JPH01245909A - Method for controlling sheet thickness for thin sheet cold rolling - Google Patents

Method for controlling sheet thickness for thin sheet cold rolling

Info

Publication number
JPH01245909A
JPH01245909A JP63069828A JP6982888A JPH01245909A JP H01245909 A JPH01245909 A JP H01245909A JP 63069828 A JP63069828 A JP 63069828A JP 6982888 A JP6982888 A JP 6982888A JP H01245909 A JPH01245909 A JP H01245909A
Authority
JP
Japan
Prior art keywords
rolling
speed
agc
control
plate thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63069828A
Other languages
Japanese (ja)
Other versions
JPH0813370B2 (en
Inventor
Kensaburo Takizawa
滝沢 謙三郎
Kazuhiko Gunda
郡田 和彦
Tokuo Mizuta
水田 篤男
Yoshiaki Kikawa
木川 佳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63069828A priority Critical patent/JPH0813370B2/en
Publication of JPH01245909A publication Critical patent/JPH01245909A/en
Publication of JPH0813370B2 publication Critical patent/JPH0813370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the sheet thickness accuracy at the top and rear ends of a coil and to improve the quality and yield by bringing a difference between both peripheral speeds of upper and lower work rolls to be large when a rolling speed of a thin sheet stock is small and bringing a difference between the speeds to be small when a rolling speed is large. CONSTITUTION:A difference between a peripheral speed of an upper work roll 2a and a peripheral speed of a lower work roll 2b is brought to be large when a rolling speed is small. A difference between both the peripheral speeds is brought to be small when a rolling speed is large. Or together with the above method, one or more AGC methods of feedforward AGC using an inlet side sheet thickness gage 5, feedback AGC using an outlet side sheet thickness gage 6, BISRA AGC using a rolling load gage 3, and tension AGC adjusting tensions of a rolled stock 1 are performed. By that, the sheet thickness accuracy at both the top and rear ends of the stock 1 is markedly improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、薄板の冷間圧延における板厚制御法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for controlling plate thickness in cold rolling of thin plates.

[従来の技術] 薄板の冷間製品の板厚精度に対する需要家の要求はます
ます厳しくなってきている。その要求に応えるために、
薄板の冷間圧延時の板厚制御に種々の改善が加えられて
きた。
[Prior Art] Customers' demands on the thickness accuracy of cold-worked thin plate products are becoming increasingly strict. In order to meet that demand,
Various improvements have been made to control the thickness of thin plates during cold rolling.

現在、使用されている制御方式は、フィードフォワード
制御、BISRA方式の圧下制御、X線モニタ制御、張
力制御などである。
Control methods currently in use include feedforward control, BISRA type reduction control, X-ray monitor control, and tension control.

レバース圧延機の例をとると、圧延操業は、低速から加
速して一定の速度で保持され、コイルの終り近くになる
と減速された後停止するという速度パターンをとる。そ
して同じような速度パターンで次のパスの圧延が行われ
、何パスか圧延されて所定の板厚に仕上げられる。
Taking the example of a reverse rolling mill, the rolling operation takes a speed pattern in which the speed is accelerated from a low speed, held at a constant speed, and then decelerated and then stopped near the end of the coil. Then, the next pass of rolling is performed using the same speed pattern, and several passes are performed to finish the sheet to a predetermined thickness.

一定の速度で保持された状態(定常状態)では、上記制
御方式でほぼ満足すべき板厚精度が得られているが、最
近の需要家の厳しい要求に対して、加減速時の板厚精度
はまだ満足すべきものではない。特に板が薄くなるにつ
れて、この領域の板厚制御は一段と難しくなってくる。
In a state where the speed is maintained at a constant speed (steady state), the above control method achieves a nearly satisfactory plate thickness accuracy, but in response to the strict demands of recent customers, the plate thickness accuracy during acceleration and deceleration is still not satisfactory. In particular, as the plate becomes thinner, controlling the plate thickness in this area becomes increasingly difficult.

その理由は、圧延速度の変化に伴い、摩擦係数が変化し
、その変化により圧延荷重が変わるためで、板が薄くな
ると摩擦係数変化により圧延荷重の変化が大きくなり、
制御がむずかしくなる。
The reason is that as the rolling speed changes, the coefficient of friction changes, and this change changes the rolling load.As the plate becomes thinner, the change in the rolling load increases due to the change in the friction coefficient.
Control becomes difficult.

従来技術の一つである、フィードフォワード制御は、入
側の板厚計で板厚変動分を測定して、その変動量に応じ
てロール圧下量を調整する方式で、荷重変化に対処でき
ない。
Feedforward control, which is one of the conventional techniques, is a method in which the plate thickness variation is measured with a plate thickness gauge on the entry side and the roll reduction amount is adjusted according to the variation, and cannot cope with load changes.

BISRA方式の圧下制御は、荷重変化に応じてロール
圧下圧下量を調整する方式で、摩擦係数変化による荷重
変化に対しては、原理的に対処可能である。
The BISRA method of rolling down control is a method that adjusts the amount of roll rolling down according to a change in load, and can, in principle, cope with changes in load due to changes in the friction coefficient.

ΔS=−β(P −Pe)/ K    −・” (1
)ここで、 ΔS:ロールギャップ制御量。
ΔS=-β(P-Pe)/K-・" (1
) Here, ΔS: Roll gap control amount.

P:圧延荷重。P: Rolling load.

Pe:基準荷重。Pe: Reference load.

K:ミル定数、 βニゲイン。K: Mill constant, Beta gain.

この方式は(1)式で示すごとく、基準荷重Peからの
変化分ΔP = P −Peに応じてロールギャップΔ
Sを制御する方式であるが、ゲインβを大きくするとロ
ール偏心に対して逆制御になるため、あまりβを大きく
できない、βを小さくすれば十分な精度が得られない、
また、基準荷重Peの選び方の問題や、板が薄くなると
摩擦係数変化による荷重変動が大きいため形状悪化を招
きやすい。
As shown in equation (1), this method changes the roll gap Δ according to the change from the reference load Pe = P − Pe.
This method controls S, but if the gain β is increased, the roll eccentricity will be controlled inversely, so β cannot be increased too much, and if β is made small, sufficient accuracy cannot be obtained.
In addition, there is a problem in how to select the reference load Pe, and as the plate becomes thinner, load fluctuations due to changes in the friction coefficient are large, which tends to cause deterioration of the shape.

X線モニター制御(フィードバック制御)は、出側のX
線式の板厚計で板厚変動を測定してロール圧下する方式
で、ロールバイトから板厚計まで距離があり、時間遅れ
があるため□、ゲインを大きくして板厚精度を上げよう
とすればハンチング現象が生じ、十分な板厚精度が得ら
れない。
X-ray monitor control (feedback control)
This method uses a wire thickness gauge to measure plate thickness fluctuations and then rolls down the plate, but since there is a distance from the roll bite to the plate thickness gauge and there is a time delay, we tried increasing the gain to improve plate thickness accuracy. If this happens, a hunting phenomenon will occur and sufficient plate thickness accuracy will not be obtained.

張力制御は、張力を積極的に変化させ圧延荷重を増減さ
せて出側板厚を制御する方式で、摩擦係数による荷重変
化が大きい場合、制御範囲を越え、十分な制御ができな
い、上記の種々の方式を組み合わせても十分な精度が得
られないのが実状である。
Tension control is a method of actively changing the tension to increase or decrease the rolling load to control the exit plate thickness.If the load change due to the friction coefficient is large, the control range will be exceeded and sufficient control cannot be achieved. The reality is that sufficient accuracy cannot be obtained even by combining methods.

この対策として、速度の関数によりロールギャップを制
御する方式がある。すなわち第7図に示すように、圧延
速度が低速から高速へと変化すると、摩擦係数は大から
小へ変化し、それに伴い圧延荷重は大から小へと変化す
る。ロールギャップを一定とすると、圧延荷重が減少す
るにつれてゲージメータ式(2)より出側板厚は減少し
て、第8図の曲線Δhのようになる。
As a countermeasure to this problem, there is a method of controlling the roll gap using a function of speed. That is, as shown in FIG. 7, when the rolling speed changes from low speed to high speed, the friction coefficient changes from large to small, and accordingly, the rolling load changes from large to small. Assuming that the roll gap is constant, as the rolling load decreases, the exit side plate thickness decreases according to the gauge meter formula (2), and becomes a curve Δh in FIG. 8.

h = S +(P/K)        ・・・・・
・(2)h:出側板厚、 S:ロールギャップ、 P:圧延荷重、 K:ミル定数。
h = S + (P/K)...
・(2) h: outlet plate thickness, S: roll gap, P: rolling load, K: mill constant.

このため、第8図の曲線ΔSのように、圧延速度の増加
とともにロールギャップを変化させる方式がとられてい
る。
For this reason, a method is adopted in which the roll gap is changed as the rolling speed increases, as shown by the curve ΔS in FIG.

第9図は、冷間圧延機の板厚制御装置の一例のブロック
図であって、1は圧延材、1aはペイオフリール、1b
は巻取リリール、2aは上側作業ロール、2bは下側作
業ロール、3は圧延荷重検出器、4は圧下装置、5は入
側板厚計、6は出側板厚計、7aは上側圧延モータ、7
bは下側圧延モータ、8aはペイオフリールのモータ、
8bは巻取リリールのモータ、9aは上側圧延パルスジ
ェネレータ、9bは下側圧延パルスジェネレータ、10
は上側圧延パルスジェネレータと下側圧延パルスジェネ
レータとの信号を平均してそれが圧延条件設定部からの
指令値と合致するように上下圧延モータの電力を調整す
る圧延速度調整部、11は圧延を含め現場操業を管理す
るプロセスコンピュータ、12はプロセスコンピュータ
よりの圧延スケジュール指令を受は圧延条件を算出して
各制御部に指令する圧延条件設定部、13はフィードバ
ック制御を行うフィードバック制御部、14はBISR
A  AGCを行うBISRA制御部、15はフィード
フォワード制御を行うフィードフォワード制御部、16
は張力制御を行う張力制御部である。
FIG. 9 is a block diagram of an example of a plate thickness control device for a cold rolling mill, in which 1 is a rolled material, 1a is a payoff reel, and 1b is a block diagram of an example of a plate thickness control device for a cold rolling mill.
1 is a take-up reel, 2a is an upper work roll, 2b is a lower work roll, 3 is a rolling load detector, 4 is a rolling device, 5 is an inlet thickness gauge, 6 is an outlet thickness gauge, 7a is an upper rolling motor, 7
b is the lower rolling motor, 8a is the payoff reel motor,
8b is a motor for the take-up reel, 9a is an upper rolling pulse generator, 9b is a lower rolling pulse generator, 10
11 is a rolling speed adjustment unit that averages the signals from the upper rolling pulse generator and the lower rolling pulse generator and adjusts the electric power of the upper and lower rolling motors so that the average signal matches the command value from the rolling condition setting unit; 12 is a rolling condition setting unit that receives rolling schedule commands from the process computer, calculates rolling conditions and instructs each control unit; 13 is a feedback control unit that performs feedback control; 14 is a BISR
A BISRA control unit that performs AGC; 15 is a feedforward control unit that performs feedforward control; 16
is a tension control section that performs tension control.

プロセスコンピュータ11より圧延条件設定部12に圧
延条件が与えられ、圧延条件設定部12は各制御部(圧
延速度調整部10.フィードバック制御部13.BIS
RA制御部14.フィードフォワード制御部15.張力
制御部16)に、制御目標、制御定数値等を指令出力す
る。上下圧延モータ7a、7bの速度は圧延開始時は低
速とされ、時間とともに順次高速とされるが、それに同
期して圧延荷重の制御目標も順次減少するように例えば
BISRA制御部14の制御目標値の変更指令が与えら
れ、第8図の曲線ΔSの関係を満足するように板厚制御
が行われる。
The rolling conditions are given to the rolling condition setting section 12 from the process computer 11, and the rolling conditions setting section 12 is configured to control each control section (rolling speed adjustment section 10, feedback control section 13, BIS
RA control unit 14. Feedforward control section 15. Control targets, control constant values, etc. are commanded and output to the tension control unit 16). The speeds of the upper and lower rolling motors 7a and 7b are set to be low at the start of rolling, and are gradually increased as time passes, but in synchronization with this, the control target value of the BISRA control unit 14 is adjusted so that the control target of the rolling load is also sequentially decreased. A change command is given, and plate thickness control is performed so as to satisfy the relationship of the curve ΔS in FIG.

[解決しようとする課題] しかしながら、上記の圧延速度の増加とともにロールギ
ャップを変化させる方式においては、速度変化による摩
擦係数変化を精度よく見積もることが困難である。その
理由は、摩擦係数は速度のみで決まるのではなく、潤滑
油の濃度、温度、ロールと板の温度、板とロールの表面
状態など多くの因子で決定されるからである。もし完全
に制御できたとしても、荷重変動が大きく、それによる
形状変化を招き、絞り込み等の圧延トラブルや品質の安
定にマイナス要因となる。
[Problem to be Solved] However, in the method of changing the roll gap as the rolling speed increases, it is difficult to accurately estimate the change in friction coefficient due to speed change. The reason for this is that the coefficient of friction is determined not only by the speed, but also by many factors such as the concentration of lubricating oil, temperature, temperature of the roll and plate, and surface condition of the plate and roll. Even if it could be perfectly controlled, the load fluctuations would be large, leading to shape changes, which would cause rolling problems such as drawing and other negative factors in quality stability.

本発明は、上記の問題を解決しようとするもので、従来
技術で板厚制御が困難な領域すなわち圧延速度変化に伴
う荷重変化が大きい領域での圧延板厚精度の向上方法を
提供しようとするものである。
The present invention attempts to solve the above-mentioned problems and provides a method for improving rolled plate thickness accuracy in areas where plate thickness control is difficult with conventional techniques, that is, areas where load changes are large due to changes in rolling speed. It is something.

[課題を解決するための手段] 本発明の薄板冷間圧延の板厚制御方法は。[Means to solve the problem] The method of controlling the thickness of cold rolled thin plate according to the present invention is as follows.

(1)圧延速度が小の時は前記上作業ロールの周速と前
記下作業ロールの周速との差を大きくし、圧延速度が大
の時は前記上作業ロールの周速と前記下作業ロールの周
速との差を小さくすること、あるいは、 (2)前記(1)項の方法とともに、フィードフォワー
ドAGCと、フィードバックAGCと、BISRA  
AGCと、張力AGCとの各AGC方法のうちの少なく
とも1つのAGC方法を並行実施すること、あるいは。
(1) When the rolling speed is low, the difference between the peripheral speed of the upper work roll and the lower work roll is increased, and when the rolling speed is high, the difference between the peripheral speed of the upper work roll and the lower work roll is increased. (2) In addition to the method described in (1) above, feedforward AGC, feedback AGC, and BISRA
At least one AGC method of AGC and tension AGC is performed in parallel, or.

(3)前記(2)項の方法において、フィードフォワー
ドAGCの制御定数と、フィードバックAGCの制御定
数と、張力AGCの制御定数とのいずれか1つもしくは
2つ以上を、前記上下作業ロールの周速の差により変化
させること を特徴としている。
(3) In the method of item (2) above, any one or more of the control constant of feedforward AGC, the control constant of feedback AGC, and the control constant of tension AGC are set around the circumference of the upper and lower work rolls. It is characterized by changing depending on the speed difference.

′  [作用] 圧延が上下の作業ロールにによって行われるとき1通常
は上下の作業ロールの周速は等しくなるように駆動電動
機の出力が調整される(以下、この状態を等周速圧延と
いう)、シかし、上下作業ロールの周速差をつけると(
以下、この状態を異周速圧延という)、圧延荷重が通常
時に比して低下することが認められている。
' [Function] When rolling is performed by upper and lower work rolls, the output of the drive motor is usually adjusted so that the circumferential speeds of the upper and lower work rolls are equal (hereinafter, this state is referred to as uniform circumferential speed rolling). , but if we make a difference in the circumferential speed of the upper and lower work rolls (
In this state (hereinafter referred to as "different peripheral speed rolling"), it has been recognized that the rolling load is lower than in normal conditions.

本発明は、上、記の知見に基づくもので、定常運転状態
に比し、圧延速度が低いとき出側板厚偏差を一定とする
ために、従来であればロールギャップを小さくして圧延
荷重を著しく増加させなければならない場合でも、圧延
荷重を低下させるよう、圧延速度を検出し、その圧延速
度の大小によって、例えば下側作業ロールの周速に対す
る上側作業ロールの周速の比である周・速比を、小、大
に変化するようにしている。
The present invention is based on the above-mentioned findings, and in order to keep the exit side plate thickness deviation constant when the rolling speed is low compared to the steady operating state, conventionally the roll gap is reduced and the rolling load is reduced. In order to reduce the rolling load even if it has to be significantly increased, the rolling speed is detected and depending on the rolling speed, the circumferential speed, which is the ratio of the circumferential speed of the upper work roll to the circumferential speed of the lower work roll, can be adjusted. The speed ratio is made to change from small to large.

[実施例] 以下、本発明の一実施例を図面により詳細に説明する。[Example] Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

なお、既述の符号は同一の部分を示しており説明を省略
する。
Note that the reference numerals already mentioned indicate the same parts, and the explanation will be omitted.

第1図は、一実施例としての薄板冷間圧延の板厚制御方
法による板厚制御装置のブロック図であって、17はパ
ルスジェネレータ9a、9bの信号の平均値を受けて上
側下側圧延モータ7a、7bの速度差を演算設定する周
速差演算器、18はプロセスコンピュータ11よりの圧
延スケジュール指令を受は圧延条件を算出して各制御部
に指令し、また、周速差演算器17の信号を受けてAG
C制御定数を変更する圧延条件定数設定部である。
FIG. 1 is a block diagram of a plate thickness control device according to a plate thickness control method for cold rolling a thin plate as an embodiment, in which 17 receives an average value of signals from pulse generators 9a and 9b to perform upper and lower rolling. A circumferential speed difference calculator 18 calculates and sets the speed difference between the motors 7a and 7b, and a peripheral speed difference calculator 18 receives a rolling schedule command from the process computer 11, calculates rolling conditions, and issues instructions to each control section. After receiving the signal from 17, AG
This is a rolling condition constant setting section that changes C control constants.

ここで、周速差演算器17の機能について説明する。Here, the function of the circumferential speed difference calculator 17 will be explained.

上下作業ロールの周速比Xを次のように定義する。The peripheral speed ratio X of the upper and lower work rolls is defined as follows.

x = Vrt/ Vrb Vrt:上作業ロール2aの周速、 Vrb:下作業ロール2bの周速、ただし、Vrt≧V
 r b a この周速比X、を変化させると、第2図のように圧延荷
重が変化する6周速比Xを大きくしていくと圧延荷重P
が減少していくが、Xがある値以上になると圧延荷重P
があまり変化しなくなる。この限界値x waxは xmax=H/h H:入側板厚、 h:出側板厚、 でほぼ決まる。この周速比による荷重変化量は、ロール
径が大きいほど、板厚が薄いほど、摩擦係数が大きいほ
ど大きくなる。
x = Vrt/Vrb Vrt: peripheral speed of upper work roll 2a, Vrb: peripheral speed of lower work roll 2b, provided that Vrt≧V
r b a When this circumferential speed ratio X is changed, the rolling load changes as shown in Figure 2.6 As the circumferential speed ratio
decreases, but when X exceeds a certain value, the rolling load P
will not change much. This limit value x wax is approximately determined by xmax=H/h H: Inlet side plate thickness, h: Outlet side plate thickness. The amount of load change due to this circumferential speed ratio increases as the roll diameter increases, as the plate thickness decreases, and as the friction coefficient increases.

この原理を用いると、圧延速度が低い領域では前出第7
図に示すように圧延荷重が大きくなるので、この領域で
上側下側作業ロール2a、2bの周速比Xを大きくする
ことにより圧延荷重Pを低減させ、圧延速度の上昇とと
もに周速差を小さくしていくことにより、低速から高速
まで圧延荷重変動を小さくすることができる。
Using this principle, in the region where the rolling speed is low, the seventh
As shown in the figure, the rolling load increases, so by increasing the circumferential speed ratio X of the upper and lower work rolls 2a and 2b in this region, the rolling load P is reduced, and as the rolling speed increases, the circumferential speed difference is reduced. By doing so, it is possible to reduce rolling load fluctuations from low speed to high speed.

具体的な方法を以下に示す。A specific method is shown below.

上側下側作業ロール2a、2bの周速が異なる場合の圧
延荷重式Pvは。
The rolling load formula Pv when the circumferential speeds of the upper and lower work rolls 2a and 2b are different is as follows.

PV==PV(H,h、R9/Attfltb*Kft
X)・・・・・・(3) R:ロール半径。
PV==PV(H, h, R9/Attfltb*Kft
X)...(3) R: Roll radius.

μ:摩擦係数。μ: Friction coefficient.

tf:出側張力。tf: Output tension.

tb:入側張力、 Kf:変形抵抗。tb: entry tension, Kf: deformation resistance.

となる。becomes.

予め実験で圧延速度Vと摩擦係数μとの関係を求めてお
く。
The relationship between the rolling speed V and the friction coefficient μ is determined in advance through experiments.

μ=μ(V)           ・・・・・・(4
)V:圧延速度。
μ=μ(V) ・・・・・・(4
)V: Rolling speed.

(4)式を(3)式に代入して、圧延荷重Pvを一定と
して(3)式から周速比Xと圧延速度Vの関係が求まる
By substituting the equation (4) into the equation (3) and keeping the rolling load Pv constant, the relationship between the circumferential speed ratio X and the rolling speed V is determined from the equation (3).

x=x(V)           ・・・・・・(5
)周速差演算器17にはこの(5)式がテーブルとして
メモリにセットされ1.上側圧延パルスジェネレータ9
aの出力と下側圧延パルスジェネレータ9bの出力との
平均を基に圧延速度Vを計算し、その圧延速度Vに対応
して周速比Xが演算されその周速比Xによって上側圧延
モータ7aと下側圧延モータ7bの速度が設定される。
x=x(V) ・・・・・・(5
) This equation (5) is set in the memory as a table in the circumferential speed difference calculator 17, and 1. Upper rolling pulse generator 9
The rolling speed V is calculated based on the average of the output of the pulse generator a and the output of the lower rolling pulse generator 9b, and the circumferential speed ratio X is calculated in accordance with the rolling speed V. and the speed of the lower rolling motor 7b is set.

本実施例の板厚制御装置はこのように構成されており、
次のように動作する。
The plate thickness control device of this embodiment is configured as described above,
It works like this:

(1)圧延条件定数設定部18は周速差なしくX=1)
で圧延操業を指令し、低速領域での圧延荷重PQ、定常
速度での圧延荷重Puを求める。
(1) Rolling condition constant setting section 18 has no circumferential speed difference (X=1)
The rolling operation is commanded, and the rolling load PQ in the low speed region and the rolling load Pu in the steady speed region are determined.

(2)圧延条件定数設定部18は、圧延条件より決まる
xmaxを求め、x=xmax時の推定圧延荷重P x
ysaxを求める。その際、異周速圧延を行うと表裏面
状態が異なるので、その観点からも考慮してxmaxを
決める。
(2) The rolling condition constant setting unit 18 determines xmax determined from the rolling conditions, and calculates the estimated rolling load P x when x=xmax.
Find ysax. At this time, since the conditions of the front and back surfaces are different when different peripheral speed rolling is performed, xmax is determined in consideration of this point of view.

(3)Pxmax)Puの時1本圧延低速時の周速比X
を上記X l1aXとする。Pxmax<Puの時は、
Pu4PvとなるX maXを再び計算する。
(3) Pxmax) Circumferential speed ratio X at low speed of single rolling for Pu
Let be the above X l1aX. When Pxmax<Pu,
Calculate X maX which becomes Pu4Pv again.

(4)Pxmax>Puの時、加速時に荷重変化が一番
小さくなるXとVとの関係式x = x (V)を(3
)式から求める@ Pxmax<Puの時、Pv=Pu
となるXとVとの関係式x = x (V)を(3)式
から求める。あるいは第3図のように、x=xsaxと
x=1との間の適当な関数23xを関係式としてもよい
、第3図において、21pは等周速時の荷重変化、22
pは荷重Pが一定となるよう周速比Xを調整変化させた
時の圧延荷重P、22xは前記荷重Pが一定となるよう
周速比Xを調整変化させた時の周速比x、23pはxm
axを制限した時の荷重P、23xはX■axを制限し
た時の周速比Xである。
(4) When Pxmax>Pu, the relational expression between X and V that causes the smallest load change during acceleration x = x (V) is expressed as (3
) formula @ When Pxmax<Pu, Pv=Pu
The relational expression x = x (V) between X and V is determined from equation (3). Alternatively, as shown in Fig. 3, an appropriate function 23x between x = xsax and x = 1 may be used as a relational expression. In Fig. 3, 21p is the load change at constant circumferential speed, 22
p is the rolling load P when the circumferential speed ratio X is adjusted and changed so that the load P is constant, 22x is the circumferential speed ratio x when the circumferential speed ratio X is adjusted and changed so that the load P is constant, 23p is xm
The load P when ax is limited, 23x, is the circumferential speed ratio X when X■ax is limited.

(5)決められたx=x(V)から(3)式により、フ
ィードバック制御、BISRA  AGC1張力制御ニ
用イラレル係数aPv/ah、aPv/ah。
(5) From the determined x=x(V), the parallel coefficients aPv/ah and aPv/ah for feedback control and BISRA AGC1 tension control are determined by equation (3).

aPv/atbを求め、各係数をVかXの関数として整
理、記憶する。
Find aPv/atb, organize and store each coefficient as a function of V or X.

(6)本圧延にはいると、圧延速度Vにより周速比Xを
調整し且つ圧延速度Vか周速比Xにより各制御方式の制
御定数を変化させて並行制御する。
(6) When the main rolling begins, the circumferential speed ratio X is adjusted by the rolling speed V, and the control constants of each control method are changed depending on the rolling speed V or the circumferential speed ratio X to perform parallel control.

具体例を以下に示す。    “ 入側板厚H=0.296 mm、出側板厚h =0.1
89 am。
A specific example is shown below. “ Inlet side plate thickness H = 0.296 mm, outlet side plate thickness h = 0.1
89 am.

出側張力tf=10 kg/m+a”、入側張力tb=
7kgf71111” @変形抵抗Kf==70 kg
f/am”、ロール半径R=440mmで摩−擦傷数μ
が μ=0.0691V−’°15       ・・・・
・・(6)で変化する場合について示す。
Output tension tf = 10 kg/m+a'', input tension tb =
7kgf71111” @deformation resistance Kf==70 kg
f/am”, roll radius R = 440 mm, number of friction scratches μ
is μ=0.0691V-'°15...
...(6) shows the case where it changes.

上下作業ロールが等速の場合、定常域圧延荷重Pu=4
25 kgf/+am” 、低速域v=10mpmでの
圧延荷重P Q =803 kgf/量Ilzとなる。
When the upper and lower work rolls are at constant speed, steady area rolling load Pu = 4
25 kgf/+am” and rolling load P Q =803 kgf/amount Ilz in the low speed range v=10 mpm.

低速域V=10mpmでPv=Puとなる真速比Xはx
 =1.53となる。加速中圧延荷重Pvを一定とした
時の周速比Xと圧延速度Vの関係を第4図に示す、しか
し、x=1.53は上下作業ロールの周速差が大きくて
、板の表裏面の表面性状の差が甚だしいため、xmax
=1.283としたときの、周速比Xと圧延速度Vと出
側板厚りとの関係を第5図に示す、同図において、24
hは等周速圧延時の出側板厚変化、25hはxm’ax
=1.283としたときの出側板厚変化、25xは同x
+5ax=1.283としたときの周速比Xの変化であ
る。
The true speed ratio X where Pv=Pu in the low speed range V=10mpm is x
=1.53. Figure 4 shows the relationship between the circumferential speed ratio X and the rolling speed V when the rolling load Pv is constant during acceleration. Due to the huge difference in surface properties on the back side, xmax
The relationship between the circumferential speed ratio
h is the change in plate thickness on the exit side during constant circumferential speed rolling, 25h is xm'ax
When = 1.283, the exit side plate thickness change, 25x is the same x
This is the change in the peripheral speed ratio X when +5ax=1.283.

フィードバック制御とBISRA  AGCを併用した
場合の圧延開始時以降の出側板厚の時間変化を従来例と
ともに第6図に示す。同図において、26は本実施例の
出側板厚偏差であり、27は従来の前出節8図ΔS曲線
に沿った制御の場合の出側板厚偏差である。この図から
本実施例の場合の板厚変動が従来に比し小さいことがわ
かる。
FIG. 6 shows the change in exit side plate thickness over time after the start of rolling when feedback control and BISRA AGC are used together, together with a conventional example. In the figure, 26 is the outlet side plate thickness deviation of this embodiment, and 27 is the outlet side plate thickness deviation in the case of conventional control along the ΔS curve in Figure 8 above. It can be seen from this figure that the variation in plate thickness in this example is smaller than in the conventional case.

このようにして1本実施例の制御装置により、圧延速度
の大小に従って周速瑯を調整して、一定板厚とするのに
必要な圧延荷重の変化量を減少させることができ、圧延
機加減速時の製品品質の悪化を防止する。
In this way, the control device of this embodiment can adjust the circumferential speed according to the magnitude of the rolling speed and reduce the amount of change in rolling load required to achieve a constant plate thickness. Prevents deterioration of product quality during deceleration.

[発明の効果] 本発明の薄板冷間圧延の板厚制御方法は、(1)圧延速
度が小の時は前記上作業ロールの周速と前記下作業ロー
ルの周速との差を大きくし、圧延速度が大の時は前記上
作業ロールの周速と前記下作業ロールの周速との差を小
さくする、あるいは、 (2)前記(1)項の方法とともに、フィードフォワー
ドAGCと、フィードバックAGCと、BISRA  
AGCと、張力AGCとの各AGC方法のうちの少なく
とも1つのAGC方法を並行実施す仝、あるいは、 (3)前記(2)項の方法において、フィードフォワー
ドAGCの制御定数と、フィードバックAGCの制御定
数と、張力AGCの制御定数とのいずれか1つもしくは
2つ以上を、前記上下作業ロールの周速の差により変化
させる ので、コイル先端部、後端部の板厚精度が大幅に向上し
、製品品質、製造歩留まりの向上による大きな経済的な
利益を得ることができる。
[Effects of the Invention] The thickness control method for cold rolling a thin plate of the present invention includes (1) increasing the difference between the circumferential speed of the upper work roll and the circumferential speed of the lower work roll when the rolling speed is low; , When the rolling speed is high, the difference between the peripheral speed of the upper work roll and the peripheral speed of the lower work roll is reduced, or (2) In addition to the method of item (1) above, feedforward AGC and feedback are used. AGC and BISRA
At least one AGC method of AGC and tension AGC is executed in parallel, or (3) in the method of item (2) above, the control constant of feedforward AGC and the control of feedback AGC are carried out in parallel. Since one or more of the constant and the control constant of the tension AGC are changed depending on the difference in the circumferential speed of the upper and lower work rolls, the plate thickness accuracy at the tip and rear end of the coil can be greatly improved. , significant economic benefits can be obtained by improving product quality and manufacturing yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例としての薄板冷間圧延の板厚制御方法
による板厚制御装置のブロック図、第2図は同実施例の
周速比と圧延荷重との関係を示すグラフ、第3図は同実
施例の圧延速度と周速比設定候補値の関係を示すグラフ
、第4図は同実施例の圧延速度と周速比設定決定値の関
係を示すグラフ、第5図は同実施例の圧延速度と出側板
厚偏差との関係を示すグラフ、第6図は同実施例の圧延
開始後の時間による出側板厚偏差の推移を示すグラフ、
第7図は従来例の圧延速度と摩擦係数および圧延荷重と
の関係を示すグラフ、第8図は従来例の圧延速度とロー
ルギャップ設定値との関係を示すグラフ、第9図は従来
の冷間圧延機の板厚制御装置のブロック図である。 1・・・・・・圧延材、1a・・・・・・ペイオフリー
ル、1b・・・・・・巻取リリール、2a・・・・・・
上側作業ロール、2b・・・・・・下側作業ロール、3
・・・・・・圧延荷重検出器、4・・・・・・圧下装置
、5・・・・・・入側板厚計、6・・・・・・出側板厚
計、7a・・・・・・上側圧延モータ、7b・・・・・
・下側圧延モータ、8a・・・・・・ペイオフリールの
モータ、8b・・・・・・巻取リリールのモータ、9a
・・・・・・上側圧延パルスジェネレータ、9b・・・
・・・下側圧延パルスジェネレータ、11・・・・・・
プロセスコンピュータ、13・・・・・・フィードバッ
ク制御部、14・・・・・・BISRA制御部、15・
・・・・・フィードフォワード制御部、16・・・・・
・張力制御部、17・・・・・・周速差演算器、18・
・・・・・圧延条件定数設定部。 特許出願人 株式会社 神戸製鋼所 代理人  弁理士  小 林  傅 第1図 第2図 1tii達上ヒ X 第3図 第4図 /!−延速農(m/m1n) 第5図 圧it& (r+vmtnt 第6図 第7図 ル延速度(rn/m1n) 第8図 圧1に進度(m/min)
Fig. 1 is a block diagram of a plate thickness control device according to a plate thickness control method for thin plate cold rolling as an example, Fig. 2 is a graph showing the relationship between circumferential speed ratio and rolling load in the same example, and Fig. 3 The figure is a graph showing the relationship between rolling speed and circumferential speed ratio setting candidate value in the same example, FIG. 4 is a graph showing the relationship between rolling speed and circumferential speed ratio setting decision value in the same example, and FIG. A graph showing the relationship between the rolling speed and the exit side plate thickness deviation in the example, FIG. 6 is a graph showing the transition of the exit side plate thickness deviation with time after the start of rolling in the same example,
Fig. 7 is a graph showing the relationship between rolling speed, friction coefficient, and rolling load in the conventional example, Fig. 8 is a graph showing the relationship between rolling speed and roll gap setting value in the conventional example, and Fig. 9 is a graph showing the relationship between rolling speed and roll gap setting value in the conventional example. FIG. 2 is a block diagram of a plate thickness control device for an inter-rolling mill. 1...Rolled material, 1a...Payoff reel, 1b...Take-up reel, 2a...
Upper work roll, 2b...Lower work roll, 3
...Rolling load detector, 4... Rolling down device, 5... Inlet side plate thickness gauge, 6... Outlet side plate thickness gauge, 7a... ...Upper rolling motor, 7b...
・Lower rolling motor, 8a...Payoff reel motor, 8b...Take-up reel motor, 9a
...Upper rolling pulse generator, 9b...
...lower rolling pulse generator, 11...
Process computer, 13... Feedback control section, 14... BISRA control section, 15.
...Feedforward control section, 16...
・Tension control unit, 17... Circumferential speed difference calculator, 18.
...Rolling condition constant setting section. Patent Applicant Kobe Steel Co., Ltd. Representative Patent Attorney Fu Kobayashi Figure 1 Figure 2 1tii Tatsujohi - Rolling speed (m/m1n) Fig. 5 Pressure it& (r+vmtnt Fig. 6 Fig. 7) Rolling speed (rn/m1n) Fig. 8 Progress to pressure 1 (m/min)

Claims (3)

【特許請求の範囲】[Claims] (1)薄板材を上下1対の作業ロールで冷間圧延する圧
延機の板厚制御方法において、圧延速度が小の時は前記
上作業ロールの周速と前記下作業ロールの周速との差を
大きくし、圧延速度が大の時は前記上作業ロールの周速
と前記下作業ロールの周速との差を小さくすることを特
徴とする薄板冷間圧延の板厚制御方法。
(1) In a plate thickness control method for a rolling mill in which a thin plate material is cold rolled by a pair of upper and lower work rolls, when the rolling speed is low, the circumferential speed of the upper work roll and the circumferential speed of the lower work roll are A method for controlling the thickness of a thin plate in cold rolling, characterized in that the difference between the circumferential speed of the upper work roll and the circumferential speed of the lower work roll is made smaller when the rolling speed is high.
(2)入側板厚計を用いたフィードフォワードAGC(
Automatic Gage Control)と、
出側板厚計を用いたフィードバックAGCと、圧延荷重
計を用いたBISRA AGCと、圧延材の張力を調整
する張力AGCとの各AGC方法のうちの少なくとも1
つのAGC方法を並行実施することを特徴とする特許請
求の範囲第1項記載の薄板冷間圧延の板厚制御方法。
(2) Feedforward AGC (
Automatic Gage Control) and
At least one of the following AGC methods: feedback AGC using an exit plate thickness gauge, BISRA AGC using a rolling load meter, and tension AGC adjusting the tension of the rolled material.
2. A sheet thickness control method for cold rolling a thin sheet according to claim 1, characterized in that two AGC methods are carried out in parallel.
(3)フィードフォワードAGCの制御定数と、フィー
ドバックAGCの制御定数と、張力AGCの制御定数と
のいずれか1つもしくは2つ以上を、前記上下作業ロー
ルの周速の差により変化させることを特徴とする特許請
求の範囲第2項記載の薄板冷間圧延の板厚制御方法。
(3) Any one or more of the control constant of feedforward AGC, the control constant of feedback AGC, and the control constant of tension AGC is changed by the difference in circumferential speed of the upper and lower work rolls. A sheet thickness control method for cold rolling a thin sheet according to claim 2.
JP63069828A 1988-03-25 1988-03-25 Sheet thickness control method for thin plate cold rolling Expired - Lifetime JPH0813370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63069828A JPH0813370B2 (en) 1988-03-25 1988-03-25 Sheet thickness control method for thin plate cold rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069828A JPH0813370B2 (en) 1988-03-25 1988-03-25 Sheet thickness control method for thin plate cold rolling

Publications (2)

Publication Number Publication Date
JPH01245909A true JPH01245909A (en) 1989-10-02
JPH0813370B2 JPH0813370B2 (en) 1996-02-14

Family

ID=13414016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069828A Expired - Lifetime JPH0813370B2 (en) 1988-03-25 1988-03-25 Sheet thickness control method for thin plate cold rolling

Country Status (1)

Country Link
JP (1) JPH0813370B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195524B (en) * 2015-10-21 2017-04-05 东北大学 A kind of cold rolling Up and down speeding tabularium thickness compensation control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234714A (en) * 1984-05-02 1985-11-21 Ishikawajima Harima Heavy Ind Co Ltd Method and device for controlling different peripheral speed rolling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234714A (en) * 1984-05-02 1985-11-21 Ishikawajima Harima Heavy Ind Co Ltd Method and device for controlling different peripheral speed rolling

Also Published As

Publication number Publication date
JPH0813370B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
US5704237A (en) Apparatus for continuously leveling thin metal strip
JP3898927B2 (en) Rolling mill stand
US6158260A (en) Universal roll crossing system
JPH04288917A (en) Method for adjusting rolled strip
US6378346B1 (en) Steckel hot rolling mill
US3531961A (en) Method and system for controlling strip thickness in a tandem reduction mill
JPS59197309A (en) Strip producing method and apparatus equipped with high strip profile quality and strip flatness quality
US4261190A (en) Flatness control in hot strip mill
JPH05200420A (en) Plate thickness controller for rolling mat roll
US4173133A (en) Continuous rolling mill
US3618348A (en) Method of controlling rolling of metal strips
JPS605373B2 (en) rolling mill
US5809817A (en) Optimum strip tension control system for rolling mills
JPH01245909A (en) Method for controlling sheet thickness for thin sheet cold rolling
US6216505B1 (en) Method and apparatus for rolling a strip
US3869891A (en) Speed optimizing system for a rolling mill
US4414832A (en) Start-up and steady state process control for cooperative rolling
JP3637901B2 (en) Cold rolling method for metal sheet
JPH04182019A (en) Device for controlling sheet thickness on rolling mill
RU2764727C2 (en) Method and apparatus for rolling metal strips
EP0487274B1 (en) Strip elongation control in continuous annealing furnaces
JPS6051923B2 (en) advanced rate controller
JP2004268084A (en) Plate-thickness controlling method in tandem rolling mill
JP3255785B2 (en) Thickness control method in tandem rolling mill
JPH0292411A (en) Method for controlling cold tandem rolling mill