例えば、窒化珪素や
超硬合金からなる母材とは密着性が不十分で剥がれが生
じやすいという問題がある。そこでこの対策としてシリ
コン基盤上にダイヤモンド膜を形成し、しかるのちにこ
のダイヤモンド膜を切り出して超硬工具の刃先に蝋付け
することが提案されている。
However, there is a problem in that the ultra-hard film has insufficient adhesion to the base material made of, for example, silicon nitride or cemented carbide, and is likely to peel off. Therefore, as a countermeasure against this, it has been proposed that a diamond film is formed on a silicon substrate, and then this diamond film is cut out and brazed to the cutting edge of the cemented carbide tool.

【0004】しかし、この方法でもダイヤモンド膜を強
固に蝋付けする方法や適切な蝋材が見当たらず実用化で
きていなかった。また、この方法では厚さ0.1mm以
上のダイヤモンド膜を生成する必要があり、装置や電力
費等のコストが高かった。
However, even with this method, a method for firmly brazing a diamond film and an appropriate brazing material could not be found, so that it could not be put to practical use. In addition, this method requires the production of a diamond film having a thickness of 0.1 mm or more, resulting in high costs such as equipment and power costs.

【0005】[0005]

【発明が解決しようとする問題点】そこで、これらの超
硬質膜と母材とを強固に密着させることができれば、ダ
イヤモンド、立方晶窒化硼素等の超硬質膜が広い範囲で
使用されるようになり、例えば、金属や複合材料の加工
用切削工具およびスリッターナイフ等の産業用刃物ある
いは各種の褶動部品やガイドブッシュ等の耐摩耗部材な
どで大幅な性能改善が期待できる。しかし、現状では、
上記のように母材との密着性を向上することができない
ために、これら超硬質膜が形成された工具は未だ実用化
されていなかった。
Therefore, if these ultra-hard films can be firmly adhered to the base material, the ultra-hard films such as diamond and cubic boron nitride can be used in a wide range. Therefore, for example, industrial tools such as cutting tools for processing metals and composite materials, industrial knives such as slitter knives, various sliding parts, wear-resistant members such as guide bushes, etc. can be expected to greatly improve performance. However, in the present situation,
Since the adhesion with the base material cannot be improved as described above, tools with these ultra-hard films have not yet been put into practical use.

【0006】[0006]

【問題点を解決するための手段】本発明者は上記の問題
点に対し検討を重ねた結果、膜厚が0.3〜100μ
m、成長面の表面粗さが0.2μm以上のダイヤモン
ド、立方晶窒化硼素等の超硬質膜を、タングステンを主
成分とする厚み0.1〜5mmの接合膜と結合させ、更
にこの接合膜を介して工具本体にろう付けによって接合
することにより、工具本体と超硬質膜とを強固に密着さ
せることができることを見出し、本発明をするに至っ
た。
As a result of repeated studies on the above problems, the present inventor found that the film thickness was 0.3 to 100 μm.
m, a super-hard film of diamond, cubic boron nitride, or the like having a surface roughness of 0.2 μm or more on the growth surface is bonded to a bonding film containing tungsten as a main component and having a thickness of 0.1 to 5 mm. The present invention has been found out that the tool body and the super-hard film can be firmly adhered to each other by brazing the tool body to the tool body through the present invention, and the present invention has been completed.

【0007】即ち、本発明の超硬質膜付工具は、気相合
成法により作成され、膜厚が0.3〜100μm、成長
面の表面粗さが0.2μm以上のダイヤモンドまたは立
方晶窒化硼素からなる超硬質膜を、該超硬質膜の前記成
長面に気相合成法により作成され、厚み0.1〜5mm
タングステン、タングステンと炭素との化合物のうち
少なくとも一種からなる接合膜を介してろう付けによっ
て工具本体上に接合してなるものである。接合膜と超高
湿膜との間には、Ti、Ni、Fe、Al、Co、A
u、Pr、Mg、Cu、Zr、Hf、Ta、Ag及びそ
れらの炭化物、窒化物、ホウ化物のうち少なくとも一種
からなる中間膜が介在されていることが望ましく、ま
た、接合膜は、その超硬質膜側に炭化タングステン膜が
形成されていることが望ましい。
[0007] In other words, super-hard film with a tool of the present invention is created by a vapor phase synthesis method, the film thickness is 0.3~100μm, growth
A super-hard film made of diamond or cubic boron nitride having a surface roughness of 0.2 μm or more is formed by the above-mentioned formation of the super-hard film.
Created on the long side by vapor phase synthesis method, thickness 0.1-5mm
Of tungsten or a compound of tungsten and carbon, and is joined to the tool body by brazing through a joining film. Ti, Ni, Fe, Al, Co, A is formed between the bonding film and the ultra-high humidity film.
It is desirable that an intermediate film made of at least one of u, Pr, Mg, Cu, Zr, Hf, Ta, Ag, and their carbides, nitrides, and borides be interposed, and the bonding film has a superposition It is desirable that the tungsten carbide film is formed on the hard film side.

【0008】 また、本発明の超硬質膜付工具は、単結
晶シリコン等からなる基板の表面にダイヤモンドまたは
立方晶窒化硼素からなる超硬質膜を、膜厚が0.3〜1
00μm、成長面の表面粗さが0.2μm以上になるよ
うに形成し、該超硬質膜の前記成長面にタングステン、
タングステンと炭素との化合物のうち少なくとも一種か
らなる接合膜を気相合成法により形成した後、前記基体
を除去し、しかるのち前記接合膜を工具本体にろう付け
によって接合することにより、前記超硬質膜を前記接合
膜を介して前記工具本体に取り付け、製造される。ま
た、シリコン等からなる基板の除去は、接合膜を工具本
体にろう付けによって接合した後、行っても良い。ま
た、基板表面に超硬質膜を形成した後、この超硬質膜上
にTi、Ni、Fe、Al、Co、Au、Pr、Mg、
Cu、Zr、Hf、Ta、Ag及びそれらの炭化物、窒
化物、ホウ化物のうち少なくとも一種からなる中間膜を
物理蒸着法(PVD法)など従来の方法で形成し、この
中間膜上にタングステンやタングステンと炭素との化合
物からなる接合膜を形成しても良い。尚、前記中間膜
は、CVD時やろう付け時の加熱などにより金属がそれ
らの炭化物、窒化物、ホウ化物となっても良い。
Further, the tool with an ultra-hard film of the present invention has an ultra-hard film made of diamond or cubic boron nitride on the surface of a substrate made of single crystal silicon or the like and having a film thickness of 0.3 to 1.
00μm, the surface roughness of the growth surface will be 0.2μm or more
And tungsten on the growth surface of the ultra-hard film ,
After forming a bonding film made of at least one of the compounds of tungsten and carbon by a vapor phase synthesis method, removing the base, and then bonding the bonding film to the tool body by brazing It is manufactured by attaching a film to the tool body through the bonding film. The substrate made of silicon or the like may be removed after the bonding film is bonded to the tool body by brazing . Further, after forming an ultra-hard film on the surface of the substrate, Ti, Ni, Fe, Al, Co, Au, Pr, Mg,
An intermediate film made of at least one of Cu, Zr, Hf, Ta, Ag and their carbides, nitrides and borides is formed by a conventional method such as physical vapor deposition (PVD method), and tungsten or tungsten is formed on the intermediate film. A bonding film made of a compound of tungsten and carbon may be formed. In the intermediate film, the metal may be changed into carbides, nitrides, or borides thereof by heating during CVD or brazing.

【0009】タングステンと炭素との化合物とは、WC
やW2 C等がある。
The compound of tungsten and carbon is WC
And W2C.

【0010】超硬質膜の接合膜側の面は、表面粗さRm
axが0.2μm以上であることが重要である。0.2
μmよりも小さいと超硬質膜の接合膜への付着強度が小
さくなり、切削時に超硬質膜の剥離等を生じるからであ
る。表面粗さRmaxは特に1μm以上とすることが望
ましい。このような表面粗さの調節は、超硬質膜形成時
の各種成膜パラメータを適度に調製することにより得ら
れる。
The surface of the ultra-hard film on the bonding film side has a surface roughness Rm.
It is important that ax is 0.2 μm or more. 0.2
This is because if it is smaller than μm, the adhesion strength of the superhard film to the bonding film becomes small and peeling of the superhard film occurs during cutting. The surface roughness Rmax is particularly preferably 1 μm or more. Such adjustment of the surface roughness can be obtained by appropriately adjusting various film-forming parameters at the time of forming the ultra-hard film.

【0011】[0011]

【作用】本発明の超硬質膜付工具では、超硬質膜は直接
工具本体に接合されるのではなく、気相合成法により作
成されたタングステンやタングステンと炭素との化合物
からなる接合膜を介して工具本体に接合したので、超硬
質膜と工具本体との接合強度が向上する。即ち、接合膜
は工具本体にAgろううやAu−Snなどのろうう材に
よりろうう付けされるが、タングステンやタングステン
と炭素との化合物からなる接合膜は上記ろうう材と濡れ
性が良いため、接合膜と工具本体が強固に接着され、こ
の結果、超硬質膜と工具本体との接合強度が向上する。
In the tool with an ultra-hard film of the present invention, the ultra-hard film is not directly bonded to the tool body but is bonded through a bonding film made of tungsten or a compound of tungsten and carbon prepared by a vapor phase synthesis method. Since it is joined to the tool body with the use of a tool, the joining strength between the ultra-hard film and the tool body is improved. That is, the bonding film is brazed to the tool body with a brazing material such as Ag brazing or Au—Sn, but the bonding film made of tungsten or a compound of tungsten and carbon has good wettability with the brazing material. Therefore, the bonding film and the tool body are firmly bonded to each other, and as a result, the bonding strength between the ultra-hard film and the tool body is improved.

【0012】さらに超硬質膜と接合膜との間にTi、N
i、Fe等の中間膜を形成すると、超硬質膜と、接合
膜、工具本体との熱膨張率差による応力が、中間膜が塑
性変形することにより緩和され、切削時における超硬質
膜の剥離を防止する。
Further, Ti, N is formed between the ultra-hard film and the bonding film.
When an intermediate film such as i or Fe is formed, the stress due to the difference in coefficient of thermal expansion between the ultra-hard film, the bonding film, and the tool body is relieved by the plastic deformation of the intermediate film, and the ultra-hard film peels off during cutting. Prevent.

【0013】そして、接合膜を、その超硬質膜側に炭化
タングステン膜を形成して構成すると、高強度の炭化タ
ングステン膜の存在により接合膜と超硬質膜からなる基
板の強度が高くなるととともに、接合膜と超硬質膜との
密着性がさらに向上する。
When the bonding film is formed by forming a tungsten carbide film on the ultra-hard film side, the strength of the bonding film and the ultra-hard film increases due to the presence of the high-strength tungsten carbide film. The adhesiveness between the bonding film and the ultra-hard film is further improved.

【0014】しかも、ダイヤモンド、 立方晶窒化硼素
とタングステンやタングステンと炭素との化合物とは熱
膨張率が近似しているので膜剥離を抑制することがで
き、また、タングステンやタングステンと炭素との化合
物の生成温度が低いためにダイヤモンド、 立方晶窒化
硼素が分解することがない。
Moreover, since diamond, cubic boron nitride and tungsten, or a compound of tungsten and carbon have similar coefficients of thermal expansion, film peeling can be suppressed, and the compound of tungsten or tungsten and carbon can be suppressed. Diamond and cubic boron nitride do not decompose due to the low formation temperature of.

【0015】[0015]

【実施例】実施例1 本発明の超硬質膜付工具及びその製造方法を図面を用い
て詳細に説明する。
EXAMPLE 1 A tool with a super hard film and a method for manufacturing the same according to the present invention will be described in detail with reference to the drawings.

【0016】図1は、本発明の超硬質膜付工具を示すも
ので、符号31は、例えば、スリッターナイフからなる
工具本体を示している。この工具本体31は、例えば、
WCとコバルト(Co)と周期律表第4a、5a、6a
族元素の炭化物、窒化物または炭窒化物とからなる化合
物や、TiCまたはTiCNとニッケル(Ni)または
Coと周期律表第4a、5a、6a族元素の炭化物、窒
化物または炭窒化物とからなる化合物や、炭化ケイ素
(SiC)とホウ素と炭素とからなる化合物や、Si3
N4またはSiCと希土類元素酸化物とからなる化合
物から構成されている。また、工具本体31は、鉄系合
金、Ni系、Co系合金、ハイスなどであってもよい。
FIG. 1 shows a tool with an ultra-hard film according to the present invention, and reference numeral 31 denotes a tool body composed of, for example, a slitter knife. This tool body 31 is, for example,
WC, Cobalt (Co) and Periodic Table 4a, 5a, 6a
From compounds consisting of carbides, nitrides or carbonitrides of group elements, or TiC or TiCN and nickel (Ni) or Co and carbides, nitrides or carbonitrides of group 4a, 5a or 6a of the periodic table Compound, a compound composed of silicon carbide (SiC), boron and carbon, and Si3
It is composed of a compound composed of N4 or SiC and a rare earth element oxide. Further, the tool body 31 may be made of iron-based alloy, Ni-based, Co-based alloy, high speed steel, or the like.

【0017】この工具本体31の表面には、気相合成法
により作成されたタングステンまたはタングステンと炭
素との化合物からなる接合膜33が形成されており、さ
らにこの接合膜33の表面には、ダイヤモンドまたは立
方晶窒化硼素等からなる超硬質膜35が形成されてい
る。即ち、超硬質膜35は、接合膜33を介して工具本
体31にろう付けにより取り付けられている。
On the surface of the tool body 31, a bonding film 33 made of tungsten or a compound of tungsten and carbon is formed by a vapor phase synthesis method, and further, on the surface of the bonding film 33, a diamond film is formed. Alternatively, a super hard film 35 made of cubic boron nitride or the like is formed. That is, the superhard film 35 is attached to the tool body 31 via the bonding film 33 by brazing.

【0018】このような超硬質膜付工具を作成するに
は、先ず、図2に示すように、基板37にダイヤモンド
または立方晶窒化硼素(cBN)等の超硬質膜35を形
成する。ダイヤモンド膜ではマイクろう波プラズマCV
D、熱フィラメント法など、立方晶窒化硼素膜はIon
Be am Asisted Deposition
法により作成することができる。
To produce such a tool with a super hard film, first, as shown in FIG. 2, a super hard film 35 such as diamond or cubic boron nitride (cBN) is formed on a substrate 37. Microwave Wax plasma CV for diamond film
D, hot filament method, cubic boron nitride film is Ion
Be Am Assisted Deposition
Can be created by law.

【0019】例えば、ダイヤモンドでは、特公昭61−
25679号公報や特公昭61−2632号公報等に開
示される方法が使用され、立方晶窒化硼素膜では、特公
平5−9513号公報や特公平5−15788号公報等
に開示される方法が使用される。また、膜の厚さや結晶
構造(純粋なダイヤモンドやcBNの割合)についても
任意に選択できるが、基板37との密着性が低くなる条
件を選択する。また、超硬質膜35の接合膜側の面は、
表面粗さRmaxが0.2μm以上であることが重要
で、特に1μm以上であることが望ましい。このような
超硬質膜35の表面粗さはRaの調節は、超硬質膜の成
膜時の温度、ガス流量、圧力等のパラメータを変更する
ことにより得られる。超硬質膜35の膜厚は、性能と生
産性との兼ね合いから0.3〜100μmが適当であ
る。
For example, in diamond, Japanese Patent Publication No. 61-
The methods disclosed in JP-B No. 25679 and JP-B No. 61-2632 are used, and for cubic boron nitride films, the methods disclosed in JP-B-5-9513 and JP-B-5-15788 are used. used. Further, the thickness of the film and the crystal structure (ratio of pure diamond or cBN) can be arbitrarily selected, but the condition that the adhesion to the substrate 37 is low is selected. Further, the surface of the super hard film 35 on the bonding film side is
It is important that the surface roughness Rmax is 0.2 μm or more
In particular , it is desirable that the thickness is 1 μm or more. The surface roughness Ra of the surface of the ultra-hard film 35 can be adjusted by changing parameters such as temperature, gas flow rate, and pressure during film formation of the ultra-hard film. The film thickness of the ultra-hard film 35 is preferably 0.3 to 100 μm in terms of the balance between performance and productivity.

【0020】これらの膜を成膜する基板37は、例え
ば、シリコン、カーボン、チタン等の金属から形成さ
れ、任意に選択できるが、成膜初期に於ける核生成の容
易さや後の工程における基板37の除去の容易さからシ
リコンからなる基板37が適している。
The substrate 37 on which these films are formed is formed of, for example, a metal such as silicon, carbon or titanium, and can be arbitrarily selected, but the ease of nucleation at the initial stage of the film formation and the substrate in the subsequent steps are used. A substrate 37 made of silicon is suitable because it is easy to remove 37.

【0021】次に、この基板37の上に成膜したダイヤ
モンドもしくはcBN等の超硬質膜35の上に、図3に
示すように、タングステン(W)、Wと炭素(C)から
なる化合物(接合膜33)のうち少なくとも一種を成膜
する。成膜に際しては公知の方法が使用できる。例え
ば、Wを成膜する例について説明すると、超硬質膜35
の付着した基板37を化学的気相合成装置内に収容し、
この化学的気相合成装置内を温度450〜1200℃に
保持し、気相含浸装置内にH2/WF6のモル比が4以上
となるように混合したWF6+H2ガスを導入することに
より、超硬質膜35の表面に、Wからなる接合膜33が
形成される。WF6+H2ガスと同時にArガスやHeガ
ス等の不活性ガスを導入しても良い。WとCからなる接
合膜33を成膜する場合には、H2、WF6のガスと同時
にメタン、アセチレン等の炭素源となるガスを反応炉に
導入する。接合膜33の厚さは後の工程での取扱の容易
さや強度の関係から0.1〜5mm程度であることが重
要である
Next, as shown in FIG. 3, a compound consisting of tungsten (W), W and carbon (C) (as shown in FIG. 3 is formed on the ultra-hard film 35 such as diamond or cBN formed on the substrate 37. At least one of the bonding films 33) is formed. A known method can be used for the film formation. For example, describing an example of forming W, the ultra-hard film 35.
The substrate 37 to which is attached is housed in the chemical vapor deposition apparatus,
The inside of this chemical vapor phase synthesizer is maintained at a temperature of 450 to 1200 ° C., and WF 6 + H 2 gas mixed so that the H 2 / WF 6 molar ratio is 4 or more is introduced into the vapor phase impregnation apparatus. Thus, the bonding film 33 made of W is formed on the surface of the ultra-hard film 35. An inert gas such as Ar gas or He gas may be introduced together with the WF 6 + H 2 gas. When forming the bonding film 33 made of W and C, a gas serving as a carbon source such as methane and acetylene is introduced into the reaction furnace at the same time as the gases of H 2 and WF 6 . It is important that the thickness of the bonding film 33 is about 0.1 to 5 mm because of the ease of handling and the strength in the subsequent process.
It is important .

【0022】次いで、接合膜33の表面を研磨等の加工
を行い、そののち超硬質膜35や接合膜33のマスキン
グを行いシリコン等からなる基板37を酸等で溶解除去
する。これにより、超硬質膜35の付着した接合膜33
が得られる。次にこれをレーザーで所定形状にカットし
研磨などの加工を行う。その後に、図1に示したよう
に、接合膜33を工具本体31に銀蝋、もしくはその他
の蝋材で蝋付けし、接合する。即ち、超硬質膜35を接
合膜33を介して工具本体31に接合する。蝋付け終了
後最終的な加工を行い、本発明の超硬質膜付工具を得
る。基板37の除去は接合膜33を工具本体31に蝋付
けした後行っても良い。
Next, the surface of the bonding film 33 is processed by polishing or the like, and then the superhard film 35 and the bonding film 33 are masked, and the substrate 37 made of silicon or the like is dissolved and removed with an acid or the like. As a result, the bonding film 33 to which the ultra-hard film 35 is attached
Is obtained. Next, this is cut into a predetermined shape with a laser and subjected to processing such as polishing. After that, as shown in FIG. 1, the bonding film 33 is brazed to the tool body 31 with silver wax or another brazing material and bonded. That is, the ultra-hard film 35 is bonded to the tool body 31 via the bonding film 33. After the brazing is finished, final processing is performed to obtain the tool with an ultra-hard film of the present invention. The substrate 37 may be removed after brazing the bonding film 33 to the tool body 31.

【0023】尚、本発明によれば、接合膜33を、その
超硬質膜35側に炭化タングステン膜を形成して構成し
ても良い。接合膜33の超硬質膜35側に炭化タングス
テン膜を形成するには、例えば、超硬質膜35を形成し
た後、WF6+H2ガスと同時にメタン、アセチレン等の
炭素源となるガスを反応炉に導入して炭化タングステン
膜を形成し、その後、WF6+H2ガスを反応炉内に導入
することにより形成される。このようにすれば、接合膜
33と超硬質膜35からなる多層膜の強度が高くなり性
能が向上するだけでなく、ダイヤモンド等の超硬質膜3
5と接合膜33との密着性が向上する。
According to the present invention, the bonding film 33 may be formed by forming a tungsten carbide film on the ultra-hard film 35 side thereof. To form the tungsten carbide film on the ultra-hard film 35 side of the bonding film 33, for example, after forming the ultra-hard film 35, a gas that serves as a carbon source such as methane and acetylene is simultaneously supplied with WF 6 + H 2 gas. To form a tungsten carbide film, and then WF 6 + H 2 gas is introduced into the reaction furnace. By doing so, not only the strength of the multilayer film including the bonding film 33 and the superhard film 35 is increased and the performance is improved, but also the superhard film 3 such as diamond is formed.
The adhesiveness between 5 and the bonding film 33 is improved.

【0024】尚、任意の基板37上にW又はWとCとの
化合物を析出させて接合膜33を形成し、この接合膜3
3の上に超硬質膜35を形成しても良い。しかし、この
場合、気相合成法により形成した接合膜33の表面は凹
凸が多いので、超硬質膜35も凹凸の多い表面となり、
用途が限られる。平滑なシリコンからなる基板37上に
超硬質膜35を析出させると、基板37を除去した後は
平滑となるので、実用上有利である。また基板37に所
定の形状をつけると、それがそのまま超硬質膜35に写
し取られることから、所望形状の超硬質膜35を得るこ
とができる。
The bonding film 33 is formed by depositing W or a compound of W and C on an arbitrary substrate 37.
You may form the super-hard film 35 on 3. However, in this case, since the surface of the bonding film 33 formed by the vapor phase synthesis method has many irregularities, the super-hard film 35 also has many irregularities,
Limited use. When the ultra-hard film 35 is deposited on the smooth silicon substrate 37, it becomes smooth after the substrate 37 is removed, which is practically advantageous. Further, when the substrate 37 is given a predetermined shape, it is directly copied onto the superhard film 35, so that the superhard film 35 having a desired shape can be obtained.

【0025】以上のような超硬質膜付工具では、超硬質
膜35は直接工具本体31に接合されるのではなく、気
相合成法により作成されたタングステン、タングステン
と炭素との化合物のうち少なくとも一種からなる接合膜
33を介して工具本体31に接合したので、超硬質膜3
5と工具本体31との接合強度を向上することができ
る。そして、接合膜33の超硬質膜35側に炭化タング
ステン膜を形成すると、接合膜33と超硬質膜35から
なる複合膜の強度が高くなるととともに、接合膜33と
超硬質膜35との密着性をさらに向上することができ
る。
In the above-described tool with an ultra-hard film, the ultra-hard film 35 is not directly joined to the tool body 31, but at least tungsten, a compound of tungsten and carbon prepared by a vapor phase synthesis method. Since it is bonded to the tool body 31 via the bonding film 33 made of one kind, the ultra-hard film 3
It is possible to improve the joint strength between the tool 5 and the tool body 31. When the tungsten carbide film is formed on the bonding film 33 on the ultra-hard film 35 side, the strength of the composite film including the bonding film 33 and the ultra-hard film 35 increases, and the adhesion between the bonding film 33 and the ultra-hard film 35 increases. Can be further improved.

【0026】ところうで、本発明者は、本発明の効果を
確認すべく、超硬質膜を、WやWとCの化合物からなる
接合膜を介して工具本体に取り付ける実験を行った。そ
して、接合膜と工具本体との接合時における蝋付け歩留
りを測定するとともに、超硬質膜が取り付けられた工具
により切削試験を行った。
By the way, in order to confirm the effect of the present invention, the present inventor conducted an experiment for attaching an ultra-hard film to a tool body through a bonding film made of W or a compound of W and C. Then, the brazing yield at the time of joining the joining film and the tool main body was measured, and a cutting test was performed using a tool to which an ultra-hard film was attached.

【0027】蝋付け歩留りの試験は、蝋付けをアルゴン
ガス中、短時間の加熱により行い、10個の工具におい
て蝋材の付着の完全さなどを外観からチェックし、完全
なものの割合を求めることにより行った。
The brazing yield test is carried out by heating the brazing in argon gas for a short period of time and visually checking the completeness of the adhesion of the brazing material in the 10 tools and determining the percentage of the perfect brazing material. Went by.

【0028】また、切削試験は、5個の工具を用い、ア
ルミニウム−シリコン合金を、切り込み2mm、送り
0.20mm、切削速度400mm/minで切削し
て、切削後の超硬質膜の剥離をチェックした。これらの
結果を表1に示す。
In the cutting test, five tools were used to cut an aluminum-silicon alloy at a cut of 2 mm, a feed of 0.20 mm, and a cutting speed of 400 mm / min to check the peeling of the super-hard film after cutting. did. The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1により本発明品は蝋付け歩留りや切削
後における剥離も良好であった。
According to Table 1, the product of the present invention showed good brazing yield and good peeling after cutting.

【0031】尚、試料No、1は、ダイヤモンドからな
る超硬質膜を超硬合金からなる工具本体にコーティング
した例であり、試料No.2はダイヤモンド膜のみうろ
うう付けした例であり、試料No、14、15、17
は、接合膜をW膜とWC膜により構成した例である。ま
た、試料No.16〜18は、基板上に予め5μmの窒
化チタン膜を形成した後、cBN膜を形成した例であ
る。
Samples Nos. 1 and 1 are examples of coating a tool body made of cemented carbide with a cemented carbide film made of diamond. No. 2 is an example in which only the diamond film is brazed. Sample Nos. 14, 15, 17
Is an example in which the bonding film is composed of a W film and a WC film. In addition, the sample No. Nos. 16 to 18 are examples in which a titanium nitride film having a thickness of 5 μm was previously formed on the substrate and then a cBN film was formed.

【0032】実施例2 上記実施例1において、図4に示すように、ダイヤモン
ドもしくはcBN等の超硬質膜35の上に、Ti、N
i、Fe、Al、Co、Au、Pr、Mg、Cu、Z
r、Hf、Ta、Ag及びそれらの炭化物、窒化物、ホ
ウ化物から選ばれる少なくとも一種よりなる中間膜51
を成膜し、この中間膜51の上にタングステン(W)ま
たはWと炭素(C)からなる接合膜33を成膜し、この
接合膜33を工具本体31にろうう付けしても、上記実
施例1とほぼ同様の効果が得られるが、さらに超硬質膜
35と接合膜33の接合強度を向上することができ、切
削時等における超硬質膜35の剥離を防止することがで
きる。また、超硬質膜35と、接合膜33、工具本体3
1との熱膨張率差による応力が、中間膜51が塑性変形
することにより緩和され、切削時における超硬質膜35
の剥離を防止することができる。中間膜51の厚みは、
0.1〜10μm、特に1〜3μmが好ましい。
Embodiment 2 In the above Embodiment 1, as shown in FIG. 4, Ti, N is deposited on the ultra-hard film 35 such as diamond or cBN.
i, Fe, Al, Co, Au, Pr, Mg, Cu, Z
An intermediate film 51 comprising at least one selected from r, Hf, Ta, Ag, and their carbides, nitrides, and borides.
Even if the bonding film 33 made of tungsten (W) or W and carbon (C) is formed on the intermediate film 51 and the bonding film 33 is brazed to the tool body 31, Although an effect similar to that of the first embodiment can be obtained, the bonding strength between the super-hard film 35 and the bonding film 33 can be further improved, and peeling of the super-hard film 35 during cutting or the like can be prevented. Further, the ultra-hard film 35, the bonding film 33, and the tool body 3
The stress due to the difference in the coefficient of thermal expansion from No. 1 is relieved by the plastic deformation of the intermediate film 51, and the super-hard film 35 at the time of cutting is reduced.
Can be prevented. The thickness of the intermediate film 51 is
0.1 to 10 μm, particularly 1 to 3 μm is preferable.

【0033】本発明者は、中間膜51の効果を確認すべ
く、超硬質膜35と接合膜33の間に種々の中間膜を形
成する実験を行った。そして、接合膜と工具本体との接
合時におけるろうう付け歩留りを測定するとともに、切
削試験を行った。切削試験は、5個の工具を用い、アル
ミニウム−シリコン合金を、切り込み2mm、送り0.
25mm、切削速度400mm/minで切削して、切
削後の超硬質膜の剥離をチェックした。これらの結果を
表2に示す。
The present inventor conducted experiments to form various intermediate films between the superhard film 35 and the bonding film 33 in order to confirm the effect of the intermediate film 51. Then, the brazing yield at the time of joining the joining film and the tool body was measured, and a cutting test was performed. For the cutting test, using 5 tools, an aluminum-silicon alloy was cut at a depth of 2 mm and the feed was 0.
It was cut at 25 mm and a cutting speed of 400 mm / min, and the peeling of the superhard film after cutting was checked. The results are shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】上記切削条件では、表1における試料N
o.13は5個中3個が剥離した。一方、本発明品は蝋
付け歩留りや切削後における剥離も、実施例1よりも向
上していることが判る。尚、試料No.40はcBN膜
のみをろうう付けした例である。
Under the above cutting conditions, sample N in Table 1
o. As for No. 13, 3 out of 5 were peeled off. On the other hand, it is understood that the product of the present invention has improved brazing yield and peeling after cutting as compared with Example 1. Sample No. 40 is an example in which only the cBN film is brazed.

【0036】実施例3 上記実施例1において、超硬質膜35の接合膜側の面の
表面粗さRmaxを0.2μm以上としても、上記実施
例1とほぼ同様の効果が得られるが、さらに接合膜33
のアンカー効果により超硬質膜35と接合膜33の接合
強度を一層向上することができ、切削時等における超硬
質膜35の剥離をさらに確実に防止することができる。
Example 3 In Example 1, even if the surface roughness Rmax of the bonding film side surface of the ultra-hard film 35 is 0.2 μm or more, substantially the same effect as in Example 1 can be obtained. Bonding film 33
The bonding effect between the super-hard film 35 and the bonding film 33 can be further improved by the anchor effect, and peeling of the super-hard film 35 during cutting or the like can be prevented more reliably.

【0037】本発明者は、超硬質膜35の接合膜側の面
の表面粗さRmaxによる超硬質膜35と接合膜33の
接合強度効果を確認すべく、超硬質膜の成膜パラメータ
を変化させて表面粗さRmaxを種々変化させる実験を
行った。そして、接合膜と工具本体との接合時における
ろうう付け歩留りを測定するとともに、切削試験を行っ
た。切削試験は、5個の工具を用い、アルミニウム−シ
リコン合金を、切り込み2mm、送り0.25mm、切
削速度400mm/minで切削して、切削後の超硬質
膜の剥離をチェックした。これらの結果を表3に示す。
The present inventor changes the film forming parameters of the super-hard film in order to confirm the bonding strength effect of the super-hard film 35 and the bonding film 33 due to the surface roughness Rmax of the surface of the super-hard film 35 on the bonding film side. Then, an experiment was performed in which the surface roughness Rmax was variously changed. Then, the brazing yield at the time of joining the joining film and the tool body was measured, and a cutting test was performed. In the cutting test, using five tools, an aluminum-silicon alloy was cut at a cut of 2 mm, a feed of 0.25 mm, and a cutting speed of 400 mm / min to check the peeling of the superhard film after cutting. The results are shown in Table 3.

【0038】[0038]

【表3】 [Table 3]

【0039】上記切削条件では、表1における試料N
o.12は5個中3個が剥離した。一方、表面粗さRm
axが0.2μm以上となると、超硬質膜の剥離が少な
くなることが判る。尚、超硬質膜の膜厚は50μmで一
定とした。
Under the above cutting conditions, sample N in Table 1
o. As for 12, 3 out of 5 were peeled off. On the other hand, surface roughness Rm
It can be seen that when ax is 0.2 μm or more, peeling of the superhard film is reduced. The film thickness of the ultra-hard film was constant at 50 μm.

【0040】[0040]

【発明の効果】以上詳述した通り、本発明によれば、ダ
イヤモンド、立方晶窒化硼素等の超硬質膜を、タングス
テンを主成分とする接合膜を介して工具本体に接合する
ことにより、工具本体と超硬質膜とを強固に密着させる
ことができ、超硬質膜を広い範囲で使用することがで
き、耐摩耗性、靱性に優れた超硬質膜付工具を得ること
ができる。
As described above in detail, according to the present invention, a tool such as diamond, cubic boron nitride or the like is bonded to a tool body by bonding a super hard film to the tool body through a bonding film containing tungsten as a main component. The main body and the super-hard film can be firmly adhered to each other, the super-hard film can be used in a wide range, and a tool with a super-hard film having excellent wear resistance and toughness can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超硬質膜付工具を示す縦断面図であ
る。
FIG. 1 is a vertical cross-sectional view showing a tool with an ultra-hard film of the present invention.

【図2】基板上に超硬質膜を形成した状態を示す縦断面
図である。
FIG. 2 is a vertical cross-sectional view showing a state in which an ultra-hard film is formed on a substrate.

【図3】超硬質膜上に接合膜を形成した状態を示す縦断
面図である。
FIG. 3 is a vertical cross-sectional view showing a state in which a bonding film is formed on a superhard film.

【図4】超硬質膜と接合膜の間に中間膜を形成した状態
を示す縦断面図である。
FIG. 4 is a vertical cross-sectional view showing a state in which an intermediate film is formed between the ultra-hard film and the bonding film.

【符号の説明】[Explanation of symbols]

31 工具本体 33 接合膜 35 超硬質膜 51 中間膜 31 Tool body 33 Bonding film 35 Ultra hard film 51 Intermediate film

フロントページの続き (56)参考文献 特開 昭62−57802(JP,A) 特開 平3−149140(JP,A) 特開 平3−142104(JP,A) 特開 平2−274405(JP,A) 特開 昭63−111104(JP,A) 特開 平1−275759(JP,A) 特公 平7−30363(JP,B2)Continued front page       (56) References JP-A-62-57802 (JP, A)                 JP-A-3-149140 (JP, A)                 JP-A-3-142104 (JP, A)                 JP-A-2-274405 (JP, A)                 JP 63-111104 (JP, A)                 JP-A-1-275759 (JP, A)                 Japanese Patent Publication 7-30363 (JP, B2)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】気相合成法により作成され、膜厚が0.3
〜100μm、成長面の表面粗さが0.2μm以上のダ
イヤモンドまたは立方晶窒化硼素からなる超硬質膜を、
該超硬質膜の前記成長面に気相合成法により作成され、
厚み0.1〜5mmのタングステン、タングステンと炭
素との化合物のうち少なくとも一種からなる接合膜を介
してろう付けによって工具本体上に接合してなることを
特徴とする超硬質膜付工具。
1. A film formed by a vapor phase synthesis method, having a film thickness of 0.3.
An ultra-hard film made of diamond or cubic boron nitride having a surface roughness of ˜100 μm and a growth surface of 0.2 μm or more ,
Created by the vapor phase synthesis method on the growth surface of the ultra-hard film ,
A tool with an ultra-hard film, wherein the tool is joined to the tool body by brazing through a joining film made of at least one of tungsten and a compound of tungsten and carbon having a thickness of 0.1 to 5 mm .
【請求項2】接合膜と超硬質膜との間には、Ti、N
i、Fe、Al、Co、Au、Pr、Mg、Cu、Z
r、Hf、Ta、Ag及びそれらの炭化物、窒化物、ホ
ウ化物のうち少なくとも一種からなる中間膜が介在され
ていることを特徴とする請求項1記載の超硬質膜付工
具。
2. Ti, N between the bonding film and the ultra-hard film.
i, Fe, Al, Co, Au, Pr, Mg, Cu, Z
The tool according to claim 1, wherein an intermediate film made of at least one of r, Hf, Ta, Ag and their carbides, nitrides, and borides is interposed.
【請求項3】接合膜は、その超硬質膜側に炭化タングス
テン膜が形成されていることを特徴とする請求項1又は
2のうちいずれかに記載の超硬質膜付工具。
3. The tool with an ultra-hard film according to claim 1, wherein the bonding film has a tungsten carbide film formed on the ultra-hard film side thereof.
【請求項4】シリコン等からなる基板の表面に、膜厚が
0.3〜100μm、成長面の表面粗さが0.2μm以
上となるように、ダイヤモンドまたは立方晶窒化硼素か
らなる超硬質膜を気相合成法により作製し、該超硬質膜
の成長面にタングステン、タングステンと炭素との化合
物のうち少なくとも一種からなる接合膜を気相合成法に
より0.1〜5mmの厚みに形成した後、前記基体を除
去し、しかるのち前記接合膜を工具本体にろう付けによ
って接合することにより、前記超硬質膜を、前記接合膜
を介して前記工具本体に取り付けることを特徴とする超
硬質膜付工具の製造方法。
4. The surface of a substrate made of silicon or the like has a film thickness of 0.3 to 100 μm and a growth surface having a surface roughness of 0.2 μm or more.
As shown above, an ultra-hard film made of diamond or cubic boron nitride was prepared by a vapor phase synthesis method ,
After forming a bonding film made of at least one of tungsten and a compound of tungsten and carbon to a growth surface of 0.1 to 5 mm in thickness by a vapor phase synthesis method, the substrate is removed, and then the bonding film is formed. A method for manufacturing an ultra-hard film-coated tool, characterized in that the ultra-hard film is attached to the tool body via the bonding film by joining the tool body to the tool body by brazing.
【請求項5】シリコン等からなる基板の表面に、膜厚が
0.3〜100μm、成長面の表面粗さが0.2μm以
上となるように、ダイヤモンドまたは立方晶窒化硼素か
らなる超硬質膜を気相合成法により作製し、該超硬質膜
の成長面にタングステン、タングステンと炭素との化合
物のうち少なくとも一種からなる接合膜を気相合成法に
より0.1〜5mmの厚みに形成した後、前記接合膜を
工具本体にろう付けによって接合し、しかるのちに前記
基体を除去し、前記超硬質膜を、前記接合膜を介して前
記工具本体に取り付けることを特徴とする超硬質膜付工
具の製造方法。
5. A substrate made of silicon or the like has a film thickness of 0.3 to 100 μm and a growth surface having a surface roughness of 0.2 μm or more.
As shown above, an ultra-hard film made of diamond or cubic boron nitride was prepared by a vapor phase synthesis method ,
A bonding film made of at least one of tungsten and a compound of tungsten and carbon is formed on the growth surface of No. 1 by a vapor phase synthesis method to a thickness of 0.1 to 5 mm, and then the bonding film is bonded to the tool body by brazing. After that, the base is removed, and the super-hard film is attached to the tool main body via the bonding film.
JP16128093A 1992-06-30 1993-06-30 Tool with ultra-hard film and method of manufacturing the same Expired - Fee Related JP3380294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16128093A JP3380294B2 (en) 1992-06-30 1993-06-30 Tool with ultra-hard film and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-172143 1992-06-30
JP17214392 1992-06-30
JP16128093A JP3380294B2 (en) 1992-06-30 1993-06-30 Tool with ultra-hard film and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0679503A JPH0679503A (en) 1994-03-22
JP3380294B2 true JP3380294B2 (en) 2003-02-24

Family

ID=26487465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16128093A Expired - Fee Related JP3380294B2 (en) 1992-06-30 1993-06-30 Tool with ultra-hard film and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3380294B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629762Y2 (en) * 1986-11-05 1994-08-10 株式会社日立製作所 Rotating magnetic head unit
US5976716A (en) * 1996-04-04 1999-11-02 Kennametal Inc. Substrate with a superhard coating containing boron and nitrogen and method of making the same
JP2011174110A (en) * 2010-02-23 2011-09-08 Kyushu Univ Material for cubic boron nitride coating, and method for manufacturing the same
CA2774665C (en) * 2010-10-28 2014-10-21 Sumitomo Electric Hardmetal Corp. Surface-coated sintered body
WO2019181742A1 (en) * 2018-03-19 2019-09-26 住友電気工業株式会社 Surface-coated cutting tool
JP6798627B2 (en) * 2018-03-19 2020-12-09 住友電気工業株式会社 Surface coating cutting tool
JP6798626B2 (en) * 2018-03-19 2020-12-09 住友電気工業株式会社 Surface coating cutting tool

Also Published As

Publication number Publication date
JPH0679503A (en) 1994-03-22

Similar Documents

Publication Publication Date Title
US5500248A (en) Fabrication of air brazable diamond tool
EP0900287B1 (en) Substrate with a superhard coating containing boron and nitrogen and method of making the same
US5435815A (en) Cutting tool employing vapor-deposited polycrystalline diamond for cutting edge and method of manufacturing the same
JPH0418975B2 (en)
JP5111379B2 (en) Cutting tool, manufacturing method thereof and cutting method
JP3380294B2 (en) Tool with ultra-hard film and method of manufacturing the same
JP3379150B2 (en) Diamond coating material and method for producing the same
JP3260986B2 (en) Member with diamond composite film
JP2829310B2 (en) Method for producing vapor phase synthetic diamond tool
JPH0196073A (en) Method for brazing diamond
JPH0813148A (en) Peeling resistant diamond-coated member
KR102532558B1 (en) Coating method of solid diamond material
JPH05140769A (en) Polycrystalline diamond tool material and method for joining the same to base material of tool
JP3358696B2 (en) High strength coating
AU6546500A (en) Coating of ultra-hard materials
JP3346654B2 (en) Member with diamond-tungsten composite film
JPH0671503A (en) Diamond cutting tool and its manufacture
JP3193235B2 (en) Method for producing member with diamond-tungsten composite film
AU761003B2 (en) Substrate treatment method
JP3314119B2 (en) Diamond composite member and method of manufacturing the same
JP3193259B2 (en) Cutting tool and its manufacturing method
JP2813243B2 (en) Manufacturing method of polycrystalline diamond tool
JPH0647629A (en) Material covered with super hard film and its manufacture
JP2657236B2 (en) Coated super hard alloy tool
JP2657235B2 (en) Coated super hard alloy tool

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees