JPH0332419A - Method and apparatus for drawing wire without die - Google Patents

Method and apparatus for drawing wire without die

Info

Publication number
JPH0332419A
JPH0332419A JP16652489A JP16652489A JPH0332419A JP H0332419 A JPH0332419 A JP H0332419A JP 16652489 A JP16652489 A JP 16652489A JP 16652489 A JP16652489 A JP 16652489A JP H0332419 A JPH0332419 A JP H0332419A
Authority
JP
Japan
Prior art keywords
cooling
linear body
tension
wire
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16652489A
Other languages
Japanese (ja)
Inventor
Shingoro Fukuoka
新五郎 福岡
Keizo Kosugi
小杉 恵三
Ryoichi Tanabe
良一 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP16652489A priority Critical patent/JPH0332419A/en
Publication of JPH0332419A publication Critical patent/JPH0332419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To prevent the diameter of a wire shaped body form varying by detracting the tension of the wire shaped body from the torque variation of the take-off device on the coiler side and adjusting the cooling condition in accordance with the tension variation. CONSTITUTION:The torque variation of the take-off device 20 is detected by a torque detector 36 set on the axis of the take-off device 20 on the side of the coiler 22 and the cooling condition of a cooling means 18 for the wire shaped body 10 is adjusted in accordance with the tension variation of the wire shaped body 10 corresponding to this torque variation. The deformation resistance of the wire shaped body 10 is regulated by this adjustment and the wire diameter of the wire shaped body 10 is controlled to be prevented form variation. In this way, the variation of the wire diameter can be controlled with high precision.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷間加工では極めて加工性が悪い線状体を加
熱と冷却と引取りとによってm径するダイレス伸線方法
及び装置の改良に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is an improvement of a dieless wire drawing method and apparatus for reducing the diameter of a linear body having extremely poor workability by heating, cooling, and drawing to a diameter of m by heating, cooling, and drawing. It is related to.

(従来の技術) 一般に、線状体は、引き抜き(伸線)によつてm径加工
されるか、変形能が低く加工硬化し易い材料の場合には
僅かな断面減少の後に焼鈍が必要となり、伸線と焼鈍と
を多数回繰り返す必要がある。この問題は、材料を熱間
加工することによって解決することかできる。しかし、
比較的高価で生産量か少ない材料を加工する場合、熱間
圧延は設備が大きく小回りがきかないので不適当であり
、また熱間伸線はダイスの管理が面倒である上に加工条
件が難しいので不適当であった。
(Prior art) Generally, a wire body is processed to a diameter of m by drawing (wire drawing), or in the case of a material with low deformability and easy to work harden, annealing is required after a slight reduction in cross section. , it is necessary to repeat wire drawing and annealing many times. This problem can be solved by hot working the material. but,
When processing materials that are relatively expensive and have a low production volume, hot rolling is unsuitable because the equipment is large and cannot be turned around easily, and hot wire drawing is not suitable because managing dies is troublesome and the processing conditions are difficult. It was inappropriate.

一方、ダイレス伸線は、設備が小さく熱間加工の条件を
相当自重に選択することができるので、冷間加工では極
めて加工性か悪くて変形能か低く変形抵抗が高いが、高
温では変形抵抗が低下し変形能が高くなる金属材料の加
工に有利である。
On the other hand, in dieless wire drawing, the equipment is small and the hot working conditions can be selected to be quite dead weight, so cold working has very poor workability, low deformability and high deformation resistance, but at high temperatures the deformation resistance is high. It is advantageous for processing metal materials that have lower deformability and higher deformability.

〔発明が解決しようとする課WU) このようにダイレス伸線は、低温では加工性が悪いが高
温では加工性が高くなる金属の線状体の加工に適してい
るが、加熱後の冷却を水冷で行なっているため冷却が一
定の条件で行なうことができないのて線径の変動をもた
らし、実用化することができなかった。更に詳細にのべ
ると、線状体の加熱は、電気加熱によって相当程度定常
化することができるが、水冷は冷却水の沸腸を伴なうた
め冷却条件が変動し易い、線状体を低速で伸線する場合
には、線状体の冷却が充分に行なわれるので線径変動が
あってもその変動は許容範囲に抑えられるが、線状体を
高速で伸線する場合には、冷却水の沸随によって加熱さ
れている線状体と冷却水との間の熱伝導率が低下するた
めに変形抵抗が小さいまま冷却領域を通過し、a取凌側
の引取りによってこの変形抵抗が低い部分に応力が集中
するので、線状体の断面減少か止まらないでサプイライ
側及び巻取機側の速度比率に関係なく線状体にくびれが
生ずる。尚、線状体のこのくびれは線状体の表面欠陥に
よって加熱領域で局部的に過熱される場合にも生ずる。
[Problem WU to be solved by the invention] As described above, dieless wire drawing is suitable for processing metal wires that have poor workability at low temperatures but high workability at high temperatures. Because water cooling was used, cooling could not be performed under constant conditions, resulting in fluctuations in the wire diameter, making it impossible to put it into practical use. In more detail, the heating of a linear body can be stabilized to a considerable extent by electric heating, but water cooling involves boiling of cooling water, so the cooling conditions tend to fluctuate. When drawing a wire at a high speed, the wire is sufficiently cooled, so even if there is a variation in the wire diameter, the variation can be suppressed within an acceptable range. However, when drawing a wire at high speed, cooling As the thermal conductivity between the heated linear body and the cooling water decreases due to the boiling of water, the deformation resistance passes through the cooling area with low deformation resistance, and this deformation resistance is Since the stress is concentrated in the lower part, the cross section of the linear body continues to decrease, and the linear body becomes constricted regardless of the speed ratio of the supply side and the winder side. Note that this constriction of the linear body also occurs when the linear body is locally overheated in the heating region due to surface defects.

本発明の目的は、上記の欠点を同避するために、高速伸
線でも線状体のくびれの促進を可及的に抑制して線径の
変動を防止することかできるダイレス伸線方法及び装置
をa!供することにある。
In order to avoid the above-mentioned drawbacks, the object of the present invention is to provide a dieless wire drawing method that can suppress the acceleration of constriction of the wire body as much as possible and prevent fluctuations in wire diameter even at high speed wire drawing. The device is a! It is about providing.

(課題を解決するための手段) 本発明は、上記の課題を解決するために、高温で変形抵
抗が低下する金属の線状体をそのサプライから所定の繰
出速度で繰り出し、この線状体を局部的に加熱する領域
とその後加熱された線状体を急速に冷却する領域とを通
過して繰出速度より早い所定の引取速度で引取ることに
よって線状体を縮径させるダイレス伸線方法において、
巻取機側の引取機のトルク変動から線状体の張力を検出
し、この張力の変動に応じて線状体を冷却する領域での
冷却条件を調節することによって線状体の変形抵抗をJ
l整して線状体の線径の変動を防止するように制御する
ことを特徴とするダイレス伸線方法を提供するものであ
る。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention unwinds a metal linear body whose deformation resistance decreases at high temperatures from a supply at a predetermined feeding speed. In a dieless wire drawing method in which the diameter of the wire is reduced by passing through a region where the wire is locally heated and then a region where the heated wire is rapidly cooled and then being taken off at a predetermined take-up speed that is faster than the drawing speed. ,
The tension of the linear body is detected from the torque fluctuation of the take-up machine on the winding machine side, and the deformation resistance of the linear body is reduced by adjusting the cooling conditions in the area where the linear body is cooled according to the fluctuations in tension. J
This invention provides a dieless wire drawing method characterized in that control is performed to prevent variations in the wire diameter of a wire body.

本発明は、また、上記の課題を解決するために、高温で
変形抵抗か低下する金属の線状体をそのサプライから所
定の繰出速度で繰り出す繰りrHし1段と、この線状体
を局部的に加熱する加熱手段と、このように加熱された
線状体を急速に冷却する冷却手段と、繰出速度より早い
所定の引取速度で線状体を引取って線状体を縮径する引
取り手段とを備えたダイレス伸線装置において、引取り
1段のトルク変動から線状体の張力を検出する張力検出
′f−段と、この張力検出手段によって検出された線状
体の張力の変動に応じて線状体の冷却開始位置が調節さ
れるように冷却手段を線状体の伸線方向に変位する冷却
領域変位手段とを更に備えたことを特徴とするダイレス
伸線装置を提供するものである。
In order to solve the above-mentioned problems, the present invention also provides a first stage of feeding rH in which a metal linear body whose deformation resistance decreases at high temperatures is fed out from the supply at a predetermined feeding speed, and a local a heating means for heating the linear body, a cooling means for rapidly cooling the heated linear body, and a pulling means for drawing the linear body at a predetermined take-up speed faster than the feeding speed to reduce the diameter of the linear body. In the dieless wire drawing apparatus, there is a tension detection 'f-stage for detecting the tension of the linear body from the torque fluctuation in the first stage of drawing, and a Provided is a dieless wire drawing apparatus, further comprising a cooling area displacement means for displacing the cooling means in the drawing direction of the wire body so that the cooling start position of the wire body is adjusted according to fluctuations. It is something to do.

〔作用) ダイレス伸線は、サプライ側の引取機と巻取機側の引取
機とを線状体の@商減少率に応じた一定の比率の速度で
駆動し、各引取機に巻き付けられた線状体の張力を働か
せて絞りによって断面減少を生ぜしめるが、加熱領域と
冷却領域との条件を一定にすることによって線径を所望
の値に制御することができる。
[Operation] In dieless wire drawing, a take-up machine on the supply side and a take-up machine on the winding machine side are driven at a fixed rate of speed according to the @quotient reduction rate of the wire, and the wires wound on each take-up machine are Although the tension of the wire body is exerted to reduce the cross section by aperture, the wire diameter can be controlled to a desired value by keeping the conditions of the heating region and the cooling region constant.

本発明では、上記のように、巻取機側の引取機のトルク
変動から線状体の張力の変動を検出するのでこの張力の
変動から線状体のくびれの発生を検出することかでき、
またこの張力の変動に対応して冷却領域の冷却条件を調
節する。
In the present invention, as described above, since the fluctuation in the tension of the linear body is detected from the torque fluctuation of the take-up machine on the winding machine side, it is possible to detect the occurrence of constriction in the linear body from this fluctuation in tension.
In addition, the cooling conditions of the cooling region are adjusted in response to this variation in tension.

この冷却条件の調節は、次のようにして行なわれる。即
ち、線状体の加熱後の冷却が不充分で変形抵抗が小さく
なると、線状体にくびれが生じて張力が小さくなり、従
って冷却領域の冷却条件は線状体の冷却が充分に行なわ
れるように調節される。冷却が充分に行なわれるように
調節される冷却条件は1例えば、冷却開始位置を線状体
の上流側に変位することとか、冷却領域を長くすること
とか、単位時間当りの冷却1正(冷却水の水量、冷却水
の温度〉を高くすること等がある。このようにして、線
状体のくびれの発生が抑制されると、張力が大きくなる
のでこれを検出して冷却条件を元に戻すことができる未
発IJIの装置は、この冷却条件の調節を冷却領域の変
位によって行なうために、fi力検出手段によって検出
された線状体の張力の変動に応じて線状体の冷却開始位
置が調節されるように冷却手段を線状体の伸線方向に変
位する冷却領域変位手段を備えている。従って、線状体
の加熱後の冷却が不充分で変形抵抗か小さくなって線状
体にくびれが生じ張力が小さくなると、冷却−1段が伸
線方向の上流側に変位して線状体の冷却開始が早まるの
で冷却が充分になり、従って、線状体のくびれの発生が
抑制されて張力か大きくなり、この張力の増大か検出さ
れると。
The cooling conditions are adjusted as follows. In other words, if the linear body is insufficiently cooled after heating and the deformation resistance is reduced, a constriction occurs in the linear body and the tension becomes small.Therefore, the cooling conditions in the cooling area are such that the linear body is sufficiently cooled. It is adjusted as follows. Cooling conditions that can be adjusted to ensure sufficient cooling are, for example, moving the cooling start position to the upstream side of the linear body, lengthening the cooling area, or increasing the cooling rate per unit time (cooling The amount of water and the temperature of the cooling water may be increased.In this way, when the occurrence of constriction in the linear body is suppressed, the tension increases, so this is detected and the cooling condition is adjusted accordingly. In order to adjust the cooling conditions by displacement of the cooling region, the device for unoccurred IJI that can be returned starts cooling the linear body in response to fluctuations in the tension of the linear body detected by the fi force detection means. The cooling area displacement means is provided for displacing the cooling means in the drawing direction of the wire body so that the position is adjusted.Therefore, cooling after heating the wire body is insufficient and the deformation resistance becomes small. When a constriction occurs in the linear body and the tension decreases, the cooling stage 1 is displaced to the upstream side in the drawing direction and the cooling of the linear body starts earlier, so that cooling becomes sufficient and, therefore, the occurrence of a constriction in the linear body. is suppressed and the tension increases, and this increase in tension is detected.

冷却1段は元の位置に戻る。The first cooling stage returns to its original position.

(¥施例) 本発明の実施例を図面を#照して詳細に説明すると、第
1図及び第2図は本発明に係るダイレス伸線方法を実施
する伸線装置を系統的に示し、伸線すべき金属の線状体
lOは、サプライ12からキャプスタン式引取機(1&
り出し手段)14を経て電気式加熱手段16と水冷によ
る冷却手段18とを通過し、キャプスタン式引取機(引
取り手段〉20を経て巻取機22に巻き取られる。
(Example) An example of the present invention will be described in detail with reference to the drawings. Figs. 1 and 2 systematically show a wire drawing device that implements the dieless wire drawing method according to the present invention, The metal linear body lO to be drawn is transferred from the supply 12 to the capstan type pulling machine (1&
The film passes through an electric heating means 16 and a water-cooled cooling means 18 via an unwinding means (unwinding means) 14, and then is wound up by a winding machine 22 through a capstan-type winding machine (unwinding means) 20.

線状体lOは、加熱手段16で局部的に加熱された後、
水冷による冷却手段18で急速に冷却されるが、引取l
120による引取りを引取機14による繰出より早い所
定の速度で行なって縮径して伸線される。引取機14.
20はモータ24からベルト伝導機構26、減速a28
.30、クラッチ32.34を介して駆動される本発明
の方法は、巻取a22側の引取機20の軸上に取付けら
れたトルク検出!l(張力検出4段)36によって引取
a20のトルク変動を検出し、このトルク変動に相応す
る線状体lOの張力の変動に対応して線状体lOを冷却
手段18の冷却条件をm節することによって線状体lO
の変形抵抗をJl!L、て線状体lOの線径の変動を防
止するように制御する。amされるべき冷却条件として
は、例えば、冷却手段18の冷却開始位置を線状体lO
のhML側に変位することとか、冷却領域を長くするこ
ととか、単位時間当りの冷却D1冷却水の水量、冷却水
の温度)を高くすること等がある。
After the linear body 1O is locally heated by the heating means 16,
Although it is rapidly cooled by the cooling means 18 using water cooling, the
The wire is drawn by the drawing machine 120 at a predetermined speed faster than the drawing by the drawing machine 14 to reduce the diameter. Collection machine 14.
20 is a motor 24, a belt transmission mechanism 26, and a deceleration a28.
.. 30, the method of the present invention is driven via clutches 32 and 34, which are mounted on the shaft of the take-up machine 20 on the side of the winding a22 for torque detection! The torque fluctuation of the take-up a20 is detected by the l (four-stage tension detection) 36, and the cooling conditions of the cooling means 18 for the linear body lO are adjusted according to the fluctuations in the tension of the linear body lO corresponding to the torque fluctuations. The linear body lO by
The deformation resistance of Jl! L and L are controlled to prevent variations in the wire diameter of the linear body lO. As the cooling condition to be performed, for example, the cooling start position of the cooling means 18 is set to the linear body lO
For example, the cooling area may be shifted to the hML side, the cooling area may be lengthened, or the amount of cooling D1 per unit time (the amount of cooling water, the temperature of the cooling water) may be increased.

既にのべたように、サプライ12側の引奴機14と巻取
@22@の引取機20とを線状体lOの断面減少率に応
じた一定の比率の速度て駆動し、各引取@14,20に
巻き付けられた線状体lOの張力を働かせて絞りによっ
て断面減少な生ぜしめることによってダイレス伸線が行
なわれるが、伸線された線状体lOの線径は加熱領域と
冷却領域との条件を一定にすることによって所望の値に
1tJlllされる。
As already mentioned, the pulling machine 14 on the supply 12 side and the pulling machine 20 on the winding @22@ are driven at a constant speed according to the cross-sectional reduction rate of the linear body IO, and each pulling machine 14 . By keeping the conditions constant, it is set to a desired value.

しかし、冷却手段18か水冷式であると、この冷却手段
18内での冷却水の沸騰によって線状体lOと冷却水と
の間の熱伝達率の低下による冷却の不充分に起因して線
状体lOにくびれが発生する。従って、このくびれの促
進を防止するには冷却手段18内での冷却状態を監視す
る必要があるか、冷却状態の変動は、1/10秒のオー
ダーで起きるのでその間の温度変動を冷却条件を変えな
いで有効に検出することができない、このため、本発明
は、線状体10のくびれによって線状体lOの張力が低
下することから線状体の張力の変動を巻取機22側の引
取機のトルク変動から検出して線状体lOのくびれ、即
ち冷却状態の悪化を検出している。尚。
However, if the cooling means 18 is a water-cooled type, boiling of the cooling water within the cooling means 18 may cause insufficient cooling due to a decrease in the heat transfer coefficient between the linear body lO and the cooling water. A constriction occurs in the body lO. Therefore, in order to prevent the acceleration of this constriction, it is necessary to monitor the cooling state within the cooling means 18, or because fluctuations in the cooling state occur on the order of 1/10 seconds, the temperature fluctuations during that time must be controlled by the cooling conditions. Therefore, in the present invention, since the tension of the linear body 10 decreases due to the constriction of the linear body 10, fluctuations in the tension of the linear body 10 can be detected on the winding machine 22 side. The constriction of the linear body 1O, that is, the deterioration of the cooling state, is detected by detecting the torque fluctuation of the pulling machine. still.

線状体lのくびれは、その他に例えば、加熱手段16内
で線状体lOの表面欠陥等に熱が集中して加熱か進みす
ぎても発生するが、この場合もそのくびれを線状体lO
の張力変動で検出することができる。また、本発明の方
法ではこの張力の変動に対応して冷却領域の冷却条件を
調節する。既にのべたように、線状体lOの加熱後の冷
却が不充分で変形抵抗が小さくなると。
The constriction of the linear body 1 can also occur, for example, when heat is concentrated on surface defects or the like of the linear body 10 in the heating means 16 and the heating progresses too much. lO
It can be detected by the tension fluctuation. Furthermore, in the method of the present invention, the cooling conditions of the cooling region are adjusted in response to this variation in tension. As already mentioned, if cooling of the linear body 1O after heating is insufficient, the deformation resistance becomes small.

線状体lOにくびれが生じて張力が小さくなり、従って
冷却領域の冷却条件は線状体lOの冷却が充分に行なわ
れるように調節される。即ち、冷却手段18の冷却開始
位置を線状体lOの上流側に変位したり、冷却手段18
の冷却領域を長くしたり、冷却手段18内の単位時間当
りの冷却水の水量を多くしたり、冷却水の温度を高くし
たりして冷却が充分に行なわれるようにする。このよう
にして、線状体lOのくびれの発生が抑制されると、線
状体lOの張力が大きくなるのでこれを検出して冷却条
件を元に戻す、尚、線状体10のくびれか線状体lOの
表面欠陥によって過熱されて生ずる場合にも冷却が促進
されるように冷却条件が調節されるのでこのような原因
によるくびれも抑制されることは理解されることと思う
A constriction occurs in the linear body 10, reducing the tension, and therefore the cooling conditions in the cooling region are adjusted so that the linear body 10 is sufficiently cooled. That is, the cooling start position of the cooling means 18 may be displaced to the upstream side of the linear body lO, or the cooling means 18 may be
Sufficient cooling can be achieved by lengthening the cooling region of the cooling means 18, increasing the amount of cooling water per unit time in the cooling means 18, or increasing the temperature of the cooling water. In this way, when the generation of the constriction of the linear body 10 is suppressed, the tension of the linear body 10 increases, which is detected and the cooling conditions are returned to the original state. It will be understood that the cooling conditions are adjusted so that cooling is promoted even when overheating occurs due to surface defects in the linear body IO, so that constriction caused by such a cause is also suppressed.

線状体lOの張力は、トルク検出2136によって巻取
機22側の引取機20の軸上でのトルク変動から検出し
ているが、このようにすると、引取a120の#l径が
小さすぎない限り、またトルクが過大でない限り線状体
のくびれによる張力の小さな変動を高い精度で容易に検
出することができる。線径の変動はl/10秒のオーダ
ーの短時間内に起きるが、 aItlt機22側の引取
機20のトルクは時間遅れなく線径の変動に応答し、従
って線径の変動を直ちに検出することができる。
The tension of the linear body lO is detected from the torque fluctuation on the axis of the take-up machine 20 on the winding machine 22 side by the torque detection 2136, but in this way, the #l diameter of the take-up a120 is not too small. As long as the torque is not excessive, small fluctuations in tension due to the constriction of the linear body can be easily detected with high accuracy. Although variations in the wire diameter occur within a short time on the order of 1/10 seconds, the torque of the take-off machine 20 on the aItlt machine 22 side responds to variations in the wire diameter without time delay, and therefore, variations in the wire diameter are detected immediately. be able to.

第3図は冷却手段18の冷却条件を調節するために冷却
手段18の水冷ジャケット38を線状体10の伸線方向
に変位する冷却領域変位手段40の一例を示す、この冷
却領域変位手段40は、水冷ジャケット38が支持され
た可動架台42と、この架台42にベアリング44を介
して貫通する1対のガイド棒(一方のガイド棒のみが図
示されている)46と、ステップモータ48と、このス
テップモータ48の出力軸に接続された減速機50から
延び架台42の突出片42aがねじ係合するスクリュー
軸52とから成っている。第4図はステップモータ48
を駆動する駆動手段54を示し、このWIA!j1手段
54は、トルク検出器36の出力を増幅する増鴨器56
と、この増幅3156の出力からね却手段18の冷却条
件をm節する方向と大きさとを演算する制御回路58と
から威り、この制御回路58の出力かステップモータ4
8を所定の方向に所定の角度で回転駆動する。
FIG. 3 shows an example of a cooling area displacement means 40 for displacing the water cooling jacket 38 of the cooling means 18 in the drawing direction of the linear body 10 in order to adjust the cooling conditions of the cooling means 18. , a movable pedestal 42 on which a water cooling jacket 38 is supported, a pair of guide rods 46 (only one guide rod is shown) passing through the pedestal 42 via bearings 44, and a step motor 48. It consists of a screw shaft 52 extending from a speed reducer 50 connected to the output shaft of the step motor 48 and screwed into the protruding piece 42a of the pedestal 42. Figure 4 shows the step motor 48
A drive means 54 is shown for driving this WIA! The j1 means 54 includes an amplifier 56 that amplifies the output of the torque detector 36.
The control circuit 58 calculates the direction and magnitude of the cooling condition of the rejection means 18 based on the output of the amplifier 3156.
8 is rotated in a predetermined direction at a predetermined angle.

従って、既にのべたように、トルク検出器36が線状体
lOの張力が小さくなったことを検出して線状体lOの
くびれの発生を検出すると、制御回路58はステップモ
ータ48を冷却ジャケット38が伸線方向の上流側に変
位する方向に駆動する。このようにすると、加熱手段1
6で加熱された線状体lOは、加熱後直ちに水冷ジャケ
ット38内に入って冷却が早く開始されるので、線状体
lOの過熱を抑制すると共に線状体lOのくびれか始ま
っている部分が冷却手段1Bの冷却水の沸膿が起きてい
ないで冷却能が充分な領域(冷却手段の奥の領域)に早
く送り込んでくびれの進行を抑制することができる。こ
のようにしてくびれの進行がおさまった段階で線状体l
Oの張力が大きくなると、制御回路58はステップモー
タ48を反対方向に回転して水冷ジャケット38を元の
位置に戻して定常のダイレス伸線が行なわれる。
Therefore, as already mentioned, when the torque detector 36 detects that the tension in the linear body 10 has become small and detects the occurrence of a constriction in the linear body 10, the control circuit 58 moves the step motor 48 into the cooling jacket. 38 is driven in a direction in which it is displaced upstream in the wire drawing direction. In this way, the heating means 1
The linear body 10 heated in step 6 enters the water cooling jacket 38 immediately after heating and cooling starts quickly, so that overheating of the linear body 10 is suppressed and the part of the linear body 10 where the constriction begins However, the progress of constriction can be suppressed by quickly sending the cooling water of the cooling means 1B to an area where boiling has not occurred and where the cooling capacity is sufficient (the area at the back of the cooling means). In this way, when the progression of constriction has subsided, the linear body l
When the tension of O increases, the control circuit 58 rotates the step motor 48 in the opposite direction to return the water cooling jacket 38 to its original position, and steady dieless wire drawing is performed.

第5図乃至第7図は冷却手段18の冷却条件を調節する
他の具体的な手段を示す。
5 to 7 show other specific means for adjusting the cooling conditions of the cooling means 18.

第5図の手段は、冷却手段18が複数(5つ)の水冷ジ
ャケット38A、38B、38C138D、38Eから
成り、下流側の3つの水冷ジャケット38C乃至38E
は常時冷却a*を有するように冷却水を貫流させ、上流
側の2つの水冷ジャケット38A、38Bはバルブ39
A、39Bを介して冷却水源に接続して選択的に使用す
ることができるようにしている。この第5図の手段では
、線状体10の張力が小さくなったことが検出された時
に、その張力の変動に応じて上流側の1つまたは2つの
水冷ジャケット38Bまたは38B及び38Aのバルブ
39Bまたは39B及び39Aを開いて冷却水を貫流さ
せて第3図の実施例と回し機能をもたせることができる
。尚、この実施例の場合には、冷却領域が長くなるので
冷却性能が向上し、jM時間で定常の冷却状態に戻すこ
とができる。
In the means shown in FIG. 5, the cooling means 18 consists of a plurality (five) of water cooling jackets 38A, 38B, 38C, 138D, 38E, and three water cooling jackets 38C to 38E on the downstream side.
allows cooling water to flow through so as to have constant cooling a*, and the two water cooling jackets 38A and 38B on the upstream side are connected to the valve 39.
It is connected to a cooling water source via ports A and 39B so that it can be used selectively. With the means shown in FIG. 5, when it is detected that the tension in the linear body 10 has become small, the valve 39B of one or two water cooling jackets 38B or 38B and 38A on the upstream side is activated depending on the fluctuation of the tension. Alternatively, 39B and 39A can be opened to allow cooling water to flow through, thereby providing the same rotating function as the embodiment shown in FIG. In the case of this embodiment, since the cooling area becomes longer, the cooling performance is improved, and the steady cooling state can be returned in jM time.

第6図は水冷ジャケット3B内に可動仕切壁60か設け
られた冷却条件を調節する本発す1の他の実施例による
手段を示し、この仕切壁604゜はステップモータ4B
からスクリュー軸・=2がねじ係合するねじ環62を右
する。この実施例の手段も線状体lOの張力の変動に応
じて可動仕切壁60を変位して水冷ジャケット38の冷
却開始位置を調節すると共に冷却領域が伸縮するように
容積が311tiされるので第3図及び第5図の実施例
と同様に冷却条件をm節することができる。
FIG. 6 shows a means according to another embodiment of the present invention for adjusting the cooling conditions in which a movable partition wall 60 is provided in the water cooling jacket 3B, and this partition wall 604° is connected to the step motor 4B.
From there, the screw shaft .=2 screws into the screw ring 62 to the right. The means of this embodiment also displaces the movable partition wall 60 in response to fluctuations in the tension of the linear body 1O to adjust the cooling start position of the water cooling jacket 38, and the volume is changed to 311ti so that the cooling area expands and contracts. Similar to the embodiments shown in FIGS. 3 and 5, the cooling conditions can be divided into m sections.

第7図の手段は、乃却手段18が複数(6つ)の冷却水
噴射ノズル64A、64B、64C,64D、64E、
64Fから成り、下流側の3つの冷却水噴射ノズル64
D乃至64Fは常時冷却機能を有するように冷却水を噴
射させ、上流側の3つの冷却水噴射ノズル64A、64
B、64Cはそれぞれバルブ65A、65B、65Cを
介して冷却水源に接続して選択的に使用することができ
るようにしている。この第7図の実施例の機能は第5図
の実施例の機能とほぼ同じである。
In the means shown in FIG. 7, the cooling means 18 includes a plurality of (six) cooling water injection nozzles 64A, 64B, 64C, 64D, 64E,
Consisting of 64F, three cooling water injection nozzles 64 on the downstream side
D to 64F inject cooling water so as to have a constant cooling function, and three cooling water injection nozzles 64A, 64 on the upstream side
B and 64C are connected to a cooling water source via valves 65A, 65B, and 65C, respectively, so that they can be used selectively. The function of the embodiment of FIG. 7 is substantially the same as that of the embodiment of FIG.

次に、本発明の具体例をのべると、直径が5.5mmの
ステンレス線を図面の引取al14゜20にそれぞれ5
ターン巻き付け、両引取at4.20間の加熱手段16
としての誘導加熱コイルによってステンレス線を所定の
湿度に加熱し、そのすぐ下流で冷却手段18によって加
熱されたステンレス線を水冷し、sea側の引取速度8
 m /分、サプライ側の引取(繰出)速度4m/分(
減面率約50%)でダイレス伸線した。目標線径は3.
9mmであった0巻取機側の引取機のトルクをトルク検
出器で検出し、その設定値からの変動に基いてサプライ
側の引取機の駆動トルクが目標値からずれないように制
御しつつ第3図に示す手段によって水冷ジャケットを伸
線方向の上流側に変位した。この方法によって制御され
たステンレス線の線径は目標値から±0.05mmを越
えることはなかった一方、他の条件は全く同じで本発明
の制御を行なわなかった場合には、線径の変動は最大0
.3mmであった。
Next, to describe a specific example of the present invention, a stainless steel wire with a diameter of 5.5 mm was placed at each of
Turn winding, heating means 16 between both pulling at4.20
The stainless steel wire is heated to a predetermined humidity by an induction heating coil, and immediately downstream, the heated stainless steel wire is water-cooled by a cooling means 18, and the sea side take-up speed is 8.
m/min, supply side take-up (feeding) speed 4 m/min (
Dieless wire drawing was performed with an area reduction rate of approximately 50%). The target wire diameter is 3.
The torque of the take-off machine on the 0 winder side, which was 9 mm, was detected by a torque detector, and based on the fluctuation from the set value, the drive torque of the take-off machine on the supply side was controlled so as not to deviate from the target value. The water cooling jacket was displaced upstream in the wire drawing direction by the means shown in FIG. While the wire diameter of the stainless steel wire controlled by this method did not exceed ±0.05 mm from the target value, if the other conditions were exactly the same and the control of the present invention was not performed, the wire diameter would fluctuate. is maximum 0
.. It was 3 mm.

本発明の他の具体例では、ステンレス線の代りに、外径
5.5mm、肉J’J1.2mmの5US304を被加
工材料として本発明の方法で制御したが、この場合も外
径の変動は±0.05mmを越えることはなかった。一
方、他の条件は全く同じで本発明の制御を行なわなかっ
た場合には、線径の変動は最大0.35mmであった。
In another specific example of the present invention, 5US304 with an outer diameter of 5.5 mm and a thickness of J'J of 1.2 mm was used as the workpiece material instead of the stainless steel wire, and was controlled by the method of the present invention. did not exceed ±0.05 mm. On the other hand, when other conditions were exactly the same and the control of the present invention was not performed, the maximum variation in wire diameter was 0.35 mm.

(発明の効果) 本発明によれば、上記のように、線状体の伸線加工時の
くびれの発達による線径の変動を防+Lすることができ
、またこの線径の変動を防出するのに必要な線状体の張
力の変動を巻取aimの引取機のトルク変動から検出す
るのでその検出手段は張力を直接検出する場合に比べて
簡単である上に小さな変動でも高い精度で検出すること
ができ、従って線径の変動を高い精度で抑制することが
できる実益がある。
(Effects of the Invention) According to the present invention, as described above, it is possible to prevent +L variations in the wire diameter due to the development of constrictions during wire drawing of a linear body, and also prevent this variation in the wire diameter. The fluctuations in the tension of the linear body necessary for There is the practical benefit of being able to detect and therefore suppress variations in wire diameter with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明に係るダイレス伸線方法の実
施に用いられる装置の概略系統図。 第3図は本発明に用いられる冷却条件を調節する手段の
1つの具体例の断面図、第4図は第3図の実施例の調節
に用いられる制御系統の1!鴫糸系統、第5図乃至第7
図は本発明に用いられる冷却条件を調節する他の具体的
な手段の異なる実施例の概略断面図である。 10−−−−一線状体、12−−−−−サプライ、14
.20−−−−一引取機、16−−−−−加熱手段、l
 8−−−−一冷却手段、2〇−−−−巻取機、36−
−−−−トルク検出器、3B−−−−一木冷ジャケット
、40−−−−−冷却領域変位手段、4B−−−−−ス
テップモータ、58−−−−一制御回路。 特許出舶人
FIGS. 1 and 2 are schematic system diagrams of an apparatus used to carry out the dieless wire drawing method according to the present invention. FIG. 3 is a sectional view of one specific example of the means for adjusting the cooling conditions used in the present invention, and FIG. 4 is a sectional view of one example of the control system used for adjusting the embodiment of FIG. Kazuhito lineage, Figures 5 to 7
The figures are schematic sectional views of different embodiments of other specific means for adjusting cooling conditions used in the present invention. 10--- Linear body, 12--- Supply, 14
.. 20----One take-up machine, 16----Heating means, l
8-----1 cooling means, 20---- winding machine, 36-
--- Torque detector, 3B --- Ichiki cooling jacket, 40 --- Cooling area displacement means, 4B --- Step motor, 58 --- One control circuit. patent shipper

Claims (2)

【特許請求の範囲】[Claims] (1)高温で変形抵抗が低下する金属の線状体をそのサ
プライから所定の繰出速度で繰り出し、前記線状体を局
部的に加熱する領域とその後加熱された線状体を急速に
冷却する領域とを通過して前記繰出速度より早い所定の
引取速度で引取ることによって前記線状体を縮径させる
ダイレス伸線方法において、巻取機側の引取機のトルク
変動から前記線状体の張力を検出し、前記張力の変動に
応じて前記冷却する領域での冷却条件を調節することに
よって前記線状体の変形抵抗を調整して前記線状体の線
径の変動を防止するように制御することを特徴とするダ
イレス伸線方法。
(1) A metal linear body whose deformation resistance decreases at high temperatures is fed out from the supply at a predetermined feeding speed, and the area where the linear body is locally heated is then rapidly cooled. In a dieless wire drawing method in which the diameter of the linear body is reduced by passing through a region and taking it off at a predetermined take-up speed faster than the unwinding speed, By detecting tension and adjusting cooling conditions in the cooling region according to fluctuations in the tension, the deformation resistance of the linear body is adjusted to prevent fluctuations in the wire diameter of the linear body. A dieless wire drawing method characterized by control.
(2)高温で変形抵抗が低下する金属の線状体をそのサ
プライから所定の繰出速度で繰り出す繰り出し手段と、
前記線状体を局部的に加熱する加熱手段と、このように
加熱された線状体を急速に冷却する冷却手段と、前記繰
出速度より早い所定の引取速度で前記線状体を引取って
前記線状体を縮径する引取り手段とを備えたダイレス伸
線装置において、前記引取り手段のトルク変動から前記
線状体の張力を検出する張力検出手段と、前記張力検出
手段によって検出された線状体の張力の変動に応じて前
記線状体の冷却開始位置が調節されるように前記冷却手
段を前記線状体の伸線方向に変位する冷却領域変位手段
とを更に備えたことを特徴とするダイレス伸線装置。
(2) a feeding means for feeding out a metal linear body whose deformation resistance decreases at high temperatures from the supply at a predetermined feeding speed;
heating means for locally heating the linear body; cooling means for rapidly cooling the heated linear body; A dieless wire drawing apparatus comprising a pulling means for reducing the diameter of the linear body, and a tension detecting means for detecting tension in the linear body from torque fluctuations of the pulling means, and The method further comprises cooling area displacement means for displacing the cooling means in the drawing direction of the linear body so that the cooling start position of the linear body is adjusted according to fluctuations in the tension of the linear body. A dieless wire drawing device featuring:
JP16652489A 1989-06-30 1989-06-30 Method and apparatus for drawing wire without die Pending JPH0332419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16652489A JPH0332419A (en) 1989-06-30 1989-06-30 Method and apparatus for drawing wire without die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16652489A JPH0332419A (en) 1989-06-30 1989-06-30 Method and apparatus for drawing wire without die

Publications (1)

Publication Number Publication Date
JPH0332419A true JPH0332419A (en) 1991-02-13

Family

ID=15832914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16652489A Pending JPH0332419A (en) 1989-06-30 1989-06-30 Method and apparatus for drawing wire without die

Country Status (1)

Country Link
JP (1) JPH0332419A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722441A (en) * 1993-02-22 1998-03-03 Tokyo Electron Limited Electronic device process apparatus
WO2004092424A1 (en) * 2003-04-16 2004-10-28 Katsuhiko Yamada Heat treating method for steel wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722441A (en) * 1993-02-22 1998-03-03 Tokyo Electron Limited Electronic device process apparatus
WO2004092424A1 (en) * 2003-04-16 2004-10-28 Katsuhiko Yamada Heat treating method for steel wire

Similar Documents

Publication Publication Date Title
US5823039A (en) Apparatus for drawing wire using a heated drawing die and cooling device
JPS60206511A (en) Method and device for controlling sheet shape
JP2007136495A (en) Tapered steel tube manufacturing method
JPH0332419A (en) Method and apparatus for drawing wire without die
US5755128A (en) Method and apparatus for isothermally rolling strip product
JPH08294715A (en) Strip continuous casting/hot rolling heat treatment equipment and method thereof
US4934224A (en) Strip threading tension monitoring system
US20070034349A1 (en) Continuous roll casting of ferrous and non-ferrous metals
JPH0130585B2 (en)
JPH03415A (en) Method for drawing wire without using die
KR100350069B1 (en) Apparatus for preventing meandering of wire rod
JPS6410571B2 (en)
JPH02151312A (en) Apparatus and method for controlling temperature of hot strip
JPH0366403A (en) Drawing rolling method for metal pipe and device used for execution thereof
JPH0581322B2 (en)
JP3991136B2 (en) Rolling material conveyance speed adjustment device
JPH0452023A (en) Device for manufacturing fine wire
JPH07185641A (en) Wire drawing machine
JPS5447855A (en) Controller for distribution of tension
JPH0852511A (en) Dieless wire drawing method
JPH05200734A (en) Wire saw and cutting method therewith
JPS6188916A (en) Continuous dieless wire drawing equipment
KR101432795B1 (en) Reversing strip rolling mill
JPH07121439B2 (en) Thin plate continuous casting equipment
JPH01245909A (en) Method for controlling sheet thickness for thin sheet cold rolling