JPH0331467A - Production of steel material for member absorbing vibration energy - Google Patents

Production of steel material for member absorbing vibration energy

Info

Publication number
JPH0331467A
JPH0331467A JP1164915A JP16491589A JPH0331467A JP H0331467 A JPH0331467 A JP H0331467A JP 1164915 A JP1164915 A JP 1164915A JP 16491589 A JP16491589 A JP 16491589A JP H0331467 A JPH0331467 A JP H0331467A
Authority
JP
Japan
Prior art keywords
less
steel
temperature
vibration energy
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1164915A
Other languages
Japanese (ja)
Other versions
JP2783365B2 (en
Inventor
Toshimichi Omori
大森 俊道
Osamu Kojima
修 小島
Haruo Suzuki
治雄 鈴木
Tetsuya Sanpei
哲也 三瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1164915A priority Critical patent/JP2783365B2/en
Publication of JPH0331467A publication Critical patent/JPH0331467A/en
Application granted granted Critical
Publication of JP2783365B2 publication Critical patent/JP2783365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a steel material suitable for use as a brace material absorbing external energy such as deformation or vibration energy by hot working and cooling steel contg. specified amts. of C, Si, Mn, P, S, Al, N, etc., under prescribed conditions. CONSTITUTION:Steel consisting of, by weight, <=0.004% C, <=0.1% Si, <=0.1 5% Mn, <=0.015% P, <=0.01% S, 0.5-2% sol. Al, <=0.005% N, <=0.005% oxygen and the balance Fe is refined, heated to 950-1300 deg.C, hot worked at >=950 deg.C finishing temp. and cooled at a cooling rate below the air cooling rate.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、建築用鋼材の中で、特に制振機能の要求さ
れる構造物に使用される振動エネルギー吸収部材用鋼材
の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a steel material for vibration energy absorbing members used in structures that require a vibration damping function, among other steel materials for construction. It is.

[従来の技wjK] 鉄骨構造物の外力による変形および振動を積極的に低減
し、これにより構造物の付加価値を高める努力が、従来
から各所で行なわれている。
[Prior art wjK] Efforts have been made in various places to actively reduce deformation and vibration of steel structures due to external forces, thereby increasing the added value of the structures.

例えば、実開昭64−19760号公報には、減衰性能
の優れた鉛をエネルギー吸収用材料として用いることを
特徴とする割振壁に関する考案が開示されている。
For example, Japanese Utility Model Application Publication No. 19760/1983 discloses an idea regarding an oscillating wall characterized by using lead, which has excellent damping performance, as an energy absorbing material.

マタ、#II造工学論文集Voa 、34B (198
8年3月)には、減衰性能を得るため、低強度鋼を芯材
とし。
Mata, #II Geotechnical Engineering Papers Voa, 34B (198
(March 1980), the core material was made of low-strength steel in order to obtain damping performance.

鋼管コンクリートにより座屈を防止したアンボンドプレ
ースに関する研究が示されている。
A study on an unbonded place where buckling was prevented by steel pipe concrete is presented.

[発明が解決しようとする課題] しかしながら、実開昭64−19760号公報に開示さ
れた考案に示される。鉛を素材とするエネルギー吸収材
は破断強度が低く1例えば、プレース等への直接適用は
困難が懸念される。
[Problems to be Solved by the Invention] However, this problem is shown in the invention disclosed in Japanese Utility Model Application Publication No. 19760/1983. Energy absorbing materials made of lead have low breaking strength, and there is concern that it will be difficult to apply them directly to places, for example.

一方、上記構造工学論文集に示されたプレースに用いら
れているエネルギー吸収用鋼材は、降伏応力こそ低いも
のの、破断強度は通常の工業用純鉄以上に高い、このよ
うに、破断強度が高いと、プレース材のように引張およ
び圧縮を受ける環境で、自らが塑性変形して変形および
振動をもたらす外的エネルギーを吸収する場合、例えば
、度重なる地震などにより繰り返し塑性変形を受ける場
合は、加工硬化のため降伏応力の増加を生じ、エネルギ
ー吸収能の低下を招くことが懸念される。
On the other hand, the energy-absorbing steel materials used in the places shown in the above-mentioned Structural Engineering Papers have a low yield stress, but their breaking strength is higher than that of ordinary industrial pure steel. When a place material undergoes plastic deformation in an environment subjected to tension and compression and absorbs external energy that causes deformation and vibration, for example, when it undergoes repeated plastic deformation due to repeated earthquakes, processing There is a concern that the hardening will increase the yield stress, leading to a decrease in energy absorption ability.

また、破断強度が十分に低いとは言えない鋼材をプレー
スに用いるとき、圧縮時の座屈を避けるためむやみに断
面積を増やすことは、過大な耐力を構造物に付与するこ
とになるので、頑強な鋼管コンクリートで座屈を抑える
構造とする必要がある。
In addition, when using steel materials with insufficient breaking strength for places, increasing the cross-sectional area unnecessarily to avoid buckling during compression will endow the structure with excessive yield strength. The structure must be made of strong steel pipe concrete to prevent buckling.

上述したように、構造材料としての機械的特性も兼ね備
えた素材の中で、降伏応力のみでなく、破断強度も低く
、伸び能力の大きい材料は、繰り返し荷重および座屈に
対して有利な、変形・振動エネルギー吸収用材料として
使用することができるのであるが、このようなものは未
だ開発されていない。
As mentioned above, among materials that also have mechanical properties as structural materials, materials with low yield stress, low breaking strength, and high elongation ability are advantageous for repeated loading and buckling, and have good deformation. - It can be used as a vibration energy absorbing material, but such a material has not yet been developed.

[課題を解決するための手段] 発明者等は、上述した問題を解決するために鋭意努力し
た。そして、構造材料としての機械的性質を有し、かつ
減衰性能の優れた素材を得るため。
[Means for Solving the Problems] The inventors have made earnest efforts to solve the above-mentioned problems. And to obtain a material that has mechanical properties as a structural material and has excellent damping performance.

軟質材料として知られる工業純鉄にAlの添加を行なう
ことで、フェライト結晶粒を粗大化し、低降伏応力化と
ともに1.破断強度の低下を図った。
By adding Al to industrially pure iron, which is known as a soft material, the ferrite crystal grains become coarser, lowering the yield stress and achieving 1. The aim was to reduce the breaking strength.

AQはフェライト相安定化元素であり、純鉄に添加する
ことにより、フェライトの変態温度を著しく高めるか、
若しくはフェライト単相とする効果を有する。従って、
Aρを0 、5 wt、fs以上添加することにより、
950℃以上の高温でフェライト組織とすることが可能
となり、高温で熱間加工を終了した場合は、その冷却過
程におい・てフェライト結晶粒の成長を促すことができ
る。また、熱間加工後、別途950℃以上の熱処理を行
っても同様にフェライト結晶粒の成長を促すことができ
るが、この場合、特に1000℃を超える熱処理を施す
ことで、AQNの再固溶に伴うフェライト結晶粒の異常
粒成長がおこり、結晶粒径1mを超えるフェライト組織
を得ることができる。
AQ is a ferrite phase stabilizing element, and by adding it to pure iron, it can significantly increase the transformation temperature of ferrite.
Alternatively, it has the effect of forming a single phase of ferrite. Therefore,
By adding 0,5 wt, fs or more of Aρ,
It is possible to form a ferrite structure at a high temperature of 950° C. or higher, and when hot working is completed at a high temperature, growth of ferrite crystal grains can be promoted in the cooling process. In addition, the growth of ferrite crystal grains can be similarly promoted by separately performing heat treatment at 950°C or higher after hot working. As a result, abnormal grain growth of ferrite crystal grains occurs, and a ferrite structure with a grain size exceeding 1 m can be obtained.

つまり、AQを含有させることにより結晶粒の粗大化を
図り、固溶AΩそのものの軟化効果も考えられるが、こ
れらの相乗効果により構造用材料として使用可能な機械
的特性の範囲内で、低い降伏応力、引張強度を有する材
料を得ることができることを知見した。この発明は、上
述の知見に基いてなされたものである。
In other words, by including AQ, it is possible to coarsen the crystal grains and to have a softening effect on the solid solution AΩ itself, but due to the synergistic effect of these, it is possible to achieve a low yield within the range of mechanical properties that can be used as a structural material. It was discovered that it is possible to obtain a material with stress and tensile strength. This invention was made based on the above-mentioned findings.

この発明の要旨は、下記の通りである。The gist of this invention is as follows.

(1)  C0,004wt、%以下。(1) C0,004wt,% or less.

Si  0.10wtJ以下、 Kn  0015wt、%以下、 P  0.015wt0%以下、 S  O,0IOwt%以下、 So Q A El : 0.5ON2.0wt.%、
N : 0,005s+t、%以下、 酸素: 0.005wt、%以下、および、残部:実質
的にFa、 からなる組成の鋼片または鋳片を950〜1300℃の
温度に加熱し、次いで、終了温度950℃以上の温度で
熱間加工を施し、次いで、熱間加工終了後空冷以下の冷
却速度で冷却することを特徴とする振動エネルギー吸収
部材用鋼材の製造方法 (2)  C: 0.004wt、%以下。
Si 0.10wtJ or less, Kn 0015wt,% or less, P 0.015wt0% or less, SO,0IOwt% or less, So Q A El: 0.5ON2.0wt. %,
N: 0,005s+t, % or less; Oxygen: 0.005wt, % or less; and the balance: substantially Fa. A steel slab or slab is heated to a temperature of 950 to 1300°C, and then the process is finished. Method for manufacturing a steel material for vibration energy absorbing members (2) characterized by hot working at a temperature of 950°C or higher and then cooling at a cooling rate lower than air cooling after the hot working is completed C: 0.004wt ,%below.

Si : 0.10wtJ以下5 Kn : 0.15wt、%以下。Si: 0.10wtJ or less5 Kn: 0.15wt, % or less.

p  :0.015%+1.z以下。p: 0.015%+1. Below z.

S : 0,010wt、x以下。S: 0,010wt, x or less.

SoQ A11  : 0.50〜2.0wt.%、N
  : 0.005wt、%以下、 酸素: 0,005wt、%以下、および、残部、実質
的にFe、 からなる組成の鋼片または鋳片を950〜1300℃の
温度に加熱し、次いで熱間加工を施し、次いで、熱間加
工終了後最終的に950〜1300℃の温度で熱処理を
施すことを特徴とする振動エネルギー吸収部材用鋼材の
製造方法。
SoQ A11: 0.50-2.0wt. %, N
: 0.005 wt, % or less, Oxygen: 0,005 wt, % or less, and the balance substantially Fe: A steel billet or slab is heated to a temperature of 950 to 1300°C, and then hot worked. 1. A method for manufacturing a steel material for a vibration energy absorbing member, characterized by subjecting the steel material to a final heat treatment at a temperature of 950 to 1300° C. after hot working.

次に、この発明の鋼の成分組成を上述のように限定した
理由を以下に述べる。
Next, the reason why the composition of the steel of the present invention is limited as described above will be described below.

(1) C(炭素) Cは固溶若しくは炭化物生成により強度を上昇する元素
であり、従って、本発明の趣旨からはできるだけ低減す
ることが望ましいが、工業的に製造するうえで極限的な
低減は困難であり、また極端なコスト高を招く、一方、
後述するAΩの添加により変態温度を高めるためにも、
C含有量は低く抑えないとAJの必要添加量が多くなっ
てしまい、これは、結果的にAΩの固溶強化を引き起こ
すことにもつながってしまうので、この理由からもC含
有量は低く押えることが望ましい、従って。
(1) C (Carbon) C is an element that increases strength through solid solution or carbide formation. Therefore, from the purpose of the present invention, it is desirable to reduce it as much as possible, but it is extremely difficult to reduce it in industrial production. is difficult and leads to extremely high costs;
In order to increase the transformation temperature by adding AΩ, which will be described later,
If the C content is not kept low, the required amount of AJ will increase, which will eventually lead to solid solution strengthening of AΩ, so for this reason as well, the C content should be kept low. That is desirable, therefore.

C含有量は常温におけるCの固溶限界量以下である0、
004wt、%以下とした。
0, where the C content is below the solid solubility limit of C at room temperature;
004wt,% or less.

(2)Si(シリコン) Siはそれ自体の添加によって変態温度を上昇させる効
果を有するが1本発明においてはこの効果は、後述する
Afi−の添加により満足させている。
(2) Si (Silicon) Si has the effect of increasing the transformation temperature when added by itself; in the present invention, this effect is satisfied by the addition of Afi-, which will be described later.

むしろ、 Siを添加することによる前記効果よりも、
固溶強化による強度上昇が懸念される。従って、Sl含
有量は0 、1 wtJ以下とした。
Rather than the above-mentioned effect of adding Si,
There is a concern that strength will increase due to solid solution strengthening. Therefore, the Sl content was set to 0.1 wtJ or less.

(3) Mn (マンガン) Mn−8+siと同様に固溶強化元素であり、極力Mn
含有量は低減することが望ましいが、極端なMn含有量
の低減はコスト高を招くので、Mn含有量は0.15w
t%以下とした。但し、MnはSによる熱間脆性を防止
する効果があるので、Mn含有量はS含有量の10倍以
上とすることが好ましい。
(3) Mn (manganese) Like Mn-8+si, it is a solid solution strengthening element, and Mn is used as much as possible.
Although it is desirable to reduce the Mn content, an extreme reduction in the Mn content will lead to high costs, so the Mn content should be 0.15w.
It was set to t% or less. However, since Mn has the effect of preventing hot embrittlement caused by S, the Mn content is preferably at least 10 times the S content.

(4) P、 S (燐、硫黄) P、Sは、不純物元素として含有される。従って、コス
ト高につながらない限りにおいてその含有量は低減する
ことが望ましい、従って、P含有量は0.015wt、
%以下、S含有量は0.01wt。
(4) P, S (phosphorus, sulfur) P and S are contained as impurity elements. Therefore, it is desirable to reduce the P content as long as it does not lead to increased costs. Therefore, the P content is 0.015wt,
% or less, S content is 0.01wt.

%以下とした。% or less.

(5)A慮(アルミニウム) /lは上述したように本発明の要となる元素である。へ
嚢は固溶Nの固定およびAQN粒子の凝集粗大化および
変態温度上昇をもたらし、フェライト域拡大により可能
となる高温域でのフェライト結晶粒の粗大化を促し、そ
して、さらに、固溶AMの軟化効果があるなど、本発明
において、低強度化を図るために必須の元素である。し
かしながら、、+ll含有量がSoΩ10の状態で0 
、5 wt%未満では、上述した作用に所望の効果が得
られない。
(5) A consideration (aluminum) /l is an element that is a key element of the present invention as described above. The capsule causes the fixation of solid solution N, the agglomeration and coarsening of AQN particles, and the rise in transformation temperature, which promotes the coarsening of ferrite crystal grains in the high temperature range made possible by the expansion of the ferrite region, and furthermore, the formation of solid solution AM. In the present invention, it is an essential element in order to reduce the strength because it has a softening effect. However, when the +ll content is SoΩ10, 0
, less than 5 wt%, the desired effects described above cannot be obtained.

一方、AΩ含有量が5oflAfiの状態で2 、 O
yt、%を超えると、固溶強化の効果を招く、従って、
AQ含有量は5ojllQの状態で0.5〜2.Owt
%の範囲とした。
On the other hand, when the AΩ content is 5oflAfi, 2, O
Exceeding yt,% leads to the effect of solid solution strengthening, therefore,
The AQ content is 0.5 to 2. Owt
% range.

(6) N (窒素) NはFa、中に固溶若しくは窒化物を生成し強度を高め
る作用がある。また、含有されたAfiを少しでも有効
な固溶Amとして存在せしめるためにはAflN粒子の
生成量は少ないほうが望ましい、従って、N含有量は0
.005wt、%以下とした。
(6) N (Nitrogen) N has the effect of increasing the strength by forming a solid solution or nitride in Fa. In addition, in order to make the contained Afi exist as effective solid solution Am, it is desirable that the amount of AflN particles generated is small. Therefore, the N content is 0.
.. 005wt,% or less.

(?) O(酸素) 酸素は非金属介在物を生成する不純物元素である。酸素
含有量は0.005wt、%以下とした。
(?) O (oxygen) Oxygen is an impurity element that generates nonmetallic inclusions. The oxygen content was 0.005 wt.% or less.

次に、この発明鋼材の製造条件について以下に述べる。Next, the manufacturing conditions of this invention steel material will be described below.

加熱圧延条件については、ごく通常の熱間加工条件を採
用し加熱温度は950〜13oO℃とした。但し、第1
実施態様(請求項1記載の発明)においては、粗大なフ
ェライト結晶粒を確保する−ために、加工終了温度を9
50℃以上とした。さらに、熱間加工後の冷却において
は、加工後の冷却過程における結晶粒の成長を促す必要
から、空冷以下の冷却速度で冷却する必要がある。
Regarding hot rolling conditions, very normal hot working conditions were adopted, and the heating temperature was 950 to 13 oO<0>C. However, the first
In the embodiment (invention according to claim 1), in order to ensure coarse ferrite crystal grains, the processing end temperature is set to 9.
The temperature was 50°C or higher. Furthermore, in cooling after hot working, it is necessary to promote the growth of crystal grains in the cooling process after working, so it is necessary to cool at a cooling rate lower than air cooling.

一方、最終的に熱処理を施す第2実施態様(請求項2記
載の発明)においては、上述したような熱間加工終了温
度に関する制約はないが、熱間加工後に、950〜13
00℃の温度で熱処理を施す。即ち、熱間加工終了温度
が950℃未満でも、熱間加工後に熱処理を行なうこと
により同様の効果が得られる。そして、熱処理条件とし
て、950℃以上の温度でフェライト結晶粒の成長を促
すために、素材の熱容量を考慮して少なくとも30分以
上保持することが好ましい、また、特に、具体的に、C
含有量をO,001wt0%、5oAAQ含有量を11
t0%とした本発明鋼はフェライト単相となり、110
0℃以上の非常に高温での熱処理が。
On the other hand, in the second embodiment (invention according to claim 2) in which heat treatment is finally performed, there is no restriction on the hot working end temperature as described above, but after hot working, the temperature is 950 to 13
Heat treatment is performed at a temperature of 00°C. That is, even if the hot working end temperature is less than 950° C., the same effect can be obtained by performing heat treatment after hot working. As the heat treatment conditions, in order to promote the growth of ferrite crystal grains at a temperature of 950°C or higher, it is preferable to hold the heat treatment for at least 30 minutes or more in consideration of the heat capacity of the material.
Content: O,001wt0%, 5oAAQ content: 11
The steel of the present invention with t0% has a single phase of ferrite, and has 110
Heat treatment at extremely high temperatures above 0°C.

フェライト結晶粒の成長に極めて有効となる。しかしな
がら、1300℃を超えた温度域での熱処理は困難でも
あり、且つコスト高を招く、従って。
This is extremely effective for the growth of ferrite crystal grains. However, heat treatment in a temperature range exceeding 1300° C. is difficult and increases costs.

熱処理温度は950〜1300℃とし・た。The heat treatment temperature was 950 to 1300°C.

以上述べたように、本発明による化学成分および製造条
件で、降伏応力および引張強度が低く、伸び能力が大き
い、即ち変形・振動エネルギー吸収性能に優れた鋼材を
得ることができる。
As described above, with the chemical composition and manufacturing conditions according to the present invention, it is possible to obtain a steel material with low yield stress and tensile strength and high elongation ability, that is, excellent deformation and vibration energy absorption performance.

次に、この発明を実施例により更に詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

[実施例] 第1表に示す、本発明の範囲内の化学成分組成を有する
本発明鋼A−F、および、本発明の範囲外の成分組成を
有する比較鋼G、Hを溶製後、厚さ1101の鋼塊とし
た1次いで、この鋼塊を1200℃に加熱し、次いで、
圧延終了温度1100℃で熱間圧延を施し板厚15■に
成型した。
[Example] After melting inventive steels A-F having chemical compositions within the scope of the present invention and comparative steels G and H having chemical compositions outside the scope of the present invention shown in Table 1, First, this steel ingot was heated to 1200°C, and then,
Hot rolling was carried out at a rolling end temperature of 1100° C. to form a plate with a thickness of 15 cm.

さらに、鋼のいくつかには、1100℃の温度で熱処理
(焼鈍)を施した。また、これらのllA〜Hを、加熱
速度0.5℃/秒によって1300℃の温度まで昇温し
たときの変態点を調べ、その結果を第1表に併せて示し
た′、この変態点測定結果は、本発明鋼A−Fが、フェ
ライト単相若しくは、フェライト変態点が比較鋼G、H
と比べて高温であることを示す、上述の、板厚15■に
成型した、本発明鋼A−F、比較鋼G、Hについて、下
記からなる引張試験を実施した。その結果を第2表に示
す。
Additionally, some of the steels were heat treated (annealed) at a temperature of 1100°C. In addition, the transformation points of these IIA to H were investigated when the temperature was raised to a temperature of 1300°C at a heating rate of 0.5°C/sec, and the results are also shown in Table 1'. The results show that the inventive steels A-F have a ferrite single phase or a ferrite transformation point higher than that of comparative steels G and H.
A tensile test consisting of the following was carried out on the above-mentioned inventive steels A-F and comparative steels G and H, which were molded to a plate thickness of 15 cm and showed a high temperature compared to the above. The results are shown in Table 2.

引張試験 熱間圧延後、または、圧延後に熱処理後板厚中心部より
、平行部直径6m、平行部長さ16〜40■の試験片を
切り出し、この試験片に対して引張試験を施し、降伏応
力または0.2%耐力。
Tensile test After hot rolling or heat treatment after rolling, a test piece with a parallel part diameter of 6 m and a parallel part length of 16 to 40 cm was cut out from the center of the plate thickness, and a tensile test was performed on this test piece to determine the yield stress. Or 0.2% yield strength.

および、引張強さを調べた。And the tensile strength was examined.

第1表、第2表から明らかなように1本発明鋼Aに11
00℃の焼鈍(熱処理)を行なった本発明例&1は、低
C化とAQ添加によりフェライト単相となっているので
、高温で焼鈍を行なうことによりオーステナイトからフ
ェライトへの変態による細粒化をもたらすことなく、む
しろ1100℃という高温で焼鈍することによりフェラ
イト粒径21以上の著しい粗粒化が達成され、低降伏応
力、低引張強度が達成されている。
As is clear from Tables 1 and 2, 1 inventive steel A has 11
Inventive example &1, which was annealed (heat treated) at 00°C, has a single phase of ferrite due to the low carbon content and AQ addition, so by annealing at a high temperature, grain refinement due to transformation from austenite to ferrite can be achieved. Rather, by annealing at a high temperature of 1100° C., significant coarsening of the ferrite grain size to 21 or more is achieved, and low yield stress and low tensile strength are achieved.

本発明鋼Bを圧延ままの状態で、高温での熱処理を行な
っていない本発明例NQ2は、本発明例Nα1よりも高
強度であるが、後述する比較例P&18より低強度な特
性が得られている。
Inventive example NQ2, in which the inventive steel B was not heat-treated at high temperature in an as-rolled state, had higher strength than inventive example Nα1, but had lower strength characteristics than comparative examples P&18, which will be described later. ing.

を圧延ままの状態で、高温での熱処理を行なっていない
本発明例&5は、いずれも、A塁添加によるフェライト
単相化若しくは変態点の高温化がなされており、本発明
の製造方法を採ることにより、低強度化が達成されてい
る。
In both examples &5 of the present invention, in which the as-rolled steel is not heat-treated at a high temperature, the ferrite is made into a single phase or the transformation point is raised to a high temperature by adding A base, and the production method of the present invention is adopted. As a result, lower strength is achieved.

これに対して工業用純鉄に相当する比較鋼Gに1100
℃の焼鈍(熱処理)を行なった比較例7、同じ比較鋼G
に圧延ままの状態で、高温での熱処理を行なっていない
比較例8において、比較例8は勿論、950℃以上の温
度で焼鈍を行なった比較例7でさえも、顕著な低強度化
はみられない。
In contrast, comparative steel G, which is equivalent to industrial pure iron, has a
Comparative Example 7, same comparative steel G which was annealed (heat treated) at ℃
In Comparative Example 8, which was not heat-treated at a high temperature in the as-rolled state, not only Comparative Example 8, but even Comparative Example 7, which was annealed at a temperature of 950°C or higher, showed no significant decrease in strength. I can't.

従来のプレース素材に一般的に用いられている鋼材のひ
とつに相当し1本発明の化学成分組成を大きく逸脱する
比較鋼Hを、圧延ままの状態で高温での熱処理を行なっ
ていない比較例Na9は、降伏応力、引張強度ともに高
く、外力レベルが過大な領域を除いて、振動エネルギー
吸収部材用鋼材としての特性は期待しにくい。
Comparative Steel H, which corresponds to one of the steel materials commonly used for conventional place materials and which greatly deviates from the chemical composition of the present invention, was not heat-treated at high temperature in the as-rolled state.Comparative Example Na9 steel has high yield stress and high tensile strength, and its properties as a steel material for vibration energy absorbing members are difficult to expect except in areas where the level of external force is excessive.

なお、上述した実施例に示した全ての本発明例は40%
以上の高い伸びを示しており、従って、プレース素材等
への適用において、延性上の問題はない。
In addition, all the examples of the present invention shown in the above-mentioned examples are 40%
Therefore, there is no problem with ductility when applied to place materials, etc.

[発明の効果] 以上説明したように、この発明によれば、鉄骨建造物に
おいて、低い降伏応力、引張強度、および、高い伸び能
力を有する。変形、振動などの外的エネルギーを吸収す
るプレース材料等に適する。
[Effects of the Invention] As explained above, according to the present invention, a steel frame building has low yield stress, low tensile strength, and high elongation capacity. Suitable for place materials that absorb external energy such as deformation and vibration.

振動エネルギー吸収部材用鋼材が得られる産業上有用な
効果がもたらされる。
The industrially useful effect of obtaining a steel material for vibration energy absorbing members is brought about.

出原人  日本鋼管株式会社Originator: Nippon Kokan Co., Ltd.

Claims (1)

【特許請求の範囲】 1 C:0.004wt.%以下、 Si:0.10wt%以下、 Mn:0.15wt%以下、 P:0.015wt%以下、 S:0.010wt%以下、 SolAl:0.50〜2.0wt.%、 N:0.005wt%以下、 酸素:0.005wt%以下、および、 残部:実質的にFe、 からなる組成の鋼片または鋳片を950〜1300℃の
温度に加熱し、次いで、終了温度950℃以上の温度で
熱間加工を施し、次いで、熱間加工終了後空冷以下の冷
却速度で冷却することを特徴とする振動エネルギー吸収
部材用鋼材の製造方法 2 C:0.004wt.%以下、 Si:0.10wt%以下、 Mn:0.15wt%以下、 P:0.015wt.%以下、 S:0.010wt.%以下、 SolAl:0.50〜2.0wt.%、 N:0.005wt%以下、 酸素:0.005wt%以下、および、 残部、実質的にFe、 からなる組成の鋼片または鋳片を950〜1300℃の
温度に加熱し、次いで熱間加工を施し、次いで、熱間加
工終了後最終的に950〜1300℃の温度で熱処理を
施すことを特徴とする振動エネルギー吸収部材用鋼材の
製造方法。
[Claims] 1 C: 0.004wt. % or less, Si: 0.10 wt% or less, Mn: 0.15 wt% or less, P: 0.015 wt% or less, S: 0.010 wt% or less, SolAl: 0.50 to 2.0 wt%. %, N: 0.005 wt% or less, Oxygen: 0.005 wt% or less, and the balance: substantially Fe, is heated to a temperature of 950 to 1300°C, and then finished. Method 2 for producing steel materials for vibration energy absorbing members, characterized by hot working at a temperature of 950° C. or higher, and then cooling at a cooling rate lower than air cooling after the hot working is completed C: 0.004 wt. % or less, Si: 0.10 wt% or less, Mn: 0.15 wt% or less, P: 0.015 wt. % or less, S: 0.010wt. % or less, SolAl: 0.50-2.0wt. %, N: 0.005 wt% or less, Oxygen: 0.005 wt% or less, and the balance substantially Fe, is heated to a temperature of 950 to 1300°C, and then hot A method for manufacturing a steel material for a vibration energy absorbing member, characterized in that the steel material is processed, and then, after the hot working is completed, a final heat treatment is performed at a temperature of 950 to 1300°C.
JP1164915A 1989-06-27 1989-06-27 Method of manufacturing steel material for vibration energy absorbing member Expired - Lifetime JP2783365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1164915A JP2783365B2 (en) 1989-06-27 1989-06-27 Method of manufacturing steel material for vibration energy absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1164915A JP2783365B2 (en) 1989-06-27 1989-06-27 Method of manufacturing steel material for vibration energy absorbing member

Publications (2)

Publication Number Publication Date
JPH0331467A true JPH0331467A (en) 1991-02-12
JP2783365B2 JP2783365B2 (en) 1998-08-06

Family

ID=15802277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1164915A Expired - Lifetime JP2783365B2 (en) 1989-06-27 1989-06-27 Method of manufacturing steel material for vibration energy absorbing member

Country Status (1)

Country Link
JP (1) JP2783365B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240614B1 (en) 1998-11-20 2001-06-05 Ricoh Company, Ltd. Blind rivet disassembling device and method and production system using the method
US6330738B1 (en) 1998-08-28 2001-12-18 Ricoh Company, Ltd. Dismounting method for fastening member, dismounting device for fastening member, attachment construction of fastening member and production system using the dismounting method for fastening member
US6427336B1 (en) 1998-11-27 2002-08-06 Ricoh Company, Ltd. Clamping member disassembling device and attachment structure thereof, as well as clamping member disassembling method and production system using the method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635717A (en) * 1979-08-31 1981-04-08 Sumitomo Metal Ind Ltd Production of hot-rolled steel material of superior vibration attenuating characteristic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635717A (en) * 1979-08-31 1981-04-08 Sumitomo Metal Ind Ltd Production of hot-rolled steel material of superior vibration attenuating characteristic

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6330738B1 (en) 1998-08-28 2001-12-18 Ricoh Company, Ltd. Dismounting method for fastening member, dismounting device for fastening member, attachment construction of fastening member and production system using the dismounting method for fastening member
US6332259B1 (en) 1998-08-28 2001-12-25 Ricoh Company, Ltd. Production system using the dismounting method for fastening member
US6581259B1 (en) 1998-08-28 2003-06-24 Ricoh Company, Ltd. Attachment construction of fastening member
US6240614B1 (en) 1998-11-20 2001-06-05 Ricoh Company, Ltd. Blind rivet disassembling device and method and production system using the method
US6427336B1 (en) 1998-11-27 2002-08-06 Ricoh Company, Ltd. Clamping member disassembling device and attachment structure thereof, as well as clamping member disassembling method and production system using the method

Also Published As

Publication number Publication date
JP2783365B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
KR100414937B1 (en) Cold workable steel bar or wire and process
JP3020617B2 (en) Ultra-strength cold-rolled steel sheet with good bending workability and impact properties and method for producing the same
JP3554505B2 (en) Hot-rolled wire rod / steel bar for machine structure and manufacturing method thereof
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JP3160329B2 (en) Manufacturing method of heat resistant high strength bolt
JPH0331467A (en) Production of steel material for member absorbing vibration energy
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
KR100358939B1 (en) Method for manufacturing steel for construction with tensile strength of 58 kgf/mm¬2 class
JPH0143008B2 (en)
JPH0525543A (en) Production of reinforcing steel having high strength and high yield elongation
JPH0649591A (en) High strength hot rolled steel plate excellent in workability and its production
JPH05179346A (en) Production of hot rolled steel sheet having high notch fatigue strength
KR102492631B1 (en) Wire rod and parts for fastening with improved delayed fracture resisitance and method for manufacturing the same
JP3540927B2 (en) Low yield point steel with excellent toughness
KR102181788B1 (en) High strength medium carbon steel for earthquake-proof and its manufacturing method
JPH08225845A (en) Production of high strength bolt excellent in delayed fracture resistance
KR100311786B1 (en) Method for manufacturing steel strip(50kg) with superior strength and yield ratio
KR100415656B1 (en) MANUFACTURING METHOD OF TENSILE STRENGTH 58 kgf/mm¬2 GRADE STEEL FOR BUILDING CONSTRUCTION HAVING HIGH TEMPERATURE STRENGTH PROPERTIES
KR100480003B1 (en) A method for manufacturing tmcp thick steel sheet for construction structure with superior yeild ratio
JP3271508B2 (en) Manufacturing method of low yield point structural steel sheet
JP3174098B2 (en) Low-yield-ratio web thin-walled H-section steel and method for producing the same
JPH04120243A (en) High tensile strength cold rolled steel sheet and its production
KR101665825B1 (en) Wire rod and steel wire having high strength and manufacturing method for the same
JP3317199B2 (en) Extremely mild steel for seismic isolation members and method of manufacturing the same