JPH0332801B2 - - Google Patents

Info

Publication number
JPH0332801B2
JPH0332801B2 JP59036980A JP3698084A JPH0332801B2 JP H0332801 B2 JPH0332801 B2 JP H0332801B2 JP 59036980 A JP59036980 A JP 59036980A JP 3698084 A JP3698084 A JP 3698084A JP H0332801 B2 JPH0332801 B2 JP H0332801B2
Authority
JP
Japan
Prior art keywords
signal
pulse
pulse width
pneumatic
width signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59036980A
Other languages
Japanese (ja)
Other versions
JPS60181802A (en
Inventor
Koji Akyama
Akira Oote
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP3698084A priority Critical patent/JPS60181802A/en
Publication of JPS60181802A publication Critical patent/JPS60181802A/en
Publication of JPH0332801B2 publication Critical patent/JPH0332801B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/246Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains by varying the duration of individual pulses

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は伝送された光信号を受光し、この光信
号のもつエネルギーによつて作動するとともに、
これに含まれる信号に対応した空気圧信号を出力
する光応動装置に関すものである。
[Detailed Description of the Invention] [Technical Field to Which the Invention Pertains] The present invention receives a transmitted optical signal, operates by the energy of this optical signal, and
This invention relates to a photoresponsive device that outputs a pneumatic signal corresponding to the signal included in the photoresponse device.

〔従来技術〕 従来より光信号を光フアイバを介して伝送し、
受信端側で電気信号に変換し、信号処理するシス
テムは公知であるが、伝送された光信号のもつエ
ネルギーによつて受信端が動作し、光信号に含ま
れる操作信号に応じた空気圧信号を出力するよう
な装置は、これまでなかつた。
[Prior art] Conventionally, optical signals are transmitted via optical fibers,
A system in which the receiving end converts the signal into an electrical signal and processes the signal is well known, but the receiving end is operated by the energy of the transmitted optical signal and generates a pneumatic signal according to the operation signal included in the optical signal. There has never been a device that can output this.

この様な装置を実現するためには、受信端側で
の消費電力ができるだけ少なくする必要があり、
また、応答時間を短かくする必要がある。
In order to realize such a device, it is necessary to minimize power consumption at the receiving end.
It is also necessary to shorten the response time.

〔本発明の目的〕[Object of the present invention]

本発明は、伝送された光信号のもつエネルギー
によつて動作するように消費電力が小さく、応答
時間の速い光応動装置を実現しようとするもので
ある。
The present invention aims to realize a light-responsive device that operates using the energy of a transmitted optical signal, has low power consumption, and has a fast response time.

〔本発明の概要〕[Summary of the invention]

本発明に係る装置は、送信端側から光フアイバ
を介して送られる光信号を受光する光電変換手段
と、この光電変換手段から得られる電力によつて
作動し、光信号に含まれるパルス状の信号を入力
しこの信号を処理して操作信号に対応したパルス
幅信号を出力するパルス幅信号変換器と、一端が
空気圧供給源に接続され他端がタンクに接続され
た第1の空気スイツチと、一端が開放し他端がタ
ンクに接続された第2の空気スイツチとで構成さ
れ、 第1,第2の空気スイツチはパルス幅信号変換
器からのパルス幅信号に対応してオン,オフ時間
が制御される点に構成上の特徴がある。
The device according to the present invention includes a photoelectric conversion means that receives an optical signal sent from a transmission end side via an optical fiber, and operates using the electric power obtained from this photoelectric conversion means, and converts pulse-shaped signals contained in the optical signal. a pulse width signal converter that receives a signal, processes the signal, and outputs a pulse width signal corresponding to the operating signal; and a first air switch that has one end connected to the air pressure supply source and the other end connected to the tank. , and a second air switch with one end open and the other end connected to the tank, and the first and second air switches have on and off times corresponding to the pulse width signal from the pulse width signal converter. A distinctive feature of the structure is that it is controlled.

〔実施例〕〔Example〕

第1図は本発明に係る装置の一例を示す構成ブ
ロツク図である。この図において、TRは送信
端、ACは操作端、OFは送信端TRと操作端AC
とを結ぶ光フアイバである。
FIG. 1 is a block diagram showing an example of a device according to the present invention. In this diagram, TR is the transmitting end, AC is the operating end, and OF is the transmitting end TR and the operating end AC.
It is an optical fiber that connects the

送信端TRにおいて、1は光フアイバOFの一
端に結合している例えばレーザダイオード(LD)
のような光源、2はこの光源を断続するスイツチ
で、述するようなパルス信号によつて駆動され
る。
At the transmitting end TR, 1 is connected to one end of the optical fiber OF, for example, a laser diode (LD).
A light source such as 2 is a switch that turns this light source on and off, and is driven by a pulse signal as described above.

第2図は、送信端TRから光フアイバOFを介
して伝送される光信号の形態の一例を示す波形図
である。送信端TRからは、この図に示すよう
に、連続する光信号(パワー光)と、この光信号
を継続することによつて生ずるパルス状の信号と
が伝送される。
FIG. 2 is a waveform diagram showing an example of the form of an optical signal transmitted from the transmitting end TR via the optical fiber OF. As shown in this figure, a continuous optical signal (power light) and a pulse-like signal generated by continuing this optical signal are transmitted from the transmitting end TR.

ここで、パルス状の信号は、3個のパルスp1
p2,p3で操作信号を構成しており、パルスp1とp3
の相互間の時間TSが基準パルス幅の情報を、パ
ルスp1とp2の相互間の時間txがパルス幅、すなわ
ち操作量の情報を含むようにしてある。従つて、
受信端側では、TS,txを計測し、tx/TSを演算す
ることによつて、操作信号を得ることができるよ
うになつている。
Here, the pulsed signal consists of three pulses p 1 ,
The operation signal is composed of p 2 and p 3 , and pulses p 1 and p 3
The time T S between pulses p 1 and p 2 contains information on the reference pulse width, and the time t x between pulses p 1 and p 2 contains information on the pulse width, that is, the manipulated variable. Therefore,
On the receiving end side, the operation signal can be obtained by measuring T S and t x and calculating t x /T S.

なお、この例では、各パルスp1〜p3はパワー光
を断にすることによつて発生させるもので、これ
らのパルスのパルス幅はできるだけ細いパルス幅
であることが望ましい。また、各パルスは、パワ
ー光の強さ(振幅)を小さくすることによつて発
生させてもよいし、また、パワー光とは異なつた
波長としてもよい。
In this example, each of the pulses p 1 to p 3 is generated by cutting off the power light, and it is desirable that the pulse width of these pulses be as narrow as possible. Further, each pulse may be generated by reducing the intensity (amplitude) of the power light, or may have a wavelength different from that of the power light.

第1図に戻り、操作端(受信端)ACにおいて、
3は光電変換部で、光フアイバOFの他端から出
射する光を受光する光電池30、この光電池30
から得られる電力を蓄電するとともに平滑させ抵
抗31、コンデンサ32及びレギユレータ33と
で構成されている。4は光電変換部3から得られ
る電力が供給されて作動するパルス幅信号変換器
で、コンデンサ40を介して光信号に含まれてい
るパルス状の信号が印加され、この信号を処理し
て操作量に対応したパルス幅信号を出力する。な
お、ここでは、コンデンサ40は連続する光信号
の中に含まれているパルス状の信号を取り出すた
めの、信号取出し手段を構成しており、また、パ
ルス幅信号変換器4は、入力されるパルス状信号
のパルス相互間の時間txとTSを計測し、tx/TS
演してこれに対応した信号eiを出力する信号処理
回路41と、ここからの信号eiと述す帰還信号ef
との偏差εを求め加算回路42と、偏差信号εに
対応したパルス幅信号を出力するパルス幅信号発
生回路43とで構成されている。
Returning to Figure 1, at the operating end (receiving end) AC,
3 is a photoelectric conversion unit, which includes a photocell 30 that receives light emitted from the other end of the optical fiber OF;
It is composed of a resistor 31, a capacitor 32, and a regulator 33. Reference numeral 4 denotes a pulse width signal converter that is operated by being supplied with electric power obtained from the photoelectric converter 3, to which a pulsed signal included in the optical signal is applied via a capacitor 40, and this signal is processed and operated. Outputs a pulse width signal corresponding to the amount. Note that here, the capacitor 40 constitutes a signal extraction means for extracting a pulsed signal contained in a continuous optical signal, and the pulse width signal converter 4 constitutes a signal extraction means for extracting a pulsed signal contained in a continuous optical signal. A signal processing circuit 41 that measures the inter-pulse times t x and T S of a pulse-like signal, performs t x /T S , and outputs a corresponding signal e i ; The feedback signal e f
The circuit includes an addition circuit 42 which calculates the deviation ε from the deviation signal ε, and a pulse width signal generation circuit 43 which outputs a pulse width signal corresponding to the deviation signal ε.

5,6はパルス幅信号変換器4からのパルス幅
信号に応じてオン,オフ動作する第1,第2の空
気圧スイツチで、ここでは、空気圧によつて変位
するダイアフラム51,61を含んで構成される
ものが用いてある。7は空気圧供給源、8はタン
ク、80は出力端子、9は空気圧電気変換手段
で、タンク8の出力空気圧に対応した電気信号ef
を、パルス幅信号変換器4に負帰還している。
Reference numerals 5 and 6 denote first and second pneumatic switches which are turned on and off in accordance with the pulse width signal from the pulse width signal converter 4, and here include diaphragms 51 and 61 that are displaced by air pressure. The ones that are used are used. 7 is a pneumatic pressure supply source, 8 is a tank, 80 is an output terminal, and 9 is a pneumatic-electrical conversion means, which generates an electrical signal e f corresponding to the output pneumatic pressure of the tank 8.
is negatively fed back to the pulse width signal converter 4.

第1の空気圧スイツチ5において、スイツチの
入力端側に相当する管52は、空気圧供給源7に
接続され、また出力端に相当する管53は、タン
ク8に接続されており、ダイアフラム51が変位
することにより、管52と53の間がオン,オフ
する。ダイアフラム51を変位させるためのスイ
ツチ制御用空気圧が導びかれる管54の一端は、
ノズル55が接続され、また、このノズル55は
パルス幅信号変換器4からのパルス幅信号Td1
対応して変位するフラツパ56に対抗している。
In the first pneumatic switch 5, a pipe 52 corresponding to the input end of the switch is connected to the pneumatic supply source 7, and a pipe 53 corresponding to the output end is connected to the tank 8. By doing so, the connection between the tubes 52 and 53 is turned on and off. One end of the pipe 54 to which the switch control air pressure for displacing the diaphragm 51 is guided,
A nozzle 55 is connected and opposes a flapper 56 which is displaced in response to the pulse width signal Td 1 from the pulse width signal converter 4 .

第2の空気圧スイツチ6において、スイツチの
入力端側に相当する管62は開放し、また出力端
に相当する管63は、タンク8に接続されてい
る。また、スイツチ制御用空気圧が導びかれる管
64の一端は、ノズル65が接続され、また、こ
のノズル65は、パルス幅信号変換器4からのパ
ルス幅信号Td2に対応して変位するフラツパ66
に対抗している。
In the second pneumatic switch 6, a pipe 62 corresponding to the input end of the switch is open, and a pipe 63 corresponding to the output end is connected to the tank 8. Further, a nozzle 65 is connected to one end of the pipe 64 through which the switch control air pressure is guided, and this nozzle 65 is connected to a flapper 66 that is displaced in response to the pulse width signal Td 2 from the pulse width signal converter 4.
is against.

なお、ノズル55,65には、空気圧供給源7
からの空気圧が絞り57,67を介して供給され
ている。また、フラツパ56,66は、例えばパ
ルスモータで構成され、パルス幅に対応した時間
だけ、矢印方向に変位する。
Note that the nozzles 55 and 65 are connected to an air pressure supply source 7.
Air pressure from the air is supplied through throttles 57 and 67. Further, the flappers 56 and 66 are constructed of, for example, pulse motors, and are displaced in the direction of the arrow for a time corresponding to the pulse width.

このように構成した装置の動作は次の通りであ
る。
The operation of the device configured as described above is as follows.

送信端TRからは、操作端AC側に光フアイバ
OFを介して、第2図に示されるように、パルス
相互間の間隔に情報をもつパルスを含む光信号が
伝送される。操作端ACの光電変換部3は、伝送
された光信号を電気信号に変換し、パルス幅信号
変換器4の作動電力として供給するとともに、パ
ルス信号はコンデンサ40を介してパルス幅信号
変換器4に印加される。このパルス幅信号変換器
4において、信号処理回路41は、例えばロジツ
ク回路、カウンタ,サンプルホールド回路を含ん
で構成されており、各パルスの相互間の間隔tx
TSを計測するとともに、tx/TSを演算し、この
演算結果に対応した信号eiを出力する。また、パ
ルス幅発生回路43は、信号処理回路41からの
信号eiと、帰還信号efとの偏差εを入力し、これ
に対応したパルス間隔Tdの正負逆方向のパルス
間隔信号を偏差εの符号に応じて切換え、2つの
出力端子から例えば第3図イ,ロのような信号を
出力する。
An optical fiber is connected from the transmitting end TR to the operating end AC side.
Through the OF, as shown in FIG. 2, an optical signal containing pulses with information in the intervals between the pulses is transmitted. The photoelectric conversion section 3 of the operating end AC converts the transmitted optical signal into an electrical signal and supplies it as operating power to the pulse width signal converter 4. The pulse signal is transmitted to the pulse width signal converter 4 via a capacitor 40 is applied to In this pulse width signal converter 4, the signal processing circuit 41 includes, for example, a logic circuit, a counter, and a sample-and-hold circuit, and the interval between each pulse t x ,
While measuring T S , it calculates t x /T S and outputs a signal e i corresponding to the result of this calculation. Further, the pulse width generation circuit 43 inputs the deviation ε between the signal e i from the signal processing circuit 41 and the feedback signal e f , and generates a pulse interval signal in the opposite direction of the pulse interval Td with a deviation ε For example, the signals shown in FIG. 3 A and B are outputted from the two output terminals.

イに示すパルス間隔Td1のパルス間隔信号は、
パルスPHで第1の空気圧スイツチ5のフラツパ
56を矢印方向に変位させ、パルスPLで元に戻
す。したがつてフラツパ56はTd1の間、矢印方
向に変位しているまた、同様にロに示すパルス間
隔Td2のパルス間隔信号は、第2の空気圧スイツ
チ6のフラツパ66をTd2の間矢印方向に変位さ
せる。ラツパ56,66が矢印方向に変位する
と、対抗するノズル背圧は低くなり、各パルス間
隔Td1,Td2の時間、第1,第2の空気圧スイツ
チ5,6がオンとなる。
The pulse interval signal with pulse interval Td 1 shown in A is:
The flapper 56 of the first pneumatic switch 5 is displaced in the direction of the arrow by the pulse P H , and returned to its original position by the pulse P L. Therefore, the flapper 56 is displaced in the direction of the arrow during Td 1. Similarly, the pulse interval signal with a pulse interval Td 2 shown in B causes the flapper 66 of the second pneumatic switch 6 to be displaced in the direction of the arrow during Td 2 . direction. When the flaps 56, 66 are displaced in the direction of the arrow, the opposing nozzle back pressure becomes low, and the first and second pneumatic switches 5, 6 are turned on for the respective pulse intervals Td 1 , Td 2 .

第4図は、第1,第2の空気圧スイツチ、空気
圧供給源7及びタンク8の接続図を簡略化して示
した図であり、第5図は、第4図を電気回路で等
価させた等価回路図である。
Fig. 4 is a diagram showing a simplified connection diagram of the first and second pneumatic switches, pneumatic pressure supply source 7, and tank 8, and Fig. 5 is an equivalent diagram of Fig. 4 using an electric circuit. It is a circuit diagram.

これらの図において、PSを空気圧供給源7の出
力圧、R1,R2を管52,53,62,63の抵
抗、Cをタンク8の容量とすると、タンク8の出
力空気圧POは、次式で表わされる。
In these figures, if P S is the output pressure of the pneumatic supply source 7, R 1 and R 2 are the resistances of the pipes 52, 53, 62, and 63, and C is the capacity of the tank 8, the output air pressure P O of the tank 8 is , is expressed by the following equation.

加圧のとき PO=PS{1−exp(−Td1/R1C)} 減圧のとき RO=PS exp(−Td2/R2C) よつて、出力空気圧POは、パルス間隔信号
Td1,Td2、すなわち、入力電気信号eiに正確に
対応したものとなる。
When pressurizing, P O = P S {1- exp (-Td 1 / R 1 C)} When reducing pressure, R O = P S exp (-Td 2 / R 2 C) Therefore, the output air pressure P O is Pulse interval signal
Td 1 and Td 2 , that is, they correspond exactly to the input electrical signal e i .

出力空気圧POは、空気圧電気変換手段9によ
つて電気信号efに変換され、パルス幅信号発生回
路43は、ei=efとなるようにパルス幅信号をを出
力する。これにより、タンク8からの出力空気圧
POは、電気信号ei、すなわち、操作量に正確に対
応するように迅速に追従し、維持される。
The output air pressure P O is converted into an electric signal e f by the pneumatic-electric conversion means 9, and the pulse width signal generation circuit 43 outputs a pulse width signal such that e i =e f . As a result, the output air pressure from tank 8
P O quickly follows and is maintained to accurately correspond to the electrical signal e i , ie, the manipulated variable.

第6図は第1図におけるパルス幅信号発生回路
43の一例を示す構成ブロツク図である。ここで
は、eiとefの偏差εを入力する比較器CO1、偏差
εをスイツチS1を介して積分する積分器INT、
この積分器INTの出力を入力する比較器CO2、こ
の出力をスイツチS5を介して入力するモノマルチ
MM1,MM2、比較器CO1の出力を入力し、各ス
イツチS1〜S5を制御するロジツク回路、帰還信号
efを入力し、スイツチS2,S3を介して非線形出力
er,−erを積分器INTの入力端に出力する非線形
回路NL1,NL2で構成したものである。
FIG. 6 is a block diagram showing an example of the pulse width signal generation circuit 43 in FIG. 1. Here, a comparator CO 1 inputs the deviation ε between e i and e f , an integrator INT integrates the deviation ε via a switch S 1 ,
A comparator CO 2 inputs the output of this integrator INT, and a monomultiplier inputs this output via switch S 5 .
Logic circuit that inputs the output of MM 1 , MM 2 , comparator CO 1 and controls each switch S 1 to S 5 , feedback signal
Input e f and nonlinear output via switches S 2 and S 3
It is composed of nonlinear circuits NL 1 and NL 2 that output e r and −er to the input terminal of an integrator INT.

第7図はこの回路の各部分の動作波形の一例を
示す波形図である。
FIG. 7 is a waveform diagram showing an example of the operating waveforms of each part of this circuit.

各スイツチS1〜S5は第7図ロ〜ホに示すように
ロジツク回路LGによつて駆動され、モノマルチ
MM1,MM2の出力端からチに示すように偏差信
号εに関連したパルス間隔Td1,Td2を有するパ
ルス幅信号を出力する。なお、ここで、各非線形
回路NL1,NL2は、偏差εと、出力空気圧POの圧
力変化量とが直線関係でなく、圧力変化方向とそ
の時の出力によつて変化するので、これを補償す
るために設けたものである。
Each switch S1 to S5 is driven by a logic circuit LG as shown in Fig. 7,
The output terminals of MM 1 and MM 2 output pulse width signals having pulse intervals Td 1 and Td 2 related to the deviation signal ε, as shown in FIG. Note that in each of the nonlinear circuits NL 1 and NL 2 , the deviation ε and the amount of pressure change in the output air pressure P O are not linearly related, but change depending on the direction of pressure change and the output at that time. It was established to compensate.

なお、上記の実施例では、空気圧電気変換手段
9を設け、出力空気圧POに対応した電気信号ef
パルス幅信号変換器に負帰還させるようにした
が、この負帰還ループはなくてもよい。また、パ
ルス幅信号変換器としては、第6図に示す回路を
含むものに限定されず、例えばマイクロコンピユ
ータ等を用いたものでもよい。また、空気圧スイ
ツチとしては、ノズルラツパからの背圧によつて
変位するダイアフラムを含む構成のものに限定さ
れず、例えば電磁弁を用いてもよい。
In the above embodiment, the pneumatic-electrical converter 9 is provided so that the electrical signal e f corresponding to the output air pressure P O is negatively fed back to the pulse width signal converter. good. Further, the pulse width signal converter is not limited to one including the circuit shown in FIG. 6, but may be one using a microcomputer or the like, for example. Furthermore, the pneumatic switch is not limited to one that includes a diaphragm that is displaced by back pressure from the nozzle wrapper; for example, a solenoid valve may be used.

〔本発明の効果〕 以上説明したように、本発明によれば消費電力
が少なく、伝送された光信号によつてのみ作動
し、従つて電気信号を伝送する必要のない、光応
動装置が実現できる。また、空気圧電気変換手段
を含む負帰還ループを設けることによつて、応答
性を高くすることができるとともに、操作量に正
確に対応した空気圧信号を得ることができる。
[Effects of the present invention] As explained above, according to the present invention, a light-responsive device can be realized which consumes less power, operates only by transmitted optical signals, and therefore does not need to transmit electrical signals. can. Further, by providing a negative feedback loop including a pneumatic-electric conversion means, responsiveness can be increased, and a pneumatic pressure signal that accurately corresponds to the manipulated variable can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の一例を示す構成ブ
ロツク図、第2図は第1図装置において送信端か
ら伝送する光信号の形態の一例を示す波形図、第
3図は第1図装置におけるパルス幅信号変換器か
ら得られるパルス幅信号の波形図、第4図は第1
図における要部の簡略図、第5図はその等価回
路、第6図はパルス幅信号発生回路の一例を示す
構成ブロツク図、第7図は第6図各部分の動作波
形の一例を示す波形図である。 TR……送信端、AC……操作端、OF……光フ
アイバ、3……光電変換部、4…パルス幅信号変
換器、5,6……空気圧スイツチ、7……空気圧
供給源、8……タンク、9……空気圧電気変換手
段。
FIG. 1 is a configuration block diagram showing an example of the device according to the present invention, FIG. 2 is a waveform diagram showing an example of the form of an optical signal transmitted from the transmitting end in the device shown in FIG. 1, and FIG. The waveform diagram of the pulse width signal obtained from the pulse width signal converter in FIG.
5 is a simplified diagram of the main parts in the figure, FIG. 5 is an equivalent circuit thereof, FIG. 6 is a configuration block diagram showing an example of a pulse width signal generation circuit, and FIG. 7 is a waveform showing an example of operating waveforms of each part in FIG. 6. It is a diagram. TR...Transmission end, AC...Operation end, OF...Optical fiber, 3...Photoelectric conversion section, 4...Pulse width signal converter, 5, 6...Pneumatic pressure switch, 7...Pneumatic pressure supply source, 8... ...Tank, 9...Pneumatic-electrical conversion means.

Claims (1)

【特許請求の範囲】 1 互いに光フアイバを介して結ばれた送信端と
受信端で構成され、送信端側から送られる光信号
に含まれる情報に基づいた空気圧信号を出力する
光応動装置であつて、 前記送信端は、 一定強度の連続する光信号を出力する手段と、
この連続する光信号の強度を短時間だけ低下させ
連続光の中にパルス状の信号を含ませるようにす
ると共に、当該パルス状の信号の少なくとも2つ
のパルスの間隔を伝送すべき操作量に応じた時間
間隔にさせるようにするスイツチング手段とで構
成され、 前記受信端は、 送信端側から光フアイバを介して送られた連続
する光信号を受光すると共に、得られた電力を蓄
電する手段を含む光電変換部と、 連続する光信号の中に含まれているパルス状の
信号を取り出す信号取出し手段と、 前記光電変換部からの電力が供給されて動作
し、前記信号取出し手段によつて取出されたパル
ス信号を入力し2つのパルス信号の時間間隔を計
測して操作量に関連する信号を出力する信号処理
回路と、 前記光電変換部からの電力が供給されて動作
し、前記信号処理回路からの操作量に関連する信
号をパルス幅信号に変換するパルス幅信号変換器
と、 一端が空気圧源に接続され他端がタンクに接続
された第1の空気スイツチと、 一端が開放し他端がタンクに接続された第2の
空気スイツチとで構成され、 前記第1,第2の空気スイツチのオン,オフ時
間を前記パルス幅信号変換器からのパルス幅信号
によつて制御するようにしたことを特徴とする光
応動装置。 2 パルス幅信号変換器は、出力空気圧信号に対
応した電気信号と、操作量に関連した信号との差
信号が零になるように第1,第2の空気スイツチ
をオン,オフするパルス幅信号を出力する特許請
求の範囲第1項記載の光応動装置。
[Claims] 1. A light-responsive device comprising a transmitting end and a receiving end connected to each other via an optical fiber, and outputting a pneumatic signal based on information contained in an optical signal sent from the transmitting end. The transmitting end includes means for outputting a continuous optical signal with a constant intensity;
The intensity of this continuous optical signal is reduced for a short time so that a pulsed signal is included in the continuous light, and the interval between at least two pulses of the pulsed signal is adjusted according to the amount of operation to be transmitted. the receiving end receives continuous optical signals sent from the transmitting end via the optical fiber, and also includes means for storing the obtained power. a photoelectric conversion section including a signal extraction section for extracting a pulse-like signal contained in a continuous optical signal; a signal processing circuit that inputs a pulse signal, measures the time interval between the two pulse signals, and outputs a signal related to the manipulated variable; a pulse-width signal converter for converting a signal related to a manipulated variable from a pulse-width signal into a pulse-width signal; a first pneumatic switch having one end connected to an air pressure source and the other end connected to a tank; and a second air switch connected to the tank, and the on/off times of the first and second air switches are controlled by the pulse width signal from the pulse width signal converter. A photoresponsive device characterized by: 2 The pulse width signal converter generates a pulse width signal that turns on and off the first and second air switches so that the difference signal between the electrical signal corresponding to the output air pressure signal and the signal related to the manipulated variable becomes zero. A photoresponsive device according to claim 1, which outputs.
JP3698084A 1984-02-28 1984-02-28 Device working in response to light Granted JPS60181802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3698084A JPS60181802A (en) 1984-02-28 1984-02-28 Device working in response to light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3698084A JPS60181802A (en) 1984-02-28 1984-02-28 Device working in response to light

Publications (2)

Publication Number Publication Date
JPS60181802A JPS60181802A (en) 1985-09-17
JPH0332801B2 true JPH0332801B2 (en) 1991-05-14

Family

ID=12484897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3698084A Granted JPS60181802A (en) 1984-02-28 1984-02-28 Device working in response to light

Country Status (1)

Country Link
JP (1) JPS60181802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2306442A1 (en) 1999-09-24 2011-04-06 Semiconductor Energy Laboratory Co, Ltd. EL display device and electronic device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2531829Y2 (en) * 1989-06-19 1997-04-09 シーケーディ 株式会社 Electro-pneumatic converter
US7496481B2 (en) * 2006-05-19 2009-02-24 Watlow Electric Manufacturing Company Sensor adaptors and methods
US7496469B2 (en) 2006-05-19 2009-02-24 Watlow Electric Manufacturing Company Temperature sensor adaptors and methods

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155001U (en) * 1982-04-07 1983-10-17 横河電機株式会社 process control equipment
JPS58155002U (en) * 1982-04-07 1983-10-17 横河電機株式会社 process control equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2306442A1 (en) 1999-09-24 2011-04-06 Semiconductor Energy Laboratory Co, Ltd. EL display device and electronic device

Also Published As

Publication number Publication date
JPS60181802A (en) 1985-09-17

Similar Documents

Publication Publication Date Title
US4996638A (en) Method of feedback regulating a flyback power converter
ATE176099T1 (en) LASER MODULATION CONTROLLER USING ELECTRICAL NRZ MODULATION CONTROL CONTROL
TW331049B (en) Optoelectronic transceiver module laser diode stabilizer and bias control method
KR890002932A (en) Photoelectric switch using frequency detector
JPH0332801B2 (en)
US4742574A (en) Two-wire 4-20 mA electronics for a fiber optic vortex shedding flowmeter
EP0165697B1 (en) Optical sensor arrangements
CA2201622A1 (en) Optical q-switching to generate ultra short pulses in diode lasers
FI934168A0 (en) Method and arrangement for controlling the operation of a high frequency power amplifier
DE59908687D1 (en) Circuit arrangement for measuring piezoelectric signals with a quiescent voltage for the range capacitor
US5012097A (en) Radiation measuring apparatus
SU1682780A1 (en) Device for measuring dimensional parameters of entities
JPH0219703Y2 (en)
US5384800A (en) Feedback control for a high-frequency generator having a pulse-repetition frequency mode, particularly for exciting a laser
EP0571382A1 (en) Optical process variable transmitter
ATE117477T1 (en) LASER POWER SUPPLY AND CONTROL DEVICE FOR AN OPTICAL FIBER CONNECTION BETWEEN A SUBSCRIBER AND A TELECOMMUNICATION SYSTEM.
JPS5773633A (en) Light pulse testing device
SU941929A1 (en) Extremal regulator for objects with transport delay
JPS6233535B2 (en)
JPS5730921A (en) Pressure sensor
JPS5550679A (en) Laser drive current control system
SU752222A1 (en) Relay control device
JPS6331179A (en) Light transmission apparatus
SU1525688A1 (en) Temperature regulation device
JPH0324521A (en) Optical modulation circuit