JPH07147425A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH07147425A
JPH07147425A JP5295607A JP29560793A JPH07147425A JP H07147425 A JPH07147425 A JP H07147425A JP 5295607 A JP5295607 A JP 5295607A JP 29560793 A JP29560793 A JP 29560793A JP H07147425 A JPH07147425 A JP H07147425A
Authority
JP
Japan
Prior art keywords
hgcdte
compound semiconductor
layer
junction
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5295607A
Other languages
Japanese (ja)
Other versions
JP2699838B2 (en
Inventor
Akira Ajisawa
昭 味澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5295607A priority Critical patent/JP2699838B2/en
Publication of JPH07147425A publication Critical patent/JPH07147425A/en
Application granted granted Critical
Publication of JP2699838B2 publication Critical patent/JP2699838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To provide a diode which has excellent characteristics by forming an n-type area which has Hg between lattice as donor on a p-type compound semiconductor crystal formed by successively laminating a first p-type compound semiconductor layer and a second p-type compound semiconductor on a substrate CONSTITUTION:Entered infrared ray is absorbed by an As doped p-HgCdTe layer 2, a p-HgCdTe layer 3 which has the Hg hole as accepter and an n<->- HgCdTe area 5 which has Hg between lattice generated by ion implantation as donor. The infrared rays are diffused as electrons or holes, are electrically separated by an pn-junction interface 8 and are outputted as a signal from an electrode 7. At that time, not much lattice defects that cause dark current is found in the vicinity of the pn-junction. Thus, element yield reduction due to incomplete heat treatment is eliminated and a HgCdTe diode which has excellent characteristics is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は禁制帯幅の狭い半導体、
特にHgを含む化合物半導体を用いた赤外線検出器に関
するものである。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor having a narrow band gap,
Particularly, the present invention relates to an infrared detector using a compound semiconductor containing Hg.

【0002】[0002]

【従来の技術】一般に赤外線検出器においては禁制帯幅
の狭い半導体を用いたものが高感度であることが知られ
ている。その中でも検出部分にpn接合を有する光起電
力型素子は、単素子を二次元に配列した構成を採った赤
外線撮像装置にとって非常に有効である。
2. Description of the Related Art It is generally known that an infrared detector using a semiconductor having a narrow band gap has high sensitivity. Among them, the photovoltaic element having a pn junction in the detection portion is very effective for an infrared imaging device having a configuration in which single elements are two-dimensionally arranged.

【0003】その代表的なものであるHgCdTeを用
いた光起電力型赤外線検出器について、図2を用いて簡
単に説明する。CdTe基板1上にMBE法を用いてH
gCdTe層をエピタキシャル成長させ、Hg雰囲気中
での熱処理によりHg空孔よりなるp−HgCdTe層
3を形成する。その後、レジストマスクを用い部分的に
イオン注入を施すことでイオン注入領域4を形成し、さ
らにイオン注入ダメージによる特性劣化を回避するため
に、熱処理を行い格子間のHgを結晶の奥へ拡散させn
- −HgCdTe領域5を形成し、pn接合界面8をダ
メージフリーの領域に移動させる。最後に保護膜6、電
極7を形成し素子は完成する。
A photovoltaic infrared detector using HgCdTe, which is a typical example, will be briefly described with reference to FIG. H on the CdTe substrate 1 using the MBE method
The gCdTe layer is epitaxially grown and heat-treated in an Hg atmosphere to form a p-HgCdTe layer 3 composed of Hg vacancies. After that, ion implantation is partially performed using a resist mask to form the ion implantation region 4. Further, in order to avoid characteristic deterioration due to ion implantation damage, heat treatment is performed to diffuse interstitial Hg into the depth of the crystal. n
- forming a -HgCdTe region 5, to move the pn junction interface 8 to the damage free areas. Finally, the protective film 6 and the electrode 7 are formed to complete the device.

【0004】入射した赤外線はp−HgCdTe層3及
びn- −HgCdTe領域5で吸収され、電子あるいは
ホールとなって拡散し、pn接合部分で電気的に分離さ
れ、信号として電極7(p側の電極はここでは省略し
た)より出力される。
The incident infrared ray is absorbed by the p-HgCdTe layer 3 and the n -- HgCdTe region 5, diffuses as an electron or a hole, is electrically separated at the pn junction portion, and is electrically separated at the electrode 7 (on the p side) as a signal. The electrodes are omitted here).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この様
な赤外線検出器には以下に述べる欠点が存在する。
However, such an infrared detector has the following drawbacks.

【0006】pn型接合形成には上述したようにイオン
注入法が用いられるのが、制御性、簡便性を考えると最
も有利な方法であり、イオン注入ダメージによる特性劣
化改善のため、その後の工程で熱処理を施すのが一般的
な方法である。この熱処理により、イオン注入で生じた
格子間のHgがp−HgCdTe層3中のHg空孔を介
して拡散し、イオン注入ダメージのない領域にpn接合
を形成するが、その拡散は比較的速く、更にHg空孔の
数にも大きく依存するために、拡散フロント即ちpn接
合界面8を十分に制御するのは困難である。特にエピタ
キシャル結晶でHgCdTe層が10〜15μm程度の
薄い結晶を用いた場合、熱処理により、格子歪の多い基
板との界面近傍までpn接合が移動する可能性もあり、
暗電流の増加等特性劣化を招くことも有り得る。
As described above, the ion implantation method is used for the formation of the pn-type junction, which is the most advantageous method in view of controllability and simplicity. In order to improve the characteristic deterioration due to ion implantation damage, the subsequent steps are performed. It is a general method to heat-treat. By this heat treatment, the interstitial Hg generated by the ion implantation diffuses through the Hg vacancies in the p-HgCdTe layer 3 to form a pn junction in a region free from ion implantation damage, but the diffusion is relatively fast. Moreover, it is difficult to sufficiently control the diffusion front, that is, the pn junction interface 8 because it also largely depends on the number of Hg vacancies. In particular, when a thin crystal having an HgCdTe layer of about 10 to 15 μm is used as the epitaxial crystal, the pn junction may move to the vicinity of the interface with the substrate having a large amount of lattice strain by heat treatment,
There is a possibility that characteristic deterioration such as increase of dark current may be caused.

【0007】本発明の目的は、これらの欠点を除いた赤
外線検出器を提供することにある。
An object of the present invention is to provide an infrared detector which eliminates these drawbacks.

【0008】[0008]

【課題を解決するための手段】本発明の光起電力赤外線
検出器は、Hgを含む化合物半導体を用いた赤外線検出
器であって、基板上にp型ドーパントをドーピングした
第一の化合物半導体層、Hg空孔をアクセプタとしたp
型の第二の化合物半導体層が順次積層されたp型化合物
半導体結晶に、格子間のHgをドナーとしたn型の領域
が形成されていることを特徴とするものである。
A photovoltaic infrared detector according to the present invention is an infrared detector using a compound semiconductor containing Hg, which is a first compound semiconductor layer in which a p-type dopant is doped on a substrate. , P with Hg vacancies as acceptors
In the p-type compound semiconductor crystal in which the second type compound semiconductor layers of the type are sequentially stacked, an n-type region using Hg between the lattices as a donor is formed.

【0009】[0009]

【作用】基板上に複数の化合物半導体層を形成した赤外
線検知装置としては、従来よりCdTe基板上にx値の
大きいHg1 - x Cdx Teバッファ層とx値の小さい
Hg1 - x Cdx Te層を積層したダイオードが既に提
案されていた(特開平1−233777号公報等)。こ
れは、ダイオードが形成される部分だけ選択的にキャリ
ア濃度を低減し、各ダイオード(画素)間のクロストー
クを低減することを目的とした装置である。このような
構成においてHgの拡散を制御することは不可能であ
り、本願発明の目的を達成することはできなかった。
The infrared detection device in which a plurality of compound semiconductor layer to the action substrate, large Hg 1 x values on CdTe substrate conventionally - x Cd x Te buffer layer and the x value smaller Hg 1 - x Cd x A diode in which a Te layer is laminated has already been proposed (JP-A-1-233777, etc.). This is a device intended to selectively reduce the carrier concentration only in a portion where a diode is formed and to reduce crosstalk between each diode (pixel). In such a structure, it is impossible to control the diffusion of Hg, and the object of the present invention could not be achieved.

【0010】これに対し、本発明の赤外線検出器は、基
板との界面近傍にはAs等のp型ドーパントをドーピン
グした層、その上にHg空孔をアクセプタとしたp型の
層があるp型HgCdTe結晶を用い、イオン注入によ
るpn接合ダイオード形成、注入後の熱処理等を含む通
常のプロセスを行っている。上記二層構造のp型HgC
dTe結晶を用いているため、熱処理によりHg空孔を
介して拡散する格子間のHgはHg空孔の殆ど存在しな
いp型ドーパントをドーピングした層で止まる。従って
pn接合位置は格子歪が多く存在する基板との界面近傍
まで達することはなく、それによる暗電流増加等のダイ
オード特性の劣化もみられない。
On the other hand, the infrared detector of the present invention has a layer doped with a p-type dopant such as As near the interface with the substrate, and a p-type layer having Hg vacancies as an acceptor thereon. Using a type HgCdTe crystal, a normal process including forming a pn junction diode by ion implantation and heat treatment after implantation is performed. P-type HgC having the above two-layer structure
Since the dTe crystal is used, the interstitial Hg diffused through the Hg vacancies by the heat treatment stops at the layer doped with the p-type dopant having almost no Hg vacancies. Therefore, the pn junction position does not reach the vicinity of the interface with the substrate where a large amount of lattice strain exists, and the deterioration of diode characteristics such as an increase in dark current due to it does not occur.

【0011】[0011]

【実施例】次に、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will now be described with reference to the drawings.

【0012】図1は本発明の実施例を示す図である。ア
クセプタの種類の異なる2層のp型HgCdTe結晶上
にフォトダイオードを形成した本発明の製造方法につい
て簡単に述べる。
FIG. 1 is a diagram showing an embodiment of the present invention. The manufacturing method of the present invention in which a photodiode is formed on two layers of p-type HgCdTe crystals having different types of acceptors will be briefly described.

【0013】CdTe基板1上にAsをドーピングした
p−HgCdTe層2を5μm、ノンドープのHgCd
Teを5μm、順次MBE法により成長し、Hg雰囲気
中のp化アニールによりノンドープのHgCdTe中に
Hg空孔を作りHg空孔によるp−HgCdTe層3を
形成する。その後、約50μmφのマスクを通してホウ
素(B)を部分的にイオン注入しpn接合を形成する。
イオン注入エネルギーは150keV程度でよい。この
ときn型のドナーとなっているのは活性化したBとイオ
ン注入によって生じた格子間にあるHgである。イオン
注入領域4近傍にあるイオン注入ダメージ領域からpn
接合を遠ざけるために150〜200℃で1時間程度熱
処理を行う。このとき格子間のHgはp−HgCdTe
層3中のHg空孔を介して拡散し、n- −HgCdTe
領域5を形成しながらpn接合位置は全体的に外側に移
動するが、深さ方向の拡散はAsドーピングされたp−
HgCdTe層2との界面で止まる。これは格子間のH
gの拡散を助けるHg空孔がp−HgCdTe層2にほ
とんどないからである。またこの界面は一連の成長で形
成され、格子定数のズレもないことから格子欠陥等によ
り生じる界面準位やトラップ準位が非常に少ない領域で
ある。その後保護膜6、電極7を形成し素子は完成す
る。
An As-doped p-HgCdTe layer 2 having a thickness of 5 μm and a non-doped HgCd substrate 1 is formed on the CdTe substrate 1.
Te is grown to 5 μm sequentially by the MBE method, and Hg vacancies are formed in non-doped HgCdTe by p-annealing in an Hg atmosphere to form the p-HgCdTe layer 3 by the Hg vacancies. After that, boron (B) is partially ion-implanted through a mask of about 50 μmφ to form a pn junction.
Ion implantation energy may be about 150 keV. At this time, the n-type donor is activated B and Hg between the lattices generated by ion implantation. From the ion implantation damage region near the ion implantation region 4, pn
Heat treatment is performed at 150 to 200 ° C. for about 1 hour in order to separate the joints. At this time, Hg between lattices is p-HgCdTe.
Diffuses through Hg vacancies in layer 3 to form n -- HgCdTe
While forming the region 5, the pn junction position is entirely moved to the outside, but the diffusion in the depth direction is caused by the As-doped p-
It stops at the interface with the HgCdTe layer 2. This is the interstitial H
This is because there are almost no Hg vacancies in the p-HgCdTe layer 2 that help the diffusion of g. Since this interface is formed by a series of growth and there is no deviation of the lattice constant, it is a region where the interface level and the trap level caused by lattice defects and the like are very small. After that, the protective film 6 and the electrode 7 are formed to complete the device.

【0014】次に動作を簡単に説明する。入射した赤外
線はAsをドーピングしたp−HgCdTe層2、Hg
空孔によるp−HgCdTe層3及びn- −HgCdT
e領域5で吸収され、電子あるいはホールとなって拡散
し、pn接合部分で電気的に分離され、信号として電極
7(p側の電極はここでは省略した)より出力される。
このとき、前述したように本発明の構造では暗電流の原
因となるpn接合近傍での格子欠陥が非常に少ないこと
から、良好な特性のダイオードが得られる。
Next, the operation will be briefly described. The incident infrared rays are As-doped p-HgCdTe layer 2 and Hg.
P-HgCdTe layer 3 and n -- HgCdT due to holes
It is absorbed in the e region 5, diffused as electrons or holes, electrically separated at the pn junction, and output as a signal from the electrode 7 (the p-side electrode is omitted here).
At this time, as described above, in the structure of the present invention, the number of lattice defects in the vicinity of the pn junction, which causes dark current, is very small, so that a diode having good characteristics can be obtained.

【0015】以上述べたように本発明を用いれば、歪等
格子欠陥の多いCdTe基板との界面近傍から離れた所
に制御性良くpn接合を形成できるため、熱処理の不確
定さによる素子の歩留まり低下もなく良好な特性のHg
CdTeダイオードを再現良く作製することができる。
As described above, according to the present invention, a pn junction can be formed with good controllability at a position away from the vicinity of the interface with a CdTe substrate having many lattice defects such as strain. Hg with good characteristics without deterioration
The CdTe diode can be manufactured with good reproducibility.

【0016】本実施例では狭禁制帯幅の化合物半導体と
してp−HgCdTe層を用いた場合について示した
が、Hgの拡散が関与したpn接合形成機構が同等であ
れば材料、プロセス条件等はこれに限るものではない。
In this embodiment, the case where the p-HgCdTe layer is used as the compound semiconductor having a narrow band gap is shown. However, if the pn junction forming mechanism involving the diffusion of Hg is the same, the material, process conditions, etc. are the same. It is not limited to.

【0017】[0017]

【発明の効果】以上詳細に説明したように、本発明は熱
処理の不確定さによる素子の歩留まり低下もなく、良好
な特性のHgCdTeダイオードを提供し、赤外線検出
器の高性能化に十分貢献するものである。
As described in detail above, the present invention provides an HgCdTe diode having good characteristics without lowering the yield of the device due to indeterminacy of heat treatment, and contributes sufficiently to the high performance of the infrared detector. It is a thing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例であるHgCdTeダイオード
を説明するための図である。
FIG. 1 is a diagram for explaining an HgCdTe diode that is an embodiment of the present invention.

【図2】従来例のHgCdTeダイオードを説明するた
めの断面図である。
FIG. 2 is a sectional view for explaining a conventional HgCdTe diode.

【符号の説明】[Explanation of symbols]

1 CdTe基板 2 Asをドーピングしたp−HgCdTe層 3 Hg空孔によるp−HgCdTe層 4 イオン注入領域 5 n- −HgCdTe領域 6 保護膜 7 電極 8 pn接合界面1 CdTe substrate 2 p-HgCdTe layer doped with As 3 p-HgCdTe layer with Hg vacancies 4 ion implantation region 5 n -- HgCdTe region 6 protective film 7 electrode 8 pn junction interface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Hgを含む化合物半導体を用いた赤外線
検出器において、基板上にp型ドーパントをドーピング
した第一の化合物半導体層、Hg空孔をアクセプタとし
たp型の第二の化合物半導体層が順次積層されたp型化
合物半導体結晶に、格子間のHgをドナーとしたn型の
領域が形成されている光起電力型赤外線検出器。
1. In an infrared detector using a compound semiconductor containing Hg, a first compound semiconductor layer doped with a p-type dopant on a substrate and a p-type second compound semiconductor layer having Hg vacancies as an acceptor. A photovoltaic infrared detector in which an n-type region having Hg as a donor between the lattices is formed in a p-type compound semiconductor crystal in which the above are sequentially stacked.
JP5295607A 1993-11-25 1993-11-25 Infrared detector and manufacturing method thereof Expired - Lifetime JP2699838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5295607A JP2699838B2 (en) 1993-11-25 1993-11-25 Infrared detector and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5295607A JP2699838B2 (en) 1993-11-25 1993-11-25 Infrared detector and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07147425A true JPH07147425A (en) 1995-06-06
JP2699838B2 JP2699838B2 (en) 1998-01-19

Family

ID=17822819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5295607A Expired - Lifetime JP2699838B2 (en) 1993-11-25 1993-11-25 Infrared detector and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2699838B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504607A (en) * 2011-11-28 2015-02-12 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフCommissariata L’Energie Atomique Et Aux Energies Alternatives PN diode for infrared imager with controlled heterostructure self-located on HGCDTE
CN112582293A (en) * 2020-12-09 2021-03-30 北京智创芯源科技有限公司 Ion activation detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330479A (en) * 1989-06-28 1991-02-08 Fujitsu Ltd Infrared detector
JPH0555620A (en) * 1991-08-27 1993-03-05 Mitsubishi Electric Corp Manufacture of infrared ray sensor element
JPH05267707A (en) * 1992-03-18 1993-10-15 Fujitsu Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330479A (en) * 1989-06-28 1991-02-08 Fujitsu Ltd Infrared detector
JPH0555620A (en) * 1991-08-27 1993-03-05 Mitsubishi Electric Corp Manufacture of infrared ray sensor element
JPH05267707A (en) * 1992-03-18 1993-10-15 Fujitsu Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504607A (en) * 2011-11-28 2015-02-12 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフCommissariata L’Energie Atomique Et Aux Energies Alternatives PN diode for infrared imager with controlled heterostructure self-located on HGCDTE
CN112582293A (en) * 2020-12-09 2021-03-30 北京智创芯源科技有限公司 Ion activation detection method

Also Published As

Publication number Publication date
JP2699838B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
US20110241149A1 (en) Geiger-mode avalanche photodiode with high signal-to-noise ratio, and corresponding manufacturing process
US20090045395A1 (en) Strained-Layer Superlattice Focal Plane Array Having a Planar Structure
US5510644A (en) CDTE x-ray detector for use at room temperature
US4868622A (en) Semiconductor light-detecting device with alloyed isolating region
JP4829255B2 (en) Photosensitive element with high blue sensitivity, method for manufacturing the photosensitive element, and method for driving the photosensitive element
JP3471394B2 (en) Semiconductor UV sensor
US5304824A (en) Photo-sensing device
US5599733A (en) Method using cadmium-rich CdTe for lowering the metal vacancy concentrations of HgCdTe surfaces
JP2699838B2 (en) Infrared detector and manufacturing method thereof
US7041983B2 (en) Planar geometry buried junction infrared detector and focal plane array
JP2009283603A (en) Detection apparatus, light-receiving element array, and fabrication process therefor
JPS6118183A (en) Solid-state photodetecting device
JP2616707B2 (en) Manufacturing method of infrared detector
JP2848345B2 (en) Infrared detector
JP2955983B2 (en) Manufacturing method of infrared detector
CN114420777B (en) Avalanche photodiode and manufacturing method thereof
JP2817435B2 (en) Manufacturing method of array type infrared detector
JP2751702B2 (en) Infrared detector and manufacturing method thereof
JP2716025B2 (en) Array type infrared detector and method of manufacturing the same
JPH0870113A (en) Fabrication of infrared detector array
JPH10163517A (en) Semiconductor device and its manufacture
JP2001274451A (en) Semiconductor image pickup element and method of manufacturing it
JPH10233523A (en) Photodetector
JPH10125949A (en) Infrared detector
JPS5928386A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970826