JPH0330479A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH0330479A
JPH0330479A JP1167748A JP16774889A JPH0330479A JP H0330479 A JPH0330479 A JP H0330479A JP 1167748 A JP1167748 A JP 1167748A JP 16774889 A JP16774889 A JP 16774889A JP H0330479 A JPH0330479 A JP H0330479A
Authority
JP
Japan
Prior art keywords
substrate
junction
along
dark current
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1167748A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kajiwara
梶原 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1167748A priority Critical patent/JPH0330479A/en
Publication of JPH0330479A publication Critical patent/JPH0330479A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an infrared detector high in sensitivity to infrared rays of long wavelength and small in dark current by a method wherein the infrared detector is provided with a photodiode whose P-N junction region with a prescribed pattern is formed on a semiconductor substrate, where the substrate is continuously decreased in minority carrier density starting from the P-N junction along the depthwise direction of the substrate. CONSTITUTION:An infrared detector is provided with a photodiode whose P-N junction region 11A with a prescribed pattern is formed on a semiconductor substrate 11 by introducing impurity atoms whose conductivity type is opposite to that of the substrate 11 into the semiconductor substrate 11, where the substrate 11 is continuously decreased in minority carrier density starting from the P-N junction 11A along the depthwise direction of the substrate. For instance, the P-type Hg1-XCdXTe substrate 11 so structured as to increase in carrier density 11A along the depthwise direction is employed, where the minority carrier concentration of the substrate 11 decreases continuously starting from the P-N junction 11A along the depthwise direction form 10<10>/cm<2> through 10<8>/cm<2>. By this setup, the electron density decreases in rate of change at the end of a P-N junction when a reverse bias is applied, and a detector small in dark current can be obtained.

Description

【発明の詳細な説明】 〔概 要〕 P−N接合を有するホトダイオードを設けた赤外!la
検知装置に関し、 長波長の赤外線に対して高感度を有し、かつ暗電流の低
い赤外線検知装置の構造を目的とし、半導体基板に該基
板の逆導電型不純物原子を導入して所定のパターンのl
−N接合領域を形成したホトダイオードを配設した装置
に於いて、前記P−N接合部より基板の深さ方向に沿っ
て該基板の少数キャリア濃度が連続的に小さく成るよう
にして構成する。
[Detailed Description of the Invention] [Summary] Infrared with a photodiode having a P-N junction! la
Regarding the detection device, with the aim of constructing an infrared detection device that has high sensitivity to long-wavelength infrared rays and low dark current, impurity atoms of the opposite conductivity type of the substrate are introduced into a semiconductor substrate to form a predetermined pattern. l
In an apparatus including a photodiode having a -N junction region formed therein, the minority carrier concentration of the substrate is configured to decrease continuously from the P-N junction along the depth direction of the substrate.

〔産業上の利用分野〕[Industrial application field]

本発明は光起電力型の赤外線検知装置に関する。 The present invention relates to a photovoltaic infrared detection device.

赤外線検知装置は小型、多画素、長波長帯域に高感度を
有する製品が要求されている。
Infrared detection devices are required to be small, have a large number of pixels, and have high sensitivity in long wavelength bands.

長波長帯域に高感度を有する検知装置を形成する場合に
は、P−N接合による光電変換部をエネルギーバンドギ
ャップの狭い半導体基板に形成することが必要であるが
、このようなエネルギーバンドギャップの狭い半導体基
板にP−N接合を形成すると、該P−N接合部に於ける
暗電流(1)N接合部に信号光が入射しない場合のリー
ク電流)が増加する傾向がある。
When forming a detection device with high sensitivity in a long wavelength band, it is necessary to form a photoelectric conversion section using a P-N junction on a semiconductor substrate with a narrow energy bandgap. When a PN junction is formed in a narrow semiconductor substrate, the dark current (1) leakage current when no signal light is incident on the N junction at the PN junction tends to increase.

この暗電流が多いとダイオードで信号光を光電変換した
場合、信号対雑音比が小さく成るため、この暗電流の発
生を少なくする必要がある。
If this dark current is large, the signal-to-noise ratio will be small when signal light is photoelectrically converted by a diode, so it is necessary to reduce the generation of this dark current.

〔従来の技術〕[Conventional technology]

従来のホトダイオードのようなP−N接合による赤外線
検知装置に於いては、所望の感光波長に対応したエネル
ギーハンドギヤツブを有する化合物半導体基板上に該基
板に対して逆導電型の不純物原子を導入してP−N接合
を該基板に形成してホトダイオードを形成していた。
In a conventional infrared detection device using a P-N junction such as a photodiode, impurity atoms of the opposite conductivity type are introduced onto a compound semiconductor substrate having an energy hand gear corresponding to a desired photosensitive wavelength. A photodiode was formed by forming a P-N junction on the substrate.

そのため、例えば水銀・カドミウム・テルル(Hgl−
8CdXTe)のような化合物半導体基板にホトダイオ
ードを形成する場合には、その基板を構成する原子の組
成比、即ちX値を変化させることで、該基板が所望のエ
ネルギーバンドギャップを有するようにしていた。
Therefore, for example, mercury, cadmium, tellurium (Hgl-
When a photodiode is formed on a compound semiconductor substrate such as 8CdXTe), the composition ratio of atoms constituting the substrate, that is, the X value, is changed so that the substrate has a desired energy band gap. .

第4図に従来のホトダイオードより成る赤外線検知装置
のエネルギーバンドの説明図を示す。
FIG. 4 shows an explanatory diagram of energy bands of a conventional infrared detection device made of a photodiode.

図で1はP型のtlgl−、Cd、 Teの基板結晶、
2は該基板結晶に形成されるホトダイオードのP−N接
合の空乏層、3は基板結晶にN型の不純物が導入された
N゛型領領域4はフェルミレベル、5は伝導帯の底のエ
ネルギーレベル、6は価電子帯の−L部のエネルギーレ
ベルである。
In the figure, 1 is a P-type tlgl-, Cd, Te substrate crystal;
2 is the depletion layer of the P-N junction of the photodiode formed in the substrate crystal, 3 is the N-type region 4 in which N-type impurities are introduced into the substrate crystal, is the Fermi level, and 5 is the energy at the bottom of the conduction band. Level 6 is the energy level of the −L portion of the valence band.

図示するように従来の装置では化合物半導体基板のP−
N接合部7に於ける基板のキャリア濃度と、該基板のP
−N接合部7より所定の寸法(1の深さの領域に於ける
基板のキャリア濃度は等しく形成していた。
As shown in the figure, in the conventional device, the P-
The carrier concentration of the substrate at the N junction 7 and the P of the substrate
The carrier concentration of the substrate in a region with a predetermined depth (1) from the -N junction 7 was formed to be equal.

ここで一般的に半導体基板のエネルギーバンドギャップ
をF、とし、赤外線の光速をC311をブランクの定数
とするとこのダイオードの最大窓光波長λは第(1)式
に示すようになる。
Here, in general, if the energy band gap of the semiconductor substrate is F and the speed of light of infrared rays is C311 as a blank constant, then the maximum window light wavelength λ of this diode is given by equation (1).

λ=hc/E、・・・・・・・・・(1)第(1)式で
示すように所望の波長λに感度を有するように、前記1
1g、□CdXTe0X値を変化させて巳、の値を所定
の値に決定することで所望の波長λに感度を有する赤外
線検知素子を形成していた。
λ=hc/E, (1) As shown in equation (1), the above 1.
By changing the values of 1g and □CdXTe0X and determining the value of □ to a predetermined value, an infrared sensing element sensitive to a desired wavelength λ was formed.

〔発明が解決しようとする課題」 ホトダイオードの暗電流は、ホトダイオード形成用の半
導体基板を構成する原子の組成等に基づくエネルギーバ
ンドギャップの大きさのような結晶自体の特性が支配的
であるので、この結晶自体の特性によって決定される暗
電流の値より更に暗電流を少なくしたホトダイオードを
得るのは事実上困難である。
[Problem to be solved by the invention] The dark current of a photodiode is dominated by the characteristics of the crystal itself, such as the size of the energy band gap, which is based on the composition of atoms constituting the semiconductor substrate for forming the photodiode. It is actually difficult to obtain a photodiode with a dark current that is lower than the dark current value determined by the characteristics of the crystal itself.

そのため、この結晶自体の特性で決定される値の範囲内
で暗電流の値が最も小さくなるように、例えば結晶に導
入する不純物原子の1度、或いはP−N接合部表面の処
理方法等のダイオードの製造プロセスに於ける諸条件を
改善することで、形成される検知装置の暗電流の値を結
晶自体の特性で自ずと決定される暗電流の内で最も小さ
い値になるように形成していた。
Therefore, in order to minimize the dark current value within the range of values determined by the characteristics of the crystal itself, for example, the number of impurity atoms introduced into the crystal, or the treatment method of the P-N junction surface, etc. By improving the various conditions in the diode manufacturing process, the dark current value of the formed detection device can be formed to be the smallest value among the dark current values naturally determined by the characteristics of the crystal itself. Ta.

本発明は、長波長頭載に感度を有し、かつ暗電流の値が
小さくなるようにした赤外線検知装置の堤供を目的とす
る。
An object of the present invention is to provide an infrared detection device that is sensitive to long wavelengths and has a small dark current value.

(課題を解決するための手段) 本発明の赤外線検知装置は第1図の原理図に示すように
、半導体基板11に該基板の逆導電型不純物原子を導入
して所定のパターンのP−N接合部11Aを形成したホ
トダイオードを配設した装置に於いて、 前記P−N接合部11Aより基板11の深さ方向に沿っ
て該基板の熱平衡状態での少数キャリア濃度農度が連続
的に小さく成るようにして構成する。
(Means for Solving the Problems) As shown in the principle diagram of FIG. 1, the infrared detecting device of the present invention has a predetermined pattern of P-N by introducing impurity atoms of the opposite conductivity type into a semiconductor substrate 11. In a device equipped with a photodiode forming the junction 11A, the minority carrier concentration ratio in the thermal equilibrium state of the substrate is continuously smaller along the depth direction of the substrate 11 than the P-N junction 11A. Configure it so that it becomes

〔作 用〕[For production]

本発明の赤外線検知装置に逆方向の電圧を印加した時の
キャリア濃度の分布図を第2図に示す。
FIG. 2 shows a carrier concentration distribution diagram when a reverse voltage is applied to the infrared detecting device of the present invention.

第2図で11はP型のIIg+−x CdXTeの基板
、12はP−N接合部の空乏層、13はN型不純物が導
入されたN′領領域14は模式的な熱平衡状(虚での電
子濃度曲線、15は模式的な熱平衡状態での正孔)店度
曲線、14Aは従来の装置に於は模式的な熱平徨i状態
での電子濃度曲線である。
In FIG. 2, 11 is a P-type IIg+-x CdXTe substrate, 12 is a depletion layer at the P-N junction, and 13 is an N' region 14 into which N-type impurities are introduced, which are in a schematic thermal equilibrium state (imaginary). 15 is a schematic electron concentration curve in a thermal equilibrium state, and 14A is a schematic electron concentration curve in a thermal equilibrium state in a conventional device.

図示するように本発明の装置では、矢印へに示すように
基板11の深さ方向に沿って、熱平衡状態での電子濃度
曲”KIA 14に示すように少数キャリアの電子濃度
が少になるようにしており、この本発明のダイオードに
逆方向に電圧を印加した時の電子濃度的vA16は、本
発明のダイオードに電圧を印加しない時の電子?店度曲
線14に沿って移動するため、電子濃度曲線14に接近
した状態になる。
As shown in the figure, in the apparatus of the present invention, the electron concentration of minority carriers decreases along the depth direction of the substrate 11 as shown by the arrow, as shown in the electron concentration curve "KIA 14" in the thermal equilibrium state. The electron concentration vA16 when a voltage is applied in the reverse direction to the diode of the present invention moves along the electron density curve 14 when no voltage is applied to the diode of the present invention, so the electron concentration vA16 is The state approaches the concentration curve 14.

これに対して従来の基板の深さ方向に一定の熱平衡状態
での電子4度曲4i14Aを有するダイオードに逆方向
の電圧を印加したときの従来の電子4度曲線17は、電
圧を印加しない時の従来の電子濃度曲線14Aに接近し
た状態になる。そして逆バイアスを印加した時の本発明
に於ける電子濃度曲線16と、従来装置の電子濃度曲線
17とを比較すると、空乏層12と基板11との境界面
のP−N接合部11Aに於ける逆バイアスを印加した時
の電子4度の変化率は、本発明の方が変化率が低い。
On the other hand, when a reverse voltage is applied to a diode having a conventional electronic 4th curve 4i14A in a constant thermal equilibrium state in the depth direction of the substrate, the conventional electronic 4th curve 17 is different from that when no voltage is applied. The state approaches the conventional electron concentration curve 14A. Comparing the electron concentration curve 16 of the present invention with the electron concentration curve 17 of the conventional device when a reverse bias is applied, it is found that at the PN junction 11A at the interface between the depletion layer 12 and the substrate 11. The rate of change of electron 4 degrees when a reverse bias is applied is lower in the present invention.

ごの空乏層と基板との境界面に於いて、逆方向に電圧を
印加した時の電子濃度の変化率が少ない程、濃度勾配に
応じて流れるいわゆる拡散電流による暗電流の発生が少
なくなり、本発明のように基板の深さ方向に沿って、該
基板の熱平衡状態に於ける少数キャリア)1度を低下さ
せることで、逆バイアスを印加した時の電子濃度の変化
率が少なくなって暗電流の少ない赤外線検知素子が得ら
れる。
At the interface between the depletion layer and the substrate, the smaller the rate of change in electron concentration when a voltage is applied in the opposite direction, the less dark current will be generated due to the so-called diffusion current that flows according to the concentration gradient. By lowering the minority carrier (minority carrier) 1 degree in the thermal equilibrium state of the substrate along the depth direction of the substrate as in the present invention, the rate of change in the electron concentration when a reverse bias is applied is reduced and dark An infrared sensing element with low current consumption can be obtained.

〔実 施 例〕〔Example〕

以下、図面を用いて本発明の一実施例につき詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第3図は本発明に於ける赤外線検知装置のキャリア濃度
分布(B)を、該検知装置を形成するl18+−xCd
x Te基板の深さ方向に対して該装置のエネルギーバ
ンド図(^)と共に模式的に示した図である。
FIG. 3 shows the carrier concentration distribution (B) of the infrared detection device according to the present invention.
It is a diagram schematically shown along with an energy band diagram (^) of the device in the depth direction of the xTe substrate.

図示するように、本発明の装置に於いては該検知装置の
P−N接合部11Aより基板の深さ方向に沿って少数キ
ャリア濃度が101G個/cm3より108個/cff
i3に連続的に小さくなっている。そしてこのように少
数キャリア濃度を基板の深さ方向に沿って小さくするに
はHg1−x caXTeの基板の深さ方向に沿ってキ
ャリア濃度が大に成るような基板を形成すると良い。こ
のような基板を形成するには、例えばM OCV D 
(Metal Organic Chemical V
apor Deposition)法、分子線エピタキ
シャル成長方法等の気相成長方法に於いて、CdTe1
板上にエピタキシャル層を形成しながらドーパントとな
る不純物原子の金(ΔU)、砒素(^S)等の供給量を
成長初期の段階では多くして、成長時間の経過とともに
徐々に少なくする。そして本実施例ではP−N接合部1
1Aのところで101b/ am”とし、所定の深さ、
例えば20μmの所で1018/ cna’ となるよ
うにしている。
As shown in the figure, in the device of the present invention, the minority carrier concentration is from 101 G/cm3 to 108 G/cff along the depth direction of the substrate from the P-N junction 11A of the detection device.
It has become smaller continuously since i3. In order to reduce the minority carrier concentration along the depth direction of the substrate, it is preferable to form a substrate of Hg1-x caXTe in which the carrier concentration increases along the depth direction of the substrate. To form such a substrate, for example MOCVD
(Metal Organic Chemical V
In vapor phase growth methods such as apor deposition method and molecular beam epitaxial growth method, CdTe1
While forming an epitaxial layer on the plate, the supply amount of impurity atoms such as gold (ΔU), arsenic (^S), etc., which become dopants is increased at the initial stage of growth, and gradually decreased as the growth time progresses. In this embodiment, the P-N junction 1
101b/am” at 1A, the specified depth,
For example, it is set to 1018/cna' at 20 μm.

このようにして基板上に正孔のキャリア濃度が順次低下
したlIg+−x Cdx Teのエピタキシャル層を
形成した後、最上層のHg+−x Cdx Teの結晶
よりボロン原子をイオン注入してP型層を形成してホト
ダイオードを形成する。
After forming an epitaxial layer of lIg+-x Cdx Te in which the hole carrier concentration gradually decreases on the substrate in this way, boron atoms are ion-implanted from the Hg+-x Cdx Te crystal in the top layer to form a P-type layer. to form a photodiode.

このようにすれば基板のP−N接合部より深さ方向に沿
って多数キャリア濃度が高くなる基板にホトダイオード
が形成されたことになる。
In this way, a photodiode is formed on a substrate where the majority carrier concentration is higher in the depth direction than at the PN junction of the substrate.

半導体基板に於いては、一般に真性キャリア濃度N1と
、電子濃度Nおよび正孔4度Pとの間には第(2)弐の
関係がある。
In a semiconductor substrate, there is generally a (2)-2 relationship between the intrinsic carrier concentration N1, the electron concentration N, and the hole 4 degree P.

(Nil=N−P・・・・・・・・・(2)従って、P
型のHg+−x CdXTeの基板に於いて、基板の深
さ方向に沿って少数キャリア濃度Nが少になると多数キ
ャリア濃度が基板の深さ方向に沿って大になる。
(Nil=N-P (2) Therefore, P
In a Hg+-x CdXTe substrate, when the minority carrier concentration N decreases along the depth direction of the substrate, the majority carrier concentration increases along the depth direction of the substrate.

このようにすると、P−N接合部より基板の深さ方向に
沿って少数キャリア濃度が低下するのでP−N接合端に
於いて、逆バイアスを印加した時に電子濃度の変化率が
低下し、暗電流の発生の少ない検知装置が得られる。
In this way, the minority carrier concentration decreases from the P-N junction along the depth direction of the substrate, so that when a reverse bias is applied at the P-N junction end, the rate of change in electron concentration decreases, A detection device with less dark current generation can be obtained.

なお、上記実施例では基板結晶にHgl□Cd、 Te
のII−Vl族化合物半導体結晶を用いたが、その他、
n−vr族のCdTeのような化合物半導体、m−v族
のGaAsのような化合物半導体、IV −Vl族のP
b5nTeのような化合物半導体やA I GaAs等
の三元化合物半導体結晶を用いても良い。
In the above embodiment, Hgl□Cd, Te
II-Vl group compound semiconductor crystal was used, but other
Compound semiconductors such as CdTe of the n-vr group, compound semiconductors such as GaAs of the m-v group, P of the IV-Vl group
A compound semiconductor such as b5nTe or a ternary compound semiconductor crystal such as A I GaAs may also be used.

また化合物半導体基板に二次元にP−N接合を形成し、
二次元ホトダイオードを有する赤外線検知装置を形成し
ても良い。
In addition, a P-N junction is formed two-dimensionally on a compound semiconductor substrate,
An infrared sensing device may be formed with a two-dimensional photodiode.

〔発明の効果] 以上の説明から明らかなように本発明によれば、暗電流
の低下した、S/N比の大きい高品質な赤外線検知装置
が得られる効果がある。
[Effects of the Invention] As is clear from the above description, the present invention has the effect of providing a high-quality infrared detection device with reduced dark current and a high S/N ratio.

来装置の電子濃度曲線、 線を示す。Electron concentration curve of the previous device, Show the line.

18は真性キャリア濃度的18 is the intrinsic carrier concentration

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の赤外線検知装置の原理図、第2図は逆
バイアス印加時の検知装置のキャリア濃度の分布図、 第3図(A)と(B)は本発明の検知装置の実施例のエ
ネルギーバンド図とキャリア濃度の分布図、第4図は従
来の赤外線検知装置のエネルギーバンドの説明図である
。 図において、 11は半導体基板(P型11g+−++ Cd、 Te
l板)、11^はP−N接合面、12は空乏「、13は
N″領域14は電子濃度曲線、14Aは従来装置に於け
る電子濃度曲線、15は正孔濃度曲線、16は電圧印加
時の本発明の装置の電子濃度曲線、17は電圧印加時の
従弟 図 這tべ”イア7e”μ加ドア史矢口1(11めAでln
’yg度力、づトオ’Fm第 2 図 不発日す神知櫨1内ズ坊台ダ・jハτ窄!ムキ“−バシ
F図<A)v:七す了;t7t、l粁gJ (B) 第3図
Fig. 1 is a principle diagram of the infrared detection device of the present invention, Fig. 2 is a carrier concentration distribution diagram of the detection device when reverse bias is applied, and Fig. 3 (A) and (B) are implementations of the detection device of the present invention. An example energy band diagram and carrier concentration distribution diagram, FIG. 4 is an explanatory diagram of the energy band of a conventional infrared detection device. In the figure, 11 is a semiconductor substrate (P type 11g+-++ Cd, Te
1 plate), 11^ is the P-N junction surface, 12 is the depletion ", 13 is the N" region 14 is the electron concentration curve, 14A is the electron concentration curve in the conventional device, 15 is the hole concentration curve, 16 is the voltage The electron concentration curve of the device of the present invention when voltage is applied, 17 is the cousin diagram when voltage is applied.
'yg degree power, zutoo' Fm 2nd figure misfire day kamichizaki 1 nazubodai da jha τ narrowing! Muki "- Bashi F diagram < A) v: 7th completion; t7t, l 粁gJ (B) Figure 3

Claims (1)

【特許請求の範囲】 半導体基板(11)に該基板の逆導電型不純物原子を導
入して所定のパターンのP−N接合部(11A)を形成
したホトダイオードを配設した装置に於いて、 前記P−N接合部より基板の深さ方向に沿って該基板の
少数キャリア濃度が連続的に小さく成るようにしたこと
を特徴とする赤外線検知装置。
[Scope of Claims] In an apparatus in which a photodiode is provided in which a semiconductor substrate (11) is doped with impurity atoms of the opposite conductivity type of the substrate to form a P-N junction (11A) in a predetermined pattern, An infrared detection device characterized in that the minority carrier concentration of the substrate decreases continuously from the P-N junction along the depth direction of the substrate.
JP1167748A 1989-06-28 1989-06-28 Infrared detector Pending JPH0330479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1167748A JPH0330479A (en) 1989-06-28 1989-06-28 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1167748A JPH0330479A (en) 1989-06-28 1989-06-28 Infrared detector

Publications (1)

Publication Number Publication Date
JPH0330479A true JPH0330479A (en) 1991-02-08

Family

ID=15855376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1167748A Pending JPH0330479A (en) 1989-06-28 1989-06-28 Infrared detector

Country Status (1)

Country Link
JP (1) JPH0330479A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147425A (en) * 1993-11-25 1995-06-06 Nec Corp Infrared detector
JPH0945953A (en) * 1995-08-01 1997-02-14 Nec Corp Array infrared detector
JPH09153639A (en) * 1995-11-30 1997-06-10 Nec Corp Photovoltaic infrared ray receiving device and manufacture of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147425A (en) * 1993-11-25 1995-06-06 Nec Corp Infrared detector
JPH0945953A (en) * 1995-08-01 1997-02-14 Nec Corp Array infrared detector
JPH09153639A (en) * 1995-11-30 1997-06-10 Nec Corp Photovoltaic infrared ray receiving device and manufacture of the same

Similar Documents

Publication Publication Date Title
Razeghi Short-wavelength solar-blind detectors-status, prospects, and markets
US7687871B2 (en) Reduced dark current photodetector
US9450013B2 (en) Low noise CdHgTe photodiode array
US4137544A (en) Mercury cadmium telluride photodiode
US9397244B2 (en) CdHgTe photodiodes array
KR20000005121A (en) Three colour sensor with a pin or nip series of layers
JPH0330479A (en) Infrared detector
JPH0828493B2 (en) Light detector
US3436549A (en) P-n photocell epitaxially deposited on transparent substrate and method for making same
RU2340981C1 (en) Method of making photodetector array
US5198370A (en) Method for producing an infrared detector
IL103347A (en) Photoresponsive device and method for fabricating the same including composition grading and recessed contacts for trapping minority carriers
US4443809A (en) p-i-n Photodiodes
US4477964A (en) Method of making p-i-n photodiodes
JPH07105522B2 (en) Semiconductor device
JPH06237005A (en) Photodetector element and manufacture thereof
JPH0385762A (en) Photodetector
KR20230122673A (en) Photodiode structures and methods for manufacturing them
JPH02291179A (en) Infrared ray detector
SU833119A1 (en) Photosensitive cell
JPH04313267A (en) Infrared rays detector
JP2023167185A (en) Light receiving element
Ovsyuk et al. Selective photodetectors: a view from Russia
KR100525169B1 (en) FABRICATION OF HgCdTe PHOTO DIODE
JPH03219670A (en) Manufacture of photoelectric transducer