JPH03297178A - Squid device - Google Patents

Squid device

Info

Publication number
JPH03297178A
JPH03297178A JP2099757A JP9975790A JPH03297178A JP H03297178 A JPH03297178 A JP H03297178A JP 2099757 A JP2099757 A JP 2099757A JP 9975790 A JP9975790 A JP 9975790A JP H03297178 A JPH03297178 A JP H03297178A
Authority
JP
Japan
Prior art keywords
thin film
films
film
substrate
temperature superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2099757A
Other languages
Japanese (ja)
Inventor
Osamu Nakatsu
中津 治
Mitsuyoshi Yoshii
吉井 光良
Junichi Kita
純一 喜多
Yasuharu Yamada
康晴 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2099757A priority Critical patent/JPH03297178A/en
Publication of JPH03297178A publication Critical patent/JPH03297178A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent any noise and self heating from being produced by forming a metal film manifesting a proximity effect at the upper and lower stage sides putting a step provided on a substrate therebetween and further forming a high temperature superconductor thin film on the former, and constructing a Josephson junction part by joinning mutually weakly said films thorugh the stepped part. CONSTITUTION:A step part 1a is provided on the surface of a substrate 10 by etching using a resist film 11 as a mask, and an Au thin film is formed by sputtering, etc., from the upper portion. At this time, as the substrate 10 is slanted in the direction of the advance of sputtering particles, a stepped part 1a produces a shadow, and hence the Au thin film is not partly formed and the Au thin films separated mutually are formed. Then, a YBCO thin film 12 is uniformly formed by sputtering from the upper portion of the films 2, 3, and is weakly coupled on the upper and lower stage sides at the stepped part 1a. Then, there is formed a pattern by a resist 13 where the films 12 on the upper and lower stage sides are joinned at two portions along the stepped part 1a, which is used as a mask to etch the film 12 and hence a DC- SQUID device is yielded. Hereby, the noise is reduced and self heat production can be restricted.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は脳等の生体磁気の測定を初めとする医用分野や
対潜哨戒等の軍需産業分野等における極微小磁界検出等
に用いられるSQUID素子に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is a SQUID used for detecting extremely small magnetic fields in the medical field, including the measurement of biomagnetism in the brain, and in the military industry field, such as anti-submarine patrol. Regarding elements.

〈従来の技術〉 SQUID(超伝導磁束量子干渉計)は、超伝導体の持
つ量子効果を利用して微小磁場を測定する装置である。
<Prior Art> SQUID (superconducting flux quantum interferometer) is a device that measures minute magnetic fields using the quantum effect of superconductors.

このSQUIDにおける検出素子であるSQUID素子
は、超伝導体リング内に一つないしは二つのジョセフソ
ン接合部を持つ素子であって、現在のところ9.23に
の超伝導転移温度を持つNbを用いたものが実用化され
ている。
The SQUID element, which is the detection element in this SQUID, has one or two Josephson junctions in a superconductor ring, and currently contains Nb, which has a superconducting transition temperature of 9.23. The one used has been put into practical use.

一方、近年において発見され、研究されている高温超伝
導体(酸化物超伝導体)、特にY B az Cu30
.4を初めとする、液体窒素温度より高い臨界温度を持
つ物質は、その応用面で脚光を浴びているが、このよう
な高温超伝導体を材料としたSQUID素子は未だ実用
化されるに至っていない。
On the other hand, high-temperature superconductors (oxide superconductors) that have been discovered and studied in recent years, especially YB az Cu30
.. 4 and other substances with critical temperatures higher than liquid nitrogen temperature have been in the spotlight for their applications, but SQUID devices made from such high-temperature superconductors have yet to be put into practical use. not present.

〈発明が解決しようとする課題〉 ところで、Y B at C030?−8等の高温超伝
導体はコヒーレント長が短いため、これを用いた薄膜に
不均一な部分が存在したり、あるいは膜を薄くしていけ
ばいくほど、磁束が透過しやすいという性質を持つ。
<Problem to be solved by the invention> By the way, Y B at C030? High-temperature superconductors such as -8 have a short coherence length, so thin films made using them may have non-uniform areas, or the thinner the film is, the easier it is for magnetic flux to pass through. .

SQUID素子においては一般に、磁束が透過する方が
良い部分(ジャンクション部分)と、透遇すると不都合
な部分(電極部等)がある。
Generally, in a SQUID element, there are parts (junction parts) where it is better for the magnetic flux to pass through, and parts (electrode parts, etc.) where it is inconvenient for the magnetic flux to pass through.

電極部への磁束の透過や、あるいはその透過した磁束の
移動があるとノイズの原因となる。従って、高温超伝導
体を用いたSQUID素子を得るためには、ジャンクシ
ョン部分を除いて磁束が侵入しないようにすることが課
題となる。
Transmission of magnetic flux to the electrode portion or movement of the transmitted magnetic flux causes noise. Therefore, in order to obtain a SQUID device using a high-temperature superconductor, it is a challenge to prevent magnetic flux from penetrating except for the junction portion.

本発明はこのような課題を解決して高温超伝導体を用い
たSQUID素子を実用化すべくなされたもので、ジャ
ンクション部分を除く箇所に磁束が侵入しにくい構造を
持つ高温超電導体薄膜を用いたSQUID素子の提供を
目的としている。
The present invention has been made to solve these problems and to put into practical use a SQUID device using a high-temperature superconductor.The present invention uses a high-temperature superconductor thin film that has a structure that prevents magnetic flux from penetrating into areas other than junctions. The purpose is to provide SQUID devices.

〈課題を解決するための手段〉 上記の目的を達成するための構成を、実施例に対応する
第1図を参照しつつ説明すると、本発明では、段差が設
けられた基板1の表面に、その段部1aを挟んで上段側
および下段側の各平面にそれぞれ高温超伝導体薄膜に対
して近接効果を有する金属薄膜2および3を形成し、そ
の両段の金属薄膜2および3の上方に高温超伝導体薄膜
4を形成して、その上段側および下段側の高温超伝導体
薄膜4aおよび4bを、段部1aにおいて高温超伝導体
薄膜の狭窄部5a、5bによって互いに接合している。
<Means for Solving the Problems> A configuration for achieving the above object will be described with reference to FIG. 1 corresponding to the embodiment. Metal thin films 2 and 3 having a proximity effect with respect to the high-temperature superconductor thin film are formed on each of the upper and lower planes with the stepped portion 1a in between, and above the metal thin films 2 and 3 on both stages. A high-temperature superconductor thin film 4 is formed, and the upper and lower high-temperature superconductor thin films 4a and 4b are joined to each other at the step 1a by narrowed portions 5a and 5b of the high-temperature superconductor thin film.

〈作用〉 ジョセフソンジャンクション部となる狭窄部5a、5b
を除く部分の高温超伝導体薄膜4aおよび4bに接触す
る金属薄膜2および3は、近接効果によって超伝導状態
となる。この近接効果を発揮する金属としてはAu、A
I、Pt等があるが、そのコヒーレント長は高温超伝導
体よりも一般に大幅に長く、従ってこの電極部分のコヒ
ーレント長は長くなり、その分だけ磁束の侵入が少なく
なる。
<Function> Constriction portions 5a and 5b that become Josephson junction portions
The metal thin films 2 and 3 in contact with the high-temperature superconductor thin films 4a and 4b except for the portions thereof become superconductive due to the proximity effect. Metals that exhibit this proximity effect include Au, A
There are I, Pt, etc., but their coherence length is generally much longer than that of high-temperature superconductors, so the coherence length of this electrode portion is longer, and the penetration of magnetic flux is reduced accordingly.

〈実施例〉 第1図は本発明実施例の斜視図で、DC−3QUIDに
本発明を適用した例を示している。
<Embodiment> FIG. 1 is a perspective view of an embodiment of the present invention, showing an example in which the present invention is applied to a DC-3QUID.

MgOやYSZ等の、高温超伝導体と整合性の良い材料
で形成された基板1の表面には段差が設けられており、
段部1aを挾んで上段側および下段側の平面に、それぞ
れAui膜2および3が形成されている。
A step is provided on the surface of the substrate 1 made of a material having good compatibility with a high temperature superconductor, such as MgO or YSZ.
Au films 2 and 3 are formed on the upper and lower planes of the step portion 1a, respectively.

そして、その両段のAu薄膜2および3の上方には、高
温超伝導体であるYBCO薄膜4aおよび4bがそれぞ
れ形成され、これらは段部1aをまたいで形成された同
じYBCO3膜の二つの狭窄部5aおよび5bによって
相互に接合されている。
Above the Au thin films 2 and 3 on both stages, YBCO thin films 4a and 4b, which are high-temperature superconductors, are formed, respectively, and these are two constrictions of the same YBCO3 film formed across the step 1a. They are joined to each other by portions 5a and 5b.

以上の本発明実施例によると、DC−3QUIDの電極
部を形成するYBCO薄膜4aおよび4bの下方に成膜
されたAu薄膜2および3は、近接効果によって超電導
化され、電極部のコヒーレント長が1000人程度堆積
る。その結果、この電極部にはコヒーレント長が長くな
った分だけ磁束が侵入しにくくなる。
According to the above-described embodiments of the present invention, the Au thin films 2 and 3 formed below the YBCO thin films 4a and 4b forming the electrode portions of the DC-3QUID are made superconducting by the proximity effect, and the coherent length of the electrode portions is Approximately 1,000 people accumulate. As a result, it becomes difficult for magnetic flux to enter this electrode portion by the length of the coherent length.

一方、ジャンクション部となる狭窄部5aおよび5bの
部分は、段部1aにおいて直接基板1と接触しているの
で、コヒーレント長はそのままであって、従ってこの部
分はウィークに接合されることになる。
On the other hand, since the portions of the narrowed portions 5a and 5b, which serve as junction portions, are in direct contact with the substrate 1 at the step portion 1a, the coherent length remains unchanged, and therefore, these portions are weakly joined.

次に、以上の本発明実施例の製造方法を述べる。Next, the manufacturing method of the above embodiment of the present invention will be described.

第2図はその製造手順の説明図である。FIG. 2 is an explanatory diagram of the manufacturing procedure.

まず、同図(a)に示すように、適当な厚さの平板状の
基板10を用意し、その表面に一様にレジストを塗布し
た後、フォトリソグラフィによって、第2図い)に示す
ようにその略中央部を境に片側を残して他側を除去する
First, as shown in FIG. 2(a), a flat substrate 10 of an appropriate thickness is prepared, and a resist is uniformly applied to the surface of the substrate. One side is left and the other side is removed with approximately the center as the border.

次に、残されたレジスト膜11をマスクとしてArイオ
ンミリングで基板10の表面をエツチングすることによ
って、第2図(C)に示すような段部1aを持つ基板1
を得る。
Next, by etching the surface of the substrate 10 by Ar ion milling using the remaining resist film 11 as a mask, the substrate 10 having the stepped portion 1a as shown in FIG. 2(C) is etched.
get.

そして、このような段部1aを持った基板1の上方から
スパッタリング等によってAu薄膜を成膜する。このと
き、第3図に示すように基板1をターゲット31からの
スパッタ粒子の進行方向に対して傾ける。これにより、
第2図(d)に示すように、段部1aが影になってAu
薄膜はこの段部1aの部分において製膜されない部分が
生じ、上段側と下段側の平面部分における基板1上に相
互に切り離された状態のAu薄膜2および3が成膜され
る。
Then, an Au thin film is formed by sputtering or the like from above the substrate 1 having such a stepped portion 1a. At this time, as shown in FIG. 3, the substrate 1 is tilted with respect to the traveling direction of sputtered particles from the target 31. This results in
As shown in FIG. 2(d), the stepped portion 1a becomes a shadow and the Au
A portion of the thin film is not formed at this step portion 1a, and Au thin films 2 and 3 are formed on the substrate 1 at the upper and lower planar portions in a state where they are separated from each other.

その状態で、Auf3it膜2および3の上からスパッ
タリング等によって第2図(e)のようにYBCO薄膜
12を一様に製膜する。このとき、第4図にこの状態で
の要部拡大図を示すように、得られるYBCOF4膜1
2は段部1aの部分で上段側と下段側の膜が弱く結合さ
れる。
In this state, a YBCO thin film 12 is uniformly formed on the Auf3it films 2 and 3 by sputtering or the like as shown in FIG. 2(e). At this time, as shown in FIG. 4, an enlarged view of the main part in this state, the obtained YBCOF4 film 1
Reference numeral 2 denotes a step portion 1a where the upper and lower membranes are weakly connected.

次に、第2図(f)に平面図で示すように、段部1aの
部分で上段側と下段側のYBCOfl膜12が2箇所で
接合されるようなりC−3QUIDのパターンをレジス
ト13により形成し、これをマスクとしてArイオンミ
リングでYBCOFII膜をエツチングする。これによ
って第1図に示したDC−3QUID素子が得られる。
Next, as shown in the plan view in FIG. 2(f), a C-3QUID pattern is formed using the resist 13 so that the upper and lower YBCOfl films 12 are bonded at two places at the step portion 1a. Using this as a mask, the YBCOFII film is etched by Ar ion milling. As a result, the DC-3QUID device shown in FIG. 1 is obtained.

なお、以上の実施例において、高温超電導体薄膜2.3
はYBCo薄膜に限らず、他の高温超電導体薄膜を使用
することが可能であることは勿論であるし、基板1の材
質としても、使用する高温超電導体と整合性の良好なも
のであれば何でもいい。また、近接効果を発揮する金属
としては、Auのほか、AI、Pt等があり、これらを
用いても良いことは言うまでもない。
In addition, in the above examples, the high temperature superconductor thin film 2.3
Of course, it is possible to use not only the YBCo thin film but also other high temperature superconductor thin films, and the material of the substrate 1 may be any material as long as it has good compatibility with the high temperature superconductor used. whatever. In addition to Au, there are other metals that exhibit the proximity effect, such as AI and Pt, and it goes without saying that these may also be used.

更に、本発明はジャンクション部を一つ備えたRF−3
QUIDにも全く同様にして適用可能であることは勿論
である。
Furthermore, the present invention provides an RF-3 with one junction section.
Of course, it can be applied to QUID in exactly the same way.

〈発明の効果〉 以上説明したように、本発明によれば、段部を挾んで上
段側と下段側に近接効果を発揮する金属薄膜をそれぞれ
形成し、その上方に高温超電導体薄膜を形成して、上段
側と下段側の高温超伝導体薄膜を段部において相互に弱
く接合してジョセフソン接合部を設けたので、電極部に
おける高温超電導体薄膜のコヒーレント長が、金属薄膜
としてAuを用いた場合には1000人程度堆積で長く
なる。
<Effects of the Invention> As explained above, according to the present invention, a metal thin film that exerts a proximity effect is formed on the upper and lower sides by sandwiching the stepped portion, and a high-temperature superconductor thin film is formed above the metal thin film. The high-temperature superconductor thin films on the upper and lower sides were weakly bonded to each other at the step part to form a Josephson junction, so that the coherent length of the high-temperature superconductor thin film in the electrode part was determined by using Au as the metal thin film. If there were, about 1,000 people would accumulate and it would be long.

その結果、電極部の膜内への磁束の侵入が少なくなって
従来のようなヒステリシスがなくなるとともに、膜内に
トラップされた磁束のゆらぎによるノイズが減少する。
As a result, the penetration of magnetic flux into the film of the electrode portion is reduced, eliminating hysteresis as in the conventional case, and reducing noise due to fluctuations in the magnetic flux trapped within the film.

また、磁束の移動、接触抵抗等により発生した熱がAu
等の金属薄膜を通って速やかに拡散するため、自己発熱
を抑制するという効果もある。
In addition, heat generated by magnetic flux movement, contact resistance, etc.
It also has the effect of suppressing self-heating because it quickly diffuses through thin metal films such as.

なお、高温超伝導体薄膜は近接効果を有する金属薄膜を
形成した後に製膜するので、特にその性能を劣化させる
ことはない。
Note that since the high temperature superconductor thin film is formed after forming the metal thin film having the proximity effect, there is no particular deterioration in its performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の斜視図、 第2図はその製造手順の説明図 第3図および第4図はその製造手順内における工程の補
足説明図である。 1・・・・基板 1a・・・・段部 2.3・・・・Au薄膜 4a、4b、−−−YBCO薄膜 5a、5b・・・・狭窄部 第3図 第4図
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is an explanatory diagram of its manufacturing procedure, and FIGS. 3 and 4 are supplementary explanatory diagrams of steps in the manufacturing procedure. 1...Substrate 1a...Stepped portion 2.3...Au thin film 4a, 4b, ---YBCO thin film 5a, 5b...Narrowed portion Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims]  段差が設けられた基板表面に、その段部を挟んで上段
側および下段側の各平面にそれぞれ高温超伝導体薄膜に
対して近接効果を有する金属薄膜が形成され、その両段
の金属薄膜の上方に高温超伝導体薄膜が形成され、かつ
、その上段側および下段側の高温超伝導体薄膜が上記段
部において高温超伝導体薄膜の狭窄部によって互いに接
合されてなるSQUID素子。
A metal thin film having a proximity effect with respect to the high-temperature superconductor thin film is formed on each of the upper and lower planes of the substrate surface with the step sandwiching the step. A SQUID element in which a high-temperature superconductor thin film is formed above, and the high-temperature superconductor thin films on the upper and lower sides are joined to each other at the stepped portion by a constricted portion of the high-temperature superconductor thin film.
JP2099757A 1990-04-16 1990-04-16 Squid device Pending JPH03297178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2099757A JPH03297178A (en) 1990-04-16 1990-04-16 Squid device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2099757A JPH03297178A (en) 1990-04-16 1990-04-16 Squid device

Publications (1)

Publication Number Publication Date
JPH03297178A true JPH03297178A (en) 1991-12-27

Family

ID=14255857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2099757A Pending JPH03297178A (en) 1990-04-16 1990-04-16 Squid device

Country Status (1)

Country Link
JP (1) JPH03297178A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863868A (en) * 1996-04-08 1999-01-26 Trw Inc. Superconductive quantum interference device for digital logic circuits
KR100309675B1 (en) * 1998-11-23 2001-12-17 오길록 Manufacturing method of high temperature superconducting stair corner Josephson junction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863868A (en) * 1996-04-08 1999-01-26 Trw Inc. Superconductive quantum interference device for digital logic circuits
KR100309675B1 (en) * 1998-11-23 2001-12-17 오길록 Manufacturing method of high temperature superconducting stair corner Josephson junction

Similar Documents

Publication Publication Date Title
US4454522A (en) Microbridge superconducting device having support with stepped parallel surfaces
JPH05297089A (en) Magnetic sensor
JPH03297178A (en) Squid device
EP0493258B1 (en) Superconducting quantum interference device formed of oxide superconductor thin film
JP2812060B2 (en) SQUID
Palmer et al. Quantum interference effects in high‐transition‐temperature thin‐film materials
JP2001111123A (en) Squid element
JPH0432275A (en) Stepped region type josephson junction element
JPH03283680A (en) Squid device using proximity effect
JP2853251B2 (en) Method of manufacturing wedge-type Josephson junction device
JPH0378675A (en) Squid element
JPH04233286A (en) Squid element
JPH03104177A (en) Squid element
JPH02213176A (en) Quasi-plane-type josephson junction device
JPH0323684A (en) Josephson junction element
USRE37587E1 (en) Superconducting quantum interference device formed of oxide superconductor thin film
JP2641972B2 (en) Superconducting element and manufacturing method thereof
JPH03297177A (en) Ic adjusting method of squid device
JP2001194436A (en) Magnetism-measuring apparatus
JP2564246B2 (en) SQUID magnetic sensor
JPH02192774A (en) Quasi-planar type josephson junction element
JPH01318981A (en) Unified squid
JPH06232463A (en) Squid
JPH0437073A (en) Josephson element
JPH0282586A (en) Manufacture of superconducting device