JPH0333020A - Reduced-pressure defoaming device - Google Patents

Reduced-pressure defoaming device

Info

Publication number
JPH0333020A
JPH0333020A JP16382289A JP16382289A JPH0333020A JP H0333020 A JPH0333020 A JP H0333020A JP 16382289 A JP16382289 A JP 16382289A JP 16382289 A JP16382289 A JP 16382289A JP H0333020 A JPH0333020 A JP H0333020A
Authority
JP
Japan
Prior art keywords
pipe
vacuum
downcomer
vacuum degassing
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16382289A
Other languages
Japanese (ja)
Other versions
JP2817214B2 (en
Inventor
Kazuhiko Ishimura
和彦 石村
Takashi Uno
孝 宇野
Shinji Takeshita
信治 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1163822A priority Critical patent/JP2817214B2/en
Publication of JPH0333020A publication Critical patent/JPH0333020A/en
Application granted granted Critical
Publication of JP2817214B2 publication Critical patent/JP2817214B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To effectively prevent the buckling of the riser and downcomer for transferring a high temp. molten material in the reduced-pressure defoaming device for removing bubbles in a high-temp. molten material such as molten glass by providing a flexible seal member at a specified position. CONSTITUTION:The high-temp. molten material G in a melting tank 1 is introduced into a reduced-pressure defoaming tank 12 in a vacuum housing 11 through a riser 13 made of noble metal and defoamed. The defoamed material G is then transferred to a forming furnace 7 in the succeeding stage through a downcomer 14 made of noble metal. In this case, the gaps between the lower parts of the riser 13 and downcomer 14 and the lower ends of the casings 15 and 16 covering the riser 13 and downcomer 14 are closed by a flexible seal member 20 to control the deflection of the member 20 when the riser 13 and downcomer 14 are thermally expanded in the steady state. Consequently, even if the riser 13 and downcomer 14 are thermally expanded, the deformation due to thermal expansion is effectively absorbed by the member 20.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、溶融ガラスや溶融金属等の高温溶融物内の
気泡を除去する減圧脱泡装置に係り、特に、高温溶融物
を連続的に供給するプロセス中で有効な減圧脱泡装置の
改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a vacuum degassing device that removes air bubbles from high-temperature melts such as molten glass and molten metal, and particularly relates to a vacuum degassing device that removes air bubbles from high-temperature melts such as molten glass and molten metal. This invention relates to an improvement in a vacuum degassing device that is effective during the supply process.

〔従来の技術〕[Conventional technology]

従来この種の減圧脱泡装置としては例えば特公昭44−
4205号公報所載のものがある。
Conventionally, this type of decompression degassing equipment was developed by, for example,
There is one published in Publication No. 4205.

これは、溶解槽106中の高温溶融物としての溶融ガラ
スGを脱泡処理して次の処理炉に連続的に供給するプロ
セスにて用いられるものであり、第6図に示すように、
真空吸引される真空ハウジング100内に減圧脱泡槽1
01を収容配置し、この減圧脱泡槽101には、脱泡処
理前の高温溶融物としての溶融ガラスGが上昇導入され
る上昇管102を連通接続すると共に、脱泡処理後の溶
融ガラスGが次の処理炉に下降導出される下降管103
を連通接続し、各上昇管102及び下降管103の周囲
には上昇管102及び下降管103が断熱被覆されるケ
ーシング104,105を上記真空ハウシング100に
連通接続したものである。
This is used in the process of degassing the molten glass G as a high-temperature melt in the melting tank 106 and continuously supplying it to the next processing furnace, as shown in FIG.
A vacuum degassing tank 1 is provided inside the vacuum housing 100 that is vacuum-suctioned.
A riser pipe 102 is connected to the reduced pressure degassing tank 101, through which molten glass G as a high-temperature melt before degassing treatment is introduced upward, and molten glass G after degassing treatment is connected to the vacuum degassing tank 101. downcomer pipe 103 where the material is led down to the next processing furnace
Casings 104 and 105 are connected to the vacuum housing 100, and casings 104 and 105 are thermally coated around each ascending pipe 102 and descending pipe 103.

そして、上記上昇管102及び下降管103は溶融ガラ
スGによって1200〜1300℃まで温度上昇するも
のであるため、通常白金等の貴金属製のものが使用され
る。
Since the temperature of the rising pipe 102 and the descending pipe 103 is increased to 1,200 to 1,300° C. by the molten glass G, they are usually made of a noble metal such as platinum.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、この種の減圧脱泡装置にあっては、上記真空
ハウジング100に連通しているケーシング104,1
05の下端部を気密にして真空/”tウジフグ100内
の減圧度を保持することが必要になるため、例えば、各
ケーシングlO4,105の下端開口部に対して上昇管
102及び下降管103の下端周縁部を気密状態を保ち
ながら保持せざるを得ない。
By the way, in this type of vacuum degassing device, the casings 104, 1 communicating with the vacuum housing 100 are
Since it is necessary to maintain the degree of reduced pressure inside the casing 100 by making the lower end of the casing 105 airtight, for example, the riser pipe 102 and the downcomer pipe 103 are connected to the lower end opening of each casing 105. It is necessary to hold the lower end periphery while keeping it airtight.

この場合において、減圧脱泡槽100に連通接続されて
いる上昇管102及び下降管103の下端周縁部を各ケ
ーシング104,105の下端開口部に固定してしまう
と、溶融ガラスGが各上昇管102及び下降管103を
通過する際に、夫々の上昇管102及び下降管103が
50〜60 mm程度熱膨張するため、必然的に、上昇
管102及び下降管103が座屈変形してしまうという
技術的課題を生ずる。
In this case, if the lower end peripheral portions of the riser pipe 102 and the downcomer pipe 103 that are connected to the vacuum degassing tank 100 are fixed to the lower end openings of each casing 104, 105, the molten glass G will be transferred to each riser pipe. 102 and the downcomer pipe 103, each of the riser pipe 102 and the downcomer pipe 103 thermally expands by about 50 to 60 mm, which inevitably results in buckling deformation of the riser pipe 102 and the downcomer pipe 103. creates technical challenges.

この発明は、以上の技術的課題に立ってなされたもので
あって、上昇管及び下降管の熱膨張による座屈変形を有
効に回避できるようにした減圧脱泡装置を提供するもの
である。
The present invention has been made in view of the above-mentioned technical problems, and it is an object of the present invention to provide a vacuum degassing device that can effectively avoid buckling deformation due to thermal expansion of an ascending pipe and a downcomer pipe.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、第一の発明は、真空吸引される真空ハウジン
グと、この真空ハウジング内に収容配置されて高温溶融
物を威圧脱泡する減圧脱泡槽と、この減圧脱泡槽に連通
接続されて脱泡処理前の高温溶融物を上記減圧脱泡槽に
上昇導入する貴金属製の上昇管と、上記減圧脱泡槽に連
通接続されて減圧脱泡槽にて脱泡処理された高温溶融物
を下降導出する貴金属製の下降管と、上記真空ハウジン
グに夫々連通接続されて上記上昇管及び下降管を被覆す
るケーシングとを備えた減圧脱泡装置を前提とし、上記
上昇管及び下降管の下端近傍部とケーシングの下端部と
の間を可撓性シール部材で閉塞し、上記上昇管及び下降
管の定常熱膨張状態にて上記可撓性シール部材の撓み変
化量を抑止するようにしたものである。
That is, the first invention provides a vacuum housing that is vacuum-suctioned, a vacuum degassing tank that is housed in the vacuum housing and forcefully defoams the high-temperature molten material, and a vacuum degassing tank that is connected in communication with the vacuum defoaming tank to degas the high-temperature melt. A rising pipe made of a precious metal that ascends and introduces the high-temperature molten material before foam treatment into the vacuum degassing tank, and a riser pipe that is connected to the vacuum degassing tank to descend the high-temperature molten material that has been defoamed in the vacuum degassing tank. A vacuum degassing device is provided which includes a downcomer pipe made of a noble metal to be led out, and a casing that is connected to the vacuum housing and covers the riser pipe and the downcomer pipe, and a portion near the lower end of the riser pipe and the downcomer pipe. and the lower end of the casing with a flexible sealing member to suppress the amount of change in deflection of the flexible sealing member in a steady state of thermal expansion of the ascending pipe and the descending pipe. .

また、第二の発明は、第一の発明と同様な基本的構成を
有し、上記上昇管及び下降管の下端近傍部と夫々のケー
シングの下端部との間を可撓性シール部材で閉塞し、真
空ハウジングの負圧状態に応じて上記可撓性シール部材
が下方側に引張される圧力調整手段を付設したことを特
徴とするものである。
Further, the second invention has the same basic configuration as the first invention, and includes a flexible seal member that closes the vicinity of the lower ends of the ascending pipe and the descending pipe and the lower ends of the respective casings. However, the present invention is characterized in that a pressure adjusting means is provided for pulling the flexible sealing member downward depending on the negative pressure state of the vacuum housing.

このような技術的手段において、上記真空ハウジングの
減圧度については、脱泡の対象物の種類に応じて適宜選
定することができ、例えば溶融ガラスにあっては大体3
0〜100torr(−730〜−660m+oHg)
程度であることが好ましい。
In such technical means, the degree of depressurization of the vacuum housing can be appropriately selected depending on the type of object to be degassed; for example, for molten glass, it is approximately 3.
0~100torr (-730~-660m+oHg)
It is preferable that the degree of

また、減圧脱泡槽、上昇管及び下降管の材質についても
、少なくとも対象となる高温溶融物にて溶融しない融点
の高い白金、モリブデン等の貴金属を使用することが必
要であり、上昇管及び下降管の高さ、径寸法については
脱泡の対象物の種類(温度、粘度)及び脱泡処理時間、
処理量等を考慮して適宜選定することができる。
In addition, regarding the material of the vacuum degassing tank, the riser pipe, and the downcomer pipe, it is necessary to use at least precious metals such as platinum and molybdenum with a high melting point that do not melt in the target high-temperature melting material. The height and diameter of the pipe depend on the type of object to be degassed (temperature, viscosity), degassing process time,
It can be appropriately selected in consideration of processing amount and the like.

特に、減圧脱泡槽、上昇管及び下降管を通過する高温溶
融物の温度が低下しないように設計することが必要であ
り、例えば、減圧脱泡槽、上昇管及び下降管の周囲に断
熱材を配設したり、減圧脱泡槽、上昇管及び下降管を直
接通電加熱したり、別異のヒータにて間接的に加熱する
等の手段を施すことが好ましい。
In particular, it is necessary to design the vacuum degassing tank, riser pipe, and downcomer pipe so that the temperature of the high-temperature molten material that passes through them does not drop. It is preferable to provide means such as arranging a vacuum degassing tank, the ascending pipe and the descending pipe directly with electricity, or heating them indirectly with a separate heater.

更に、温度変化によって上昇管及び下降管の上端位置が
変化すると、減圧脱泡条件が微妙に変わってしまうので
、減圧脱泡槽と上昇管、下降管の上端部とは固定的に連
結することが好ましい。
Furthermore, if the upper ends of the riser and downcomer pipes change due to temperature changes, the vacuum degassing conditions will change slightly, so the vacuum degassing tank and the upper ends of the riser and downcomer pipes should be fixedly connected. is preferred.

更にまた、上記可撓性シール部材については、上昇管及
び下降管の下端部近傍とケーシングの下端部との間の気
密性を保ち、かつ、上記上昇管及び下降管の最大熱膨張
量を吸収できる程度の撓み可能範囲のものであれば、伸
縮自在なエアベローズタイプ、弾性変形可能な弾性材等
適宜選択することができる。
Furthermore, the flexible seal member maintains airtightness between the vicinity of the lower ends of the riser pipe and the downcomer pipe and the lower end of the casing, and absorbs the maximum amount of thermal expansion of the riser pipe and the downcomer pipe. As long as the material can be bent within a certain range, it can be appropriately selected such as a telescopic air bellows type or an elastic material that can be elastically deformed.

また、圧力調整手段としては、真空ケーシング真空吸引
作動時にて上昇管及び下降管に不必要な応力が作用しな
いように、真空ケーシング内の減圧度に応じて上記可撓
性シール部材を下方側へ引張するものであれば適宜設計
変更して差し支えない。
In addition, as a pressure adjustment means, the flexible sealing member is moved downward according to the degree of pressure reduction in the vacuum casing so that unnecessary stress is not applied to the rising pipe and downcomer pipe when the vacuum casing vacuum suction is activated. As long as it is tensile, the design may be changed as appropriate.

この場合において、上記圧力調整手段の具体的態様とし
ては、真空ハウジング内の減圧度を検知し、この検知信
号に基づいて駆動するエアシリンダ等の駆動手段で構成
してもよいし、また、真空ハウジング内の減圧度に応じ
て上記可撓性シール部材に作用する圧縮作用力の相殺力
を自然に発生させるべく、エアベローズ等の機能部材を
用いる等適宜設計変更することができるが、構成の簡略
化という観点からすれば、エアベローズ等の機能部材に
よって圧力調整手段を構成することが好ましい。更にま
た、上記上昇管及び下降管のクリープを有効に回避する
という観点からすれば、上記圧力調整手段の作用力を可
撓性シール部材の圧縮作用力よりも僅かに小さく設定す
ることが好ましい。
In this case, as a specific embodiment of the pressure regulating means, it may be constituted by a driving means such as an air cylinder that detects the degree of reduced pressure in the vacuum housing and is driven based on this detection signal; In order to naturally generate an offset force for the compressive force acting on the flexible seal member according to the degree of depressurization in the housing, the design can be changed as appropriate, such as by using a functional member such as an air bellows. From the viewpoint of simplification, it is preferable that the pressure adjustment means be constituted by a functional member such as an air bellows. Furthermore, from the viewpoint of effectively avoiding creep in the riser pipe and the downcomer pipe, it is preferable that the acting force of the pressure adjusting means be set to be slightly smaller than the compression acting force of the flexible seal member.

〔作用〕[Effect]

上述したような技術的手段によれば、上記可撓性シール
部材は、上記上昇管及び下降管の下端近傍部と各ケーシ
ングの下端部との間を気密に保ち、高温溶融物を通過さ
せる際の上昇管及び下降管の熱膨張変化を吸収する。
According to the above-mentioned technical means, the flexible sealing member maintains airtightness between the lower end portions of the rising pipe and the downcomer pipe and the lower end of each casing, and prevents the passage of high-temperature melt. absorbs thermal expansion changes in the riser and downcomer pipes.

そして、第一の発明においては、上昇管及び下降管の定
常熱膨張状態にて可撓性シール部材の撓み変化量が抑止
されるため、真空ハウジングを真空吸引作動したとして
も、可撓性シール部材が収縮して上昇管及び下降管に不
必要な圧縮応力が生ずることはない。
In the first invention, since the amount of change in deflection of the flexible seal member is suppressed in the steady state of thermal expansion of the riser pipe and the downcomer pipe, even if the vacuum housing is operated by vacuum suction, the flexible seal member No unnecessary compressive stresses are created in the riser and downcomer pipes due to shrinkage of the members.

また、第二の発明にあっては、圧力調整手段は、真空ハ
ウジング内の減圧度に応じた可撓性シール部材の圧縮作
用力が相殺される引張作用力を付与するものであるため
、真空ハウジングを真空吸引作動したとしても、可撓性
シール部材に不必要な外力が作用することはなく、上昇
管及び下降管に不必要な応力が生ずることがない。
Further, in the second invention, the pressure regulating means applies a tensile force that cancels out the compressive force of the flexible seal member depending on the degree of pressure reduction in the vacuum housing. Even if the housing is operated by vacuum suction, no unnecessary external force is applied to the flexible sealing member, and unnecessary stress is not generated on the ascending pipe and the descending pipe.

そして更に、上記可撓性シール部材は装置運転中におい
ても可撓性を保持しているので、装置運転中において上
記上昇管及び下降管が温度変化によって若干伸縮変形し
たとしても、上記可撓性シール部材はその変形に追従し
得ることになり、装置運転中において上昇管及び下降管
に不必要な応力が生ずることもない。
Furthermore, since the flexible sealing member maintains its flexibility even during operation of the apparatus, even if the ascending pipe and the descending pipe are slightly expanded or contracted due to temperature changes during operation of the apparatus, the above-mentioned flexible seal member remains flexible. The sealing member is able to follow the deformation, and unnecessary stress is not generated in the ascending pipe and downcomer pipe during operation of the apparatus.

〔実施例〕〔Example〕

以下、添付図面に示す実施例に基づいてこの発明の詳細
な説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.

叉豊亘ユ 第1図及び第2図は、溶融ガラスを脱泡処理して次の処
理炉に連続的に供給するプロセス例を示す。
Figures 1 and 2 show an example of a process in which molten glass is defoamed and continuously supplied to the next processing furnace.

同図において、符号lは溶融ガラスGを板状電極1aに
て加熱する溶解槽、2は溶解槽lの側壁下部に連通接続
されて溶解槽lからの溶融ガラスGを棒状電極2aにて
加熱しながら導く案内ダクト、3は案内ダクト2に接続
されて溶融ガラスGを一時的に貯溜する貯溜タンク、4
は貯溜タンク3に貯溜した溶融ガラスGを減圧条件下に
おいて脱泡処理する減圧脱泡装置、5は上記貯溜タンク
3に連通接続されて上記減圧脱泡装置4にて脱泡処理さ
れた溶融ガラスGが導入される案内ダクト、6は上記貯
溜タンク3と案内ダクト5との連通状態を通常時におい
て塞ぐ仕切板、7は上記案内ダクト5の出口側に配設さ
れて脱泡処理後の溶融ガラスGを成形処理する成形処理
炉である。尚、案内ダクト6中にも溶融ガラスGを加熱
するヒータ(図示せず)が配設されている。
In the figure, numeral 1 is a melting tank in which molten glass G is heated with a plate-shaped electrode 1a, and 2 is connected to the lower side wall of the melting tank 1, and molten glass G from the melting tank 1 is heated with a rod-shaped electrode 2a. A storage tank 3 connected to the guide duct 2 and temporarily storing the molten glass G;
Reference numeral 5 denotes a vacuum degassing device for defoaming the molten glass G stored in the storage tank 3 under reduced pressure conditions, and 5 indicates a molten glass that is connected in communication with the storage tank 3 and is defoamed in the vacuum degassing device 4. 6 is a partition plate that closes the communication state between the storage tank 3 and the guide duct 5 in normal times, and 7 is provided on the exit side of the guide duct 5 to prevent the melting after the degassing process. This is a molding furnace for molding glass G. Note that a heater (not shown) for heating the molten glass G is also provided in the guide duct 6.

この実施例において、上記減圧脱泡装置4は、真空ポン
プlOによって真空吸引されるステンレス製の真空ハウ
ジング11を有し、この真空ハウジングll内に減圧脱
泡槽12を配設したものである。
In this embodiment, the vacuum degassing device 4 has a vacuum housing 11 made of stainless steel that is vacuum-suctioned by a vacuum pump 10, and a vacuum degassing tank 12 is disposed within the vacuum housing 11.

そして、上記減圧脱泡槽12の底部−側には白金からな
る上昇管13が固定的に連通接続されており、この上昇
管13の下端部は上記貯溜タンク3内に貯溜される溶融
ガラスGに浸漬するようになっている。一方、上記減圧
脱泡槽12の底部他側には同じく白金からなる下降管1
4が固定的に連通接続されており、この下降管14の下
端部は上記案内ダクト5内の溶融ガラスGに浸漬するよ
うになっている。そしてまた、上記減圧脱泡装置4にお
いて溶融ガラスGが上昇管13側から減圧脱泡槽12を
通過した後に下降管14側へ移動するように、上記下降
管14の下端部位置は上記上昇管13の下端部位置より
も若干低く設定されている。尚、上記上昇管13及び下
降管14は図示外の温度制御系に基づいて通電加熱され
、所定温度に維持されるようになっている。
A riser pipe 13 made of platinum is fixedly connected to the bottom side of the vacuum degassing tank 12, and the lower end of the riser pipe 13 is connected to the molten glass G stored in the storage tank 3. It is designed to be immersed in water. On the other hand, on the other side of the bottom of the vacuum degassing tank 12, a downcomer pipe 1 also made of platinum is provided.
4 are fixedly connected in communication, and the lower end of this downcomer pipe 14 is immersed in the molten glass G in the guide duct 5. In addition, in the vacuum degassing device 4, the lower end of the downcomer 14 is positioned in the riser so that the molten glass G passes through the vacuum degather tank 12 from the riser 13 and then moves to the downcomer 14. It is set slightly lower than the lower end position of No. 13. The rising pipe 13 and the descending pipe 14 are electrically heated and maintained at a predetermined temperature based on a temperature control system not shown.

また、上記上昇管13及び下降管14の周囲には夫々ス
テンレス製のケーシング15,16が配設されており、
このケーシング15,16は上記真空ハウジング11に
連通接続され、各ケーシング15.16の下端開口15
a、16aから上記上昇管13及び下降管14の下端部
が外部に露呈するようになっている。尚、真空ハウジン
グ11及びケーシング15,16内には上記減圧脱泡槽
12、上昇管13及び下降管14の周囲を被覆する断熱
材17が設けられている。
Furthermore, stainless steel casings 15 and 16 are disposed around the rising pipe 13 and the descending pipe 14, respectively.
The casings 15, 16 are connected in communication with the vacuum housing 11, and the lower end opening 15 of each casing 15, 16 is connected to the vacuum housing 11.
The lower ends of the rising pipe 13 and the descending pipe 14 are exposed to the outside from a and 16a. A heat insulating material 17 is provided inside the vacuum housing 11 and the casings 15 and 16 to cover the peripheries of the vacuum degassing tank 12, the rising pipe 13, and the descending pipe 14.

更に、この実施例においては、上記上昇管13及び下降
管14のケーシング15.16から露呈した下端部近傍
とケーシング15.16の下端部との間には可撓性シー
ル部材20が設けられている。
Furthermore, in this embodiment, a flexible sealing member 20 is provided between the vicinity of the lower ends of the riser pipe 13 and the downcomer pipe 14 exposed from the casing 15.16 and the lower end of the casing 15.16. There is.

この可撓性シール部材20は、特に第3図に示すように
、ステンレス製の伸縮自在なベローズ本体21の両端に
取付はフランジ22.23が固着されたエアベローズに
て構成されている。一方、上記上昇管13及び下降管1
4の下端部近傍には支持フランジ24が突設されている
。そして、上記可撓性シール部材20の上側取付はフラ
ンジ22は上記ケーシング15.16の下端部にシール
パツキン25を介してネジ26止めされ、また、上記可
撓性シール部材20の下側取付はフランジ23は上記支
持フランジ24にシールパツキン27を介してネジ28
止めされており、上記支持フランジ24には上昇管13
及び下降管14の挿通孔29aを有する取付はブラケッ
ト29が上記ネジ28によって共線めされている。
This flexible sealing member 20, as particularly shown in FIG. 3, is constituted by an air bellows having flanges 22, 23 fixed to both ends of a stainless steel expandable bellows body 21. On the other hand, the rising pipe 13 and the descending pipe 1
A support flange 24 is provided protruding near the lower end of the support flange 4 . The flexible sealing member 20 is mounted on the upper side by fixing the flange 22 to the lower end of the casing 15.16 with a screw 26 via a seal packing 25, and the flexible sealing member 20 is mounted on the lower side. The flange 23 is connected to the support flange 24 with a screw 28 through a seal packing 27.
The rising pipe 13 is fixed to the support flange 24.
When mounting the downcomer pipe 14 with the insertion hole 29a, the bracket 29 is aligned with the screw 28.

次に、この実施例に係る減圧脱泡装置の作動について説
明する。
Next, the operation of the vacuum degassing device according to this embodiment will be explained.

先ず、減圧脱泡装置を作動させる前段階として、減圧脱
泡装置4内に溶融ガラスGを導くことが必要である。
First, as a step before operating the vacuum degassing device, it is necessary to introduce the molten glass G into the vacuum defoaming device 4.

このとき、上記溶融ガラスGが通過したのと同様な条件
になるように、上記上昇管13及び下降管14を予め通
電加熱する一方、上記仕切板6を一旦開放し、貯溜タン
ク3内の溶融ガラスGを案内ダクト5側に導入し、上記
上昇管13及び下降管14の下端部が溶融ガラスGに浸
漬するようにした後、上記真空ポンプ10による真空吸
引動作を行わせるようにすればよい。
At this time, the rising pipe 13 and the descending pipe 14 are electrically heated in advance so that the molten glass G passes through the same conditions, while the partition plate 6 is once opened and the molten glass inside the storage tank 3 is heated. After introducing the glass G into the guide duct 5 side so that the lower ends of the rising pipe 13 and the descending pipe 14 are immersed in the molten glass G, the vacuum pump 10 may perform a vacuum suction operation. .

すると、溶融ガラスGが真空ハウジング11内の負圧状
態に伴って上昇管13及び下降管14を上昇していき、
減圧脱泡槽12部分で合流した後、溶融ガラスGはサイ
ホンの原理に基づいて上昇管I3から下降管14側へ向
かって移動し始める。
Then, the molten glass G rises through the ascending pipe 13 and the descending pipe 14 due to the negative pressure inside the vacuum housing 11,
After merging in the vacuum degassing tank 12, the molten glass G begins to move from the ascending pipe I3 toward the descending pipe 14 based on the siphon principle.

この段階において、上記仕切板6を閉じて所定時間が経
過すると、上昇管13を上昇した後に減圧脱泡槽12に
て脱泡処理を経た溶融ガラスGが下降管14を通じて案
内ダクト5側へ導入されることになり、以後、減圧脱泡
装置4を経た溶融ガラスGが案内ダクト5を通じて次の
成形処理炉7に連続的に供給されるのである。
At this stage, when the partition plate 6 is closed and a predetermined period of time has elapsed, the molten glass G, which has been defoamed in the vacuum degassing tank 12 after ascending the riser pipe 13, is introduced into the guide duct 5 side through the downcomer pipe 14. Thereafter, the molten glass G that has passed through the vacuum degassing device 4 is continuously supplied to the next forming processing furnace 7 through the guide duct 5.

このような減圧脱泡処理過程において、上記上昇管13
及び下降管14に溶融ガラスGが通過し始めると、上記
上昇管13及び下降管14は仮想線で示すように熱膨張
することになるが、可撓性シール部材20が上昇管13
及び下降管14の熱膨張変形に追従して撓み変形するの
で、上昇管13及び下降管14に無理な荷重が作用する
ことはなく、上昇管13及び下降管14が座屈すること
はない。
In such a vacuum degassing process, the riser pipe 13
When the molten glass G begins to pass through the rising pipe 14, the rising pipe 13 and the descending pipe 14 will thermally expand as shown by the imaginary lines, but the flexible sealing member 20 will close the rising pipe 13.
Since the deformation follows the thermal expansion deformation of the downcomer pipe 14, no unreasonable load is applied to the riser pipe 13 and the downcomer pipe 14, and the riser pipe 13 and the downcomer pipe 14 do not buckle.

また、上記可撓性シール部材20は上昇管13及び下降
管14の下端部近傍と各ケーシング15゜16との間の
気密性を保つので、真空ハウジング11内の減圧度は良
好に維持される。そしてまた、上記上昇管13及び下降
管14が定常熱膨張状態(最大熱膨張状態に相当)に到
達した段階において、上記取付はブラケット29を所定
の固定部位に固定するようにしておけば、真空ハウジン
グ11内の負圧状態に伴って可撓性シール部材20が収
縮変形することはないので、上昇管13及び下降管14
に無理な圧縮荷重が作用することはない。
Further, since the flexible sealing member 20 maintains airtightness between the lower end portions of the ascending pipe 13 and the descending pipe 14 and each of the casings 15 and 16, the degree of decompression within the vacuum housing 11 is maintained well. . Furthermore, when the rising pipe 13 and the descending pipe 14 reach a steady thermal expansion state (corresponding to the maximum thermal expansion state), the mounting can be carried out by fixing the bracket 29 to a predetermined fixed position. Since the flexible sealing member 20 does not contract or deform due to the negative pressure inside the housing 11, the rising pipe 13 and the descending pipe 14
No excessive compressive load will be applied to the

X亘亘ユ この実施例に係る減圧脱泡装置の基本的構成は実施例1
と略同様であるが、実施例Iと異なり、第4図に示すよ
うに、真空ハウジング11の減圧度に応じて可撓性シー
ル部材20を下方側へ引張する圧力調整手段40が設け
られている。
The basic configuration of the vacuum degassing device according to this example is Example 1
However, unlike Embodiment I, as shown in FIG. There is.

この実施例において、圧力調整手段40は、真空ハウジ
ング11に連通ずる例えばケ−シング15内の圧力を検
知する圧力センサ41と、この圧力センサ41からの圧
力信号に基づいて駆動エア圧を調整する圧力コントロー
ラ42と、上記可撓性シール部材20の下端側に取り付
けた取付はブラケット29に夫々一対設けられ、圧力コ
ントローラ42からの駆動エア圧に基づいて駆動される
エアシリンダ43とを備えている。そして、上記一対の
エアシリンダ43の引張駆動力りは、真空ハウジング1
1の減圧度に応じて可撓性シール部材20に作用する圧
縮力Pを完全に相殺するように設定されている。
In this embodiment, the pressure adjusting means 40 includes a pressure sensor 41 that communicates with the vacuum housing 11 and detects the pressure inside the casing 15, for example, and adjusts the drive air pressure based on the pressure signal from the pressure sensor 41. A pressure controller 42 and a pair of air cylinders 43 attached to the lower end side of the flexible seal member 20 are provided on the bracket 29, respectively, and are driven based on drive air pressure from the pressure controller 42. . The tensile driving force of the pair of air cylinders 43 is the same as that of the vacuum housing 1.
The compressive force P acting on the flexible seal member 20 is set to completely cancel out the compressive force P acting on the flexible seal member 20 according to the degree of pressure reduction of 1.

従って、この実施例によれば、可撓性シール部材20の
基本的作用については実施例1と同様であるが、真空ハ
ウジング11の減圧度に応じて可撓性シール部材20に
作用する圧縮力Pが上記エアシリンダ43の駆動力りに
等しいため、上記取付はブラケット29を特に固定部位
に固定しなくても、取付はブラケット29は平衡状態に
保たれることになる。
Therefore, according to this embodiment, although the basic operation of the flexible seal member 20 is the same as in the first embodiment, the compressive force that acts on the flexible seal member 20 depending on the degree of pressure reduction in the vacuum housing 11 is Since P is equal to the driving force of the air cylinder 43, the bracket 29 can be maintained in an equilibrium state during the installation without having to specifically fix the bracket 29 to a fixed position.

よって、上記上昇管13及び下降管14に真空吸引動作
に伴う無理な荷重が作用することがないことに加えて、
上記可撓性シール部材20の撓み変形が装置運転中にお
いても確保されるため、上昇管13及び下降管14が装
置運転中の温度変化に伴って熱膨張、熱収縮したとして
も、その変化は上記可撓性シール部材20にて有効に吸
収され、その分、上昇管13及び下降管14に温度変化
に伴う応力が不必要に作用することはない。
Therefore, in addition to the fact that no unreasonable load is applied to the rising pipe 13 and the descending pipe 14 due to the vacuum suction operation,
Since the flexible sealing member 20 is kept flexible even during operation of the apparatus, even if the ascending pipe 13 and the descending pipe 14 thermally expand or contract due to temperature changes during the operation of the apparatus, the change will not occur. The stress is effectively absorbed by the flexible sealing member 20, so that stress caused by temperature changes does not act unnecessarily on the rising pipe 13 and the descending pipe 14.

尚、この実施例において、上記エアシリンダ43の駆動
力りを可撓性シール部材20の圧縮力Pよりも僅かに小
さくなるように設定すれば、上昇管13及び下降管14
に極めて僅かな圧縮応力が作用した状態で、可撓性シー
ル部材20の圧縮力Pが相殺されることになり、クリー
プ現象に対する上昇管13及び下降管14の寿命を延ば
すことが可能になる。
In this embodiment, if the driving force of the air cylinder 43 is set to be slightly smaller than the compressive force P of the flexible seal member 20, the rising pipe 13 and the descending pipe 14
The compressive force P of the flexible sealing member 20 is canceled out in a state where a very slight compressive stress is applied to the pipe, thereby making it possible to extend the life of the ascending pipe 13 and the downcomer pipe 14 against the creep phenomenon.

罠亘班ユ この実施例に係る減圧脱泡装置の基本的構成は実施例2
と略同様であるが、圧力調整手段40が実施例2と異な
ったものになっている。
The basic configuration of the vacuum degassing device according to this example is Example 2
The second embodiment is substantially the same as the second embodiment, but the pressure adjustment means 40 is different from the second embodiment.

この実施例において、圧力調整手段40は、第5図に示
すように、一対のエアベローズ50にて構成されている
In this embodiment, the pressure regulating means 40 is comprised of a pair of air bellows 50, as shown in FIG.

すなわち、上記エアベローズ50は、ステンレス製の伸
縮自在なベローズ本体51の両端に取付はフランジ52
.53を固着したもので、耐熱ホース54を介してケー
シング15,16内に連通接続されると共に、上記ケ−
シング15,16の下端部側方より突設された一対の支
持片55上に配置されている。
That is, the air bellows 50 is attached to both ends of a telescopic bellows body 51 made of stainless steel through flanges 52.
.. 53 is fixed to the casings 15 and 16 through a heat-resistant hose 54, and is connected to the casings 15 and 16 through a heat-resistant hose 54.
It is disposed on a pair of support pieces 55 that protrude from the sides of the lower ends of the shings 15 and 16.

一方、上記可撓性シール部材2に取り付けた取付はブラ
ケット29の両端にはL字状の連結アーム56が一体的
に形成され、上記エアベローズ50の下側取付はフラン
ジ52はシールパツキン57を介して上記支持片55に
ネジ58止めされると共に、エアベローズ50の上側取
付はフランジ53はシールパツキン59を介して上記連
結アーム56の水平部にネジ60止めされている。
On the other hand, when attaching to the flexible seal member 2, L-shaped connecting arms 56 are integrally formed at both ends of the bracket 29, and when attaching the air bellows 50 to the lower side, the flange 52 has a seal packing 57. The upper mounting flange 53 of the air bellows 50 is fixed to the horizontal portion of the connecting arm 56 with screws 60 via a seal packing 59.

そして、両エアベローズ50の有効面積A1は可撓性シ
ール部材20であるエアベローズの有効面積Aと略等し
いものになっている。
The effective area A1 of both air bellows 50 is approximately equal to the effective area A of the air bellows, which is the flexible seal member 20.

従って、この実施例によれば、真空ノ\ウジング11の
減圧度に応じて可撓性シール部材20の有効面積Aに圧
縮力Pが作用したすると、上記各エアベローズ50の有
効面積A1/2には上記真空ハウジング11の減圧度に
応じた引張力PI/2が作用する。
Therefore, according to this embodiment, when the compressive force P acts on the effective area A of the flexible sealing member 20 according to the degree of decompression of the vacuum nozzle 11, the effective area A1/2 of each air bellows 50 is A tensile force PI/2 that corresponds to the degree of pressure reduction in the vacuum housing 11 is applied.

このとき、上記可撓性シール部材20の有効面積Aと両
エアベローズ50の有効面積Alは略等しいものである
ため、上記可撓性シール部材20に作用する圧縮力Pと
両エアベローズ50に作中する引張力Plとは略等しい
ものになり、可撓性シール部材20に作用する圧縮力P
はエアベローズ50にて相殺されることになる。
At this time, since the effective area A of the flexible sealing member 20 and the effective area Al of both air bellows 50 are approximately equal, the compressive force P acting on the flexible sealing member 20 and both air bellows 50 The tensile force Pl acting on the flexible sealing member 20 is approximately equal to the compressive force Pl acting on the flexible seal member 20.
will be canceled out by the air bellows 50.

それゆえ、実施例2と同様に、上昇管13及び下降管1
4には真空吸引動作に伴う無理な荷重が作用することが
なく、しかも、上記可撓性シール部材20の撓み変形が
装置運転中においても確保されるため、上昇管13及び
下降管14が装置運転中の温度変化に伴って熱膨張、熱
収縮したとしても、上昇管13及び下降管14に温度変
化に伴う応力が不必要に作用することはない。
Therefore, similarly to the second embodiment, the ascending pipe 13 and the descending pipe 1
4 is not subjected to an unreasonable load due to the vacuum suction operation, and the flexible sealing member 20 is able to flex and deform even during the operation of the device, so that the ascending pipe 13 and the descending pipe 14 are Even if there is thermal expansion or contraction due to temperature changes during operation, stress due to temperature changes will not act unnecessarily on the riser pipe 13 and the downcomer pipe 14.

尚、この実施例において、上記両エアベローズ50の引
張力Plを可撓性シール部材20の圧縮力Pよりも僅か
に小さく設定する場合には、上記両エアベローズ50の
有効面積AIを可撓性シール部材20の有効面積Aより
も僅かに小さくすればよい。
In this embodiment, when the tensile force Pl of both air bellows 50 is set to be slightly smaller than the compressive force P of the flexible seal member 20, the effective area AI of both air bellows 50 is It is only necessary to make the area slightly smaller than the effective area A of the sealing member 20.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、この発明に係る減圧脱泡装置
によれば、上昇管及び下降管の下端近傍部と各ケーシン
グの下端部との間を可撓性シール部材にて閉塞し、真空
ハウジンクの真空吸引作動時における可撓性シール部材
の収縮変形を阻止するようにしたので、高温溶融物の通
過に伴って減圧脱泡槽に連結された上昇管及び下降管が
熱膨張したとしても、可撓性シール部材にて上記熱膨張
変形を有効に吸収することができ、もって、上昇管及び
下降管部分の座屈変形を有効に防止することができるほ
か、真空ハウジングの真空吸引作動時において、真空ハ
ウジングの減圧度を確実に維持しながら、上昇管及び下
降管への過大な応力の生成をなくし、上昇管及び下降管
部分の座屈変形をも有効に防止することができる。
As explained above, according to the vacuum degassing device according to the present invention, a flexible seal member is used to close the vicinity of the lower ends of the ascending pipe and the downcomer pipe and the lower end of each casing, and the vacuum housing is closed. Since the flexible sealing member is prevented from shrinking and deforming during the vacuum suction operation, even if the rising pipe and downgoing pipe connected to the vacuum degassing tank thermally expand as the high-temperature molten material passes, The flexible seal member can effectively absorb the thermal expansion deformation described above, thereby effectively preventing buckling deformation of the ascending pipe and downcomer pipe sections, and also prevents buckling during the vacuum suction operation of the vacuum housing. , while reliably maintaining the reduced pressure of the vacuum housing, generation of excessive stress on the rising pipe and downcomer pipe can be eliminated, and buckling deformation of the rising pipe and downcomer pipe portions can also be effectively prevented.

また、請求項2ないし4いずれかに記載の減圧脱泡装置
によれば、装置運転中において上記上昇管及び下降管が
温度変化によって若干伸縮変形したとしても、上記可撓
性シール部材がその変形に追従し、上昇管及び下降管に
不必要な応力が生成される事態を回避するようにしてい
るので、装置運転中における上昇管及び下降管の熱変形
に基づく破壊を有効に防止することができる。
Further, according to the vacuum degassing device according to any one of claims 2 to 4, even if the riser pipe and the downcomer pipe are slightly expanded or contracted due to temperature changes during operation of the device, the flexible seal member This prevents unnecessary stress from being generated in the ascending pipe and downcomer pipe, thereby effectively preventing the rising pipe and downcomer pipe from breaking due to thermal deformation during equipment operation. can.

特に、請求項3記載の減圧脱泡装置によれば、圧力調整
手段が可撓性シール部材の収縮作用力より僅かに小さい
引張作用力を付与するように構成されるので、上記上昇
管及び下降管には極めて僅かな圧縮応力が作用した状態
でバランスすることになり、引張応力が作用した場合に
生じ易い引張破断又はクリープ破断を有効に回避するこ
とができる。
In particular, according to the vacuum degassing device according to claim 3, the pressure regulating means is configured to apply a tensile force that is slightly smaller than the contraction force of the flexible seal member, so that the rising pipe and the descending pipe are The tube is balanced with very little compressive stress acting on it, and it is possible to effectively avoid tensile rupture or creep rupture that tends to occur when tensile stress is applied.

更にまた、請求項4記載の減圧脱泡装置によれば、真空
ハウジングに連通ずるエアベローズにて圧力調整手段を
構成するようにしたので、真空/’%ウジング内の圧力
を検知し、この検知信号に基づいて圧力制御するシステ
ムに比べて、装置構成を簡略化することができる。
Furthermore, according to the vacuum degassing device according to claim 4, since the pressure adjustment means is constituted by the air bellows communicating with the vacuum housing, the pressure inside the vacuum/'% housing is detected and this detection is performed. The device configuration can be simplified compared to systems that control pressure based on signals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る減圧脱泡装置の実施例1の概略
構成を示す断面説明図、第2図は実施例1に係る減圧脱
泡装置が組み込まれるプロセス例を示す斜視図、第3図
は第1図中■部詳細説明図、第4図はこの発明に係る減
圧脱泡装置の実施例2を示す第3図と同様な説明図、第
5図はこの発明に係る減圧脱泡装置の実施例3を示す第
3図と同様な説明図、第6図は従来における減圧脱泡装
置の概略構成を示す説明図である。 〔符号の説明〕 11・・・真空ハウジング 12・・・減圧脱泡槽 13・・・上昇管 14・・・下降管 15.16・・・ケーシング 20・・・可撓性シール部材 40・・・圧力調整手段 50・・・エアベローズ
FIG. 1 is a cross-sectional explanatory diagram showing a schematic configuration of Example 1 of the vacuum defoaming device according to the present invention, FIG. 2 is a perspective view showing an example of a process in which the vacuum defoaming device according to Example 1 is incorporated, and FIG. The figures are a detailed explanatory view of the part ■ in Fig. 1, Fig. 4 is an explanatory view similar to Fig. 3 showing Example 2 of the vacuum degassing device according to the present invention, and Fig. 5 is a vacuum defoaming device according to the present invention. FIG. 6 is an explanatory diagram similar to FIG. 3 showing a third embodiment of the apparatus, and FIG. 6 is an explanatory diagram showing a schematic configuration of a conventional vacuum degassing apparatus. [Explanation of symbols] 11... Vacuum housing 12... Decompression degassing tank 13... Ascending pipe 14... Descending pipe 15.16... Casing 20... Flexible sealing member 40...・Pressure adjustment means 50...air bellows

Claims (1)

【特許請求の範囲】 1)真空吸引される真空ハウジング(11)と、この真
空ハウジング(11)内に収容配置されて高温溶融物(
G)を減圧脱泡する減圧脱泡槽(12)と、この減圧脱
泡槽(12)に連通接続されて脱泡処理前の高温溶融物
(G)を上記減圧脱泡槽(12)に上昇導入する貴金属
製の上昇管(13)と、 上記減圧脱泡槽(12)に連通接続されて減圧脱泡槽(
12)にて脱泡処理された高温溶融物(G)を下降導出
する貴金属製の下降管(14)と、 上記真空ハウジング(11)に夫々連通接続されて上記
上昇管(13)及び下降管(14)を被覆するケーシン
グ(15,16)とを備えた減圧脱泡装置において、上
記上昇管(13)及び下降管(14)の下端近傍部と夫
々のケーシング(15,16)の下端部との間を可撓性
シール部材(20)で閉塞し、 上記上昇管(13)及び下降管(14)の定常熱膨張状
態にて上記可撓性シール部材(20)の撓み変化量を抑
止するようにしたことを特徴とする減圧脱泡装置。 2)真空吸引される真空ハウジング(11)と、この真
空ハウジング(11)内に収容配置されて高温溶融物(
G)を減圧脱泡する減圧脱泡槽(12)と、この減圧脱
泡槽(12)に連通接続されて脱泡処理前の高温溶融物
(G)を上記減圧脱泡槽(12)に上昇導入する貴金属
製の上昇管(13)と、 上記減圧脱泡槽(12)に連通接続されて減圧脱泡槽(
12)にて脱泡処理された高温溶融物(G)を下降導出
する貴金属製の下降管(14)と、 上記真空ハウジング(11)に夫々連通接続されて上記
上昇管(13)及び下降管(14)を被覆するケーシン
グ(15,16)とを備えた減圧脱泡装置において、上
記上昇管(13)及び下降管(14)の下端近傍部と夫
々のケーシング(15,16)の下端部との間を可撓性
シール部材(20)で閉塞し、 真空ハウジング(11)の負圧状態に応じて上記可撓性
シール部材(20)を下方側に引張する圧力調整手段(
40)を付設したことを特徴とする減圧脱泡装置。 3)請求項2記載のものにおいて、 上記圧力調整手段(40)は、上記可撓性シール部材(
20)の収縮作用力よりも僅かに小さい作用力で引張す
るものであることを特徴とする減圧脱泡装置。 4)請求項2若しくは3記載のものにおいて、上記圧力
調整手段(40)は、上記上昇管(13)及び下降管(
14)のケーシング(15,16)に夫々連通し、かつ
、可撓性シール部材(20)への作用力を相殺するエア
ベローズ(50)にて構成されていることを特徴とする
減圧脱泡装置。
[Claims] 1) A vacuum housing (11) that is vacuum-suctioned, and a high-temperature molten material (
A vacuum degassing tank (12) is connected to the vacuum defoaming tank (12) to degas G), and the high temperature molten material (G) before the defoaming process is transferred to the vacuum defoaming tank (12). A noble metal riser pipe (13) is connected to the vacuum degassing tank (12) and is connected to the vacuum defoaming tank (12).
A downcomer pipe (14) made of a precious metal for descending the high-temperature molten material (G) that has been degassed in step 12), and the ascent pipe (13) and the downcomer pipe that are connected in communication with the vacuum housing (11), respectively. (14) in a vacuum degassing device comprising a casing (15, 16) covering a casing (15, 16), the vicinity of the lower end of the rising pipe (13) and the descending pipe (14) and the lower end of each of the casings (15, 16). A flexible sealing member (20) is used to close the space between the rising pipe (13) and the descending pipe (14), and the amount of change in deflection of the flexible sealing member (20) is suppressed in a steady state of thermal expansion of the rising pipe (13) and the descending pipe (14). A vacuum degassing device characterized by: 2) A vacuum housing (11) that is vacuum-suctioned, and a high-temperature molten material (
A vacuum degassing tank (12) is connected to the vacuum defoaming tank (12) to degas G), and the high temperature molten material (G) before the defoaming process is transferred to the vacuum defoaming tank (12). A noble metal rising pipe (13) is connected to the vacuum degassing tank (12) and is connected to the vacuum defoaming tank (12).
A downcomer pipe (14) made of a precious metal for descending the high-temperature molten material (G) that has been degassed in step 12), and the ascent pipe (13) and the downcomer pipe that are connected in communication with the vacuum housing (11), respectively. (14) in a vacuum degassing device comprising a casing (15, 16) covering a casing (15, 16), the vicinity of the lower end of the rising pipe (13) and the descending pipe (14) and the lower end of each of the casings (15, 16). and a pressure adjusting means (20) for closing the space between the flexible sealing member (20) and pulling the flexible sealing member (20) downward according to the negative pressure state of the vacuum housing (11).
40) A vacuum degassing device characterized by being attached. 3) The device according to claim 2, wherein the pressure adjusting means (40) is configured to include the flexible sealing member (
20) A vacuum degassing device that is tensioned with a slightly smaller force than the contraction force of item 20). 4) In the device according to claim 2 or 3, the pressure regulating means (40) is configured to control the rising pipe (13) and the descending pipe (
14) A vacuum degassing device characterized in that it is composed of air bellows (50) communicating with the casings (15, 16) and canceling the force acting on the flexible sealing member (20). Device.
JP1163822A 1989-06-28 1989-06-28 Vacuum degassing equipment Expired - Lifetime JP2817214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1163822A JP2817214B2 (en) 1989-06-28 1989-06-28 Vacuum degassing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1163822A JP2817214B2 (en) 1989-06-28 1989-06-28 Vacuum degassing equipment

Publications (2)

Publication Number Publication Date
JPH0333020A true JPH0333020A (en) 1991-02-13
JP2817214B2 JP2817214B2 (en) 1998-10-30

Family

ID=15781391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163822A Expired - Lifetime JP2817214B2 (en) 1989-06-28 1989-06-28 Vacuum degassing equipment

Country Status (1)

Country Link
JP (1) JP2817214B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316563A (en) * 1992-01-20 1994-05-31 Asahi Glass Company Ltd. Vacuum degassing method and its apparatus
EP0759524A1 (en) 1995-08-21 1997-02-26 Asahi Glass Company Ltd. Pipe with external insulation for feeding a molten substance at high temperature
EP0775671A1 (en) 1995-11-21 1997-05-28 Asahi Glass Company Ltd. Method and apparatus for refining molten glass under reduced pressure
EP0963955A1 (en) * 1998-06-10 1999-12-15 Asahi Glass Company Ltd. Apparatus for refining molten glass under reduced pressure
EP0989099A1 (en) * 1998-09-22 2000-03-29 Asahi Glass Company Ltd. Apparatus for refining high temperature molten materials under reduced pressure
EP1002769A1 (en) * 1998-11-20 2000-05-24 Asahi Glass Company Ltd. Conduit structure for apparatus used for degassing molten glass under reduced pressure
US6119484A (en) * 1997-10-06 2000-09-19 Asahi Glass Company Ltd. Vacuum degassing apparatus for molten glass
US6202445B1 (en) 1998-02-27 2001-03-20 Asahi Glass Company Ltd. Vacuum degassing apparatus for molten glass and method to rise vacuum degassing apparatus temperature
US6301936B1 (en) * 1998-06-17 2001-10-16 Sumitomo Electric Industries, Ltd. Apparatus for manufacturing porous glass preform
US6308534B1 (en) 1998-06-19 2001-10-30 Asahi Glass Company Ltd. Vacuum degassing apparatus for molten glass
US6318126B1 (en) 1998-06-26 2001-11-20 Asahi Glass Company Ltd. Vacuum degassing method for molten glass
US6334336B1 (en) 1998-06-24 2002-01-01 Asahi Glass Company Ltd. Vacuum degassing apparatus for molten glass and method for building it
JP2006318973A (en) * 2005-05-10 2006-11-24 Toshiba Mach Co Ltd Transfer device
WO2010104036A1 (en) * 2009-03-09 2010-09-16 日東紡績株式会社 Glass-melting device for producing glass fiber and method for producing glass fiber using same
EP2407438A1 (en) * 2009-03-09 2012-01-18 Nitto Boseki CO., LTD. Glass-melting device for producing glass fiber and method for producing glass fiber
WO2016052608A1 (en) * 2014-09-30 2016-04-07 旭硝子株式会社 Glass melt production device, glass melt production method, glass article production device, and glass article production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872909B2 (en) * 2005-03-08 2012-02-08 旭硝子株式会社 Hermetic joining method of reinforced platinum hollow tube and platinum flange

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316563A (en) * 1992-01-20 1994-05-31 Asahi Glass Company Ltd. Vacuum degassing method and its apparatus
USRE36082E (en) * 1992-01-20 1999-02-09 Asahi Glass Company Ltd. Vacuum degassing method and its apparatus
EP0759524A1 (en) 1995-08-21 1997-02-26 Asahi Glass Company Ltd. Pipe with external insulation for feeding a molten substance at high temperature
US5851258A (en) * 1995-08-21 1998-12-22 Asahi Glass Company Ltd. Backup structure for a pipe for feeding a molten substance of high temperature
EP0775671A1 (en) 1995-11-21 1997-05-28 Asahi Glass Company Ltd. Method and apparatus for refining molten glass under reduced pressure
US5849058A (en) * 1995-11-21 1998-12-15 Asahi Glass Company Ltd. Refining method for molten glass and an apparatus for refining molten glass
US6119484A (en) * 1997-10-06 2000-09-19 Asahi Glass Company Ltd. Vacuum degassing apparatus for molten glass
US6202445B1 (en) 1998-02-27 2001-03-20 Asahi Glass Company Ltd. Vacuum degassing apparatus for molten glass and method to rise vacuum degassing apparatus temperature
EP0963955A1 (en) * 1998-06-10 1999-12-15 Asahi Glass Company Ltd. Apparatus for refining molten glass under reduced pressure
US6321572B1 (en) 1998-06-10 2001-11-27 Asahi Glass Company, Ltd. Vacuum degassing apparatus for molten glass
US6301936B1 (en) * 1998-06-17 2001-10-16 Sumitomo Electric Industries, Ltd. Apparatus for manufacturing porous glass preform
US6308534B1 (en) 1998-06-19 2001-10-30 Asahi Glass Company Ltd. Vacuum degassing apparatus for molten glass
US6334336B1 (en) 1998-06-24 2002-01-01 Asahi Glass Company Ltd. Vacuum degassing apparatus for molten glass and method for building it
US6318126B1 (en) 1998-06-26 2001-11-20 Asahi Glass Company Ltd. Vacuum degassing method for molten glass
EP0989099A1 (en) * 1998-09-22 2000-03-29 Asahi Glass Company Ltd. Apparatus for refining high temperature molten materials under reduced pressure
US6294005B1 (en) 1998-09-22 2001-09-25 Asahi Glass Company Ltd. Vacuum gas releasing system
EP1002769A1 (en) * 1998-11-20 2000-05-24 Asahi Glass Company Ltd. Conduit structure for apparatus used for degassing molten glass under reduced pressure
JP4729338B2 (en) * 2005-05-10 2011-07-20 東芝機械株式会社 Transfer device
JP2006318973A (en) * 2005-05-10 2006-11-24 Toshiba Mach Co Ltd Transfer device
CN102348655A (en) * 2009-03-09 2012-02-08 日东纺绩株式会社 Glass-melting device for producing glass fiber and method for producing glass fiber using same
EP2407438A1 (en) * 2009-03-09 2012-01-18 Nitto Boseki CO., LTD. Glass-melting device for producing glass fiber and method for producing glass fiber
WO2010104036A1 (en) * 2009-03-09 2010-09-16 日東紡績株式会社 Glass-melting device for producing glass fiber and method for producing glass fiber using same
CN102388001A (en) * 2009-03-09 2012-03-21 日东纺绩株式会社 Glass-melting device for producing glass fiber and method for producing glass fiber
EP2407438A4 (en) * 2009-03-09 2012-10-17 Nitto Boseki Co Ltd Glass-melting device for producing glass fiber and method for producing glass fiber
US8689586B2 (en) 2009-03-09 2014-04-08 Nitto Boseki Co., Ltd. Glass-melting device for producing glass fiber and method for producing glass fiber
US8689588B2 (en) 2009-03-09 2014-04-08 Nitto Boseki Co., Ltd. Glass-melting device for producing glass fiber and method for producing glass fiber using same
JP5660028B2 (en) * 2009-03-09 2015-01-28 日東紡績株式会社 Glass melting apparatus for producing glass fiber and method for producing glass fiber using the same
WO2016052608A1 (en) * 2014-09-30 2016-04-07 旭硝子株式会社 Glass melt production device, glass melt production method, glass article production device, and glass article production method
JPWO2016052608A1 (en) * 2014-09-30 2017-07-27 旭硝子株式会社 Glass melt manufacturing apparatus, glass melt manufacturing method, glass article manufacturing apparatus, and glass article manufacturing method

Also Published As

Publication number Publication date
JP2817214B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
JPH0333020A (en) Reduced-pressure defoaming device
US5851258A (en) Backup structure for a pipe for feeding a molten substance of high temperature
TWI819105B (en) Glass forming apparatuses comprising modular glass fining systems
US8003920B2 (en) Substrate processing apparatus
WO2010068031A4 (en) Temperature-responsive fluid flow control apparatus
KR100267419B1 (en) Substrate processing apparatus
JP2000058298A (en) Plasma reactor
JP4335943B2 (en) Multi-chamber system as liquid conditioning tank and its use
JP4194997B2 (en) Tank pressure regulating valve device
KR19980087336A (en) Heat pipe support
JPH11139834A (en) Reduced pressure defoaming device for molten glass
EP1498502A1 (en) Vertical muffle type heat treating furnace
JPH0959029A (en) Device for supporting heat-insulating material covering periphery of high temperature melt conduit
KR101276565B1 (en) Vacuum Processing Apparatus
JP2024517962A (en) Support structure for accommodating thermal expansion and glass manufacturing apparatus including same - Patents.com
JP2000329254A (en) Valve device
KR20110019700A (en) Vacuum evacuating head
JP2018145460A (en) Gas introduction mechanism and heat treatment apparatus
JP2005350352A (en) Apparatus for supporting heat insulating material covering surroundings of molten glass conduit
KR100348476B1 (en) Coolant temperature controlling apparatus for water cooled engine
JP3796733B2 (en) Plasma display panel exhaust system
JPH0344996Y2 (en)
KR200222595Y1 (en) Atmospheric pressure forming device in the reaction tube of low pressure vapor deposition equipment
KR101650441B1 (en) Side sealing apparatus for float bath
JPH0629616Y2 (en) Safety device for electric heating tank

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070821

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080821

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080821

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090821

Year of fee payment: 11

EXPY Cancellation because of completion of term