JPH03283680A - Squid device using proximity effect - Google Patents

Squid device using proximity effect

Info

Publication number
JPH03283680A
JPH03283680A JP2085096A JP8509690A JPH03283680A JP H03283680 A JPH03283680 A JP H03283680A JP 2085096 A JP2085096 A JP 2085096A JP 8509690 A JP8509690 A JP 8509690A JP H03283680 A JPH03283680 A JP H03283680A
Authority
JP
Japan
Prior art keywords
films
stage
thin films
thin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2085096A
Other languages
Japanese (ja)
Inventor
Yasuharu Yamada
康晴 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2085096A priority Critical patent/JPH03283680A/en
Publication of JPH03283680A publication Critical patent/JPH03283680A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To reduce I/f noise by forming a stage at the center of a substrate to divide the substrate into an upper level and a lower level with the stage as a border wherein high temperature this superconductive films are adhered on the entire surface including the stage while the thin films are weakly jointed with each other and thin metallic films exhibiting a proximity effect are provided on the plane thin films respectively. CONSTITUTION:A stage 1a for dividing a substrate 1 into a right and a left parts at the center of the MgO substrate 1, while YBCO high temperature thin superconducting films 2, 3 are respectively adhered to an upper level and a lower level with the stage interposed. At this time the films 2, 3 form a narrow part of YBCO type similar to that formed at the stage 1a wherein interconnection is constituted of junctions 4a, 4b. Then thin Au films 5, 6 are respectively adhered to the thin films 2, 3 on the upper and lower levels. Thus the thin films 5, 6 provided on the thin films 2, 3 forming an electrode of a DC-SQUID device become superconductive due to the proximity effect while coherent length of the electrode is appromixately 1000 angstroms and entrance of magnetic flux can be prevented to eliminate I/f noise.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は極微小磁界検出等に用いられるSQUID素子
に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a SQUID element used for detecting extremely small magnetic fields.

〈従来の技術〉 良好な性能のジョセフソン接合を得るためには、そのブ
リッジ長(弱接合部の長さ)を、理想的には使用するブ
リッジ材料のコヒーレント長の3〜5倍程度にすべきで
あること、また、この理想的なブリ・7ジ長が得られな
くとも、これにできるだけ近づくようにブリッジ長を短
くすべきであることが知られている。
<Conventional technology> In order to obtain a Josephson junction with good performance, the bridge length (length of the weak junction) should ideally be about 3 to 5 times the coherent length of the bridge material used. It is also known that even if this ideal bridge length cannot be obtained, the bridge length should be shortened so as to get as close to it as possible.

Nbを用いたジョセフソン接合において、その理想的な
ブリッジ長は数百人程度となる。このような極めて短い
ブリッジ長を再現性よく得るためには、準平面型のジョ
セフソン接合が有利である。
In a Josephson junction using Nb, the ideal bridge length is about several hundred. In order to obtain such an extremely short bridge length with good reproducibility, a quasi-planar Josephson junction is advantageous.

準平面型のジョセフソン接合は、平坦な基板表面に形成
された超電導薄膜の上面に、絶縁層を介して別の超電導
薄膜を積層形成し、上方の超電導薄膜の端面部において
、双方の超電導薄膜にまたがるブリッジを形成した構造
であり、比較的容易にコントロールできる膜厚寸法によ
ってブリッジ長を決定することができ、平面上の微細加
工に鎖る平面型のジョセフソン接合に比して極めて有利
である。
In a quasi-planar Josephson junction, another superconducting thin film is layered on top of a superconducting thin film formed on a flat substrate surface, with an insulating layer interposed between the two superconducting thin films. The bridge length can be determined by the film thickness dimension, which can be controlled relatively easily, which is extremely advantageous compared to the planar Josephson junction, which requires microfabrication on the plane. be.

ところで、YBCOに代表される酸化物高温超電導体を
用いてジョセフソン接合素子を作る場合、以下に示す理
由によって、Nb系等の従来の超電導体を用いた場合の
ような良好な準平面型のジョセフソン接合を得ることが
困難である。
By the way, when making a Josephson junction device using an oxide high-temperature superconductor such as YBCO, it is difficult to make a good quasi-planar junction device as in the case of using a conventional superconductor such as Nb type, for the following reasons. It is difficult to obtain a Josephson junction.

まず、YBCO等の高温超電導薄膜は、一般に不安定で
拡散しやすく、良好な状態で積層形成すること自体が容
易でない。
First, high-temperature superconducting thin films such as YBCO are generally unstable and easily diffused, and it is not easy to stack them in good condition.

また、現在の製膜技術で得られる高温超電導薄膜は、そ
の表面平坦度が100人程変色悪く、絶縁層を介して相
互に積層した場合にピンコンタクトが生じ昌い。
Furthermore, high-temperature superconducting thin films obtained using current film-forming techniques have a surface flatness that discolors by about 100 degrees, and pin contact occurs when they are stacked on each other with an insulating layer interposed between them.

更に、酸化物高温超電導体は水に対して劣化しやすい等
、加工上の制約があり、Nb系超電導体のように比較的
自由に工程を選択することはできない。
Furthermore, oxide high-temperature superconductors are subject to processing limitations such as being susceptible to deterioration due to water, and processes cannot be selected relatively freely as in the case of Nb-based superconductors.

このような点に鑑み、本発明者は他と共同して、基板に
段差を設け、その上段側および下段側の平面にそれぞれ
高温超電導体薄膜を形成するとともに、双方の高温超電
導体薄膜を、段差部分を横切る高温超電導体薄膜のブリ
ッジで接合したジョセフソン接合素子をすでに提案して
いる(特願平l−12185号)。
In view of these points, the present inventor, in collaboration with others, provided a step on the substrate, formed a high-temperature superconductor thin film on the upper and lower planes of the step, and formed both high-temperature superconductor thin films. A Josephson junction element in which a high temperature superconductor thin film bridge is used to cross the stepped portion has already been proposed (Japanese Patent Application No. 1-12185).

この提案によれば、超電導薄膜を積層することなく準平
面型ジョセフソン接合が得られるので、高温超電導体薄
膜を用いても高性能の素子を再現性よく得ることができ
るとともに、超電導薄膜は−mのみ成膜すれば良いので
、製造プロセスが簡素化されるという利点もある。
According to this proposal, a quasi-planar Josephson junction can be obtained without stacking superconducting thin films, so high-performance devices can be obtained with good reproducibility even using high-temperature superconducting thin films. Since it is only necessary to form a film of m, there is an advantage that the manufacturing process is simplified.

〈発明が解決しようとする課題〉 ところで、前記したように高温超電導体薄膜はコヒーレ
ント長が短く、また、粒界の存在によって、うまくジョ
セフソン接合部分が形成されたとしても、電極部には磁
束の侵入にょる1/fノイズや、磁界応答の際のヒステ
リシス等が発生するという問題がある。
<Problems to be Solved by the Invention> By the way, as mentioned above, high-temperature superconductor thin films have a short coherence length, and due to the presence of grain boundaries, even if a Josephson junction is successfully formed, magnetic flux will not be present in the electrode part. There are problems in that 1/f noise due to the intrusion of the magnetic field and hysteresis in response to the magnetic field occur.

本発明はこのような点を改善すべくなされたもので、1
/fノイズや磁界応答のヒステリシス等が発生しにくい
高温超電導体薄膜を用いたSQU!D素子の提供を目的
としている。
The present invention was made to improve these points, and has the following points:
/f SQU using a high-temperature superconductor thin film that is less prone to noise and hysteresis in magnetic field response! The purpose is to provide D elements.

く課題を解決するための手段〉 上記の目的を達成するための構成を、実施例に対応する
第1図を参照しつつ説明すると、本発明では、設けられ
た基板1の表面に、その段部1aを挾んで両側の平面に
高温超電導体薄膜2および3を形成し、かつ、その上段
側および下段側の高温超電導体薄膜2および3を段部1
aにおいて高温超電導体薄膜の狭窄部(接合部)4a、
4bによって互いに接合するとともに、上段側および下
段側の平面部の高温超電導体薄膜2および3の上には、
それぞれこの高温超電導体薄膜に対して近接効果を発揮
する金属薄膜5および6を形成している。
Means for Solving the Problems> The structure for achieving the above object will be described with reference to FIG. 1 corresponding to the embodiment. High-temperature superconductor thin films 2 and 3 are formed on the planes on both sides of the part 1a, and the high-temperature superconductor thin films 2 and 3 on the upper and lower sides are formed on the step part 1.
In a, a constriction part (joint part) 4a of the high temperature superconductor thin film,
4b, and on top of the high temperature superconductor thin films 2 and 3 on the upper and lower planar sides,
Metal thin films 5 and 6 are formed, each of which exerts a proximity effect on this high temperature superconductor thin film.

〈作用〉 電極部を形成する高温超電導体薄膜2および3の上にA
u、AI、PL等の金属薄rm5および6を成膜するこ
とにより、電極部の膜2および3のコヒーレント長が長
くなる。これによって電極部への磁束侵入が無くなり、
それに伴う磁束のゆらぎゃ1/fノイズ等が無くなる。
<Function> A layer A is placed on the high temperature superconductor thin films 2 and 3 forming the electrode part.
By forming thin metal films rm5 and 6 such as u, AI, PL, etc., the coherent length of the films 2 and 3 in the electrode portion becomes longer. This eliminates magnetic flux from entering the electrode section,
The accompanying magnetic flux fluctuations eliminate 1/f noise and the like.

〈実施例〉 第1図は本発明実施例の斜視図で、DC−3Q[JID
に本発明を通用した例を示している。
<Embodiment> Fig. 1 is a perspective view of an embodiment of the present invention.
shows an example in which the present invention is applied.

MgO製基Fi、1の表面には段差が設けられており、
段部1aを挾んで上段側および下段側の面に、それぞれ
YBCO製の高温超電導体薄膜2および3が形成されて
いる。
A step is provided on the surface of the MgO base Fi,1,
High-temperature superconductor thin films 2 and 3 made of YBCO are formed on the upper and lower surfaces of the step portion 1a, respectively.

そして、この高温超電導体薄膜2および3は、段部1a
の部分に形成された同じYBCO製の高温超電導体薄膜
に狭窄部を形成してなる接合部4aおよび4bによって
相互に接合されている。
The high temperature superconductor thin films 2 and 3 have a stepped portion 1a.
They are mutually joined by joint parts 4a and 4b formed by forming narrow parts in the same high-temperature superconductor thin film made of YBCO.

そして、上段側および下段側の平面部における高温超電
導体薄膜2および3の上には、それぞれAug膜5およ
び6が形成されている。
Aug films 5 and 6 are formed on the high temperature superconductor thin films 2 and 3 on the upper and lower plane parts, respectively.

以上の本発明実施例によると、DC−3QU IDの電
極部を形成する高温超電導体薄膜2および3の上方に成
膜されたA u )39膜5および6は、近接効果によ
って超電導化され、電極部のコヒーレント長が1000
人程度Clる。その結果、電極部への磁束の侵入が阻止
され、これに起因する磁束のゆらぎ、l/fノイズ、あ
るいは磁束フロー等のノイズが無くなる。
According to the above-described embodiments of the present invention, the A u ) 39 films 5 and 6 formed above the high temperature superconductor thin films 2 and 3 forming the electrode portion of the DC-3QU ID are made superconducting by the proximity effect, The coherent length of the electrode part is 1000
About a person. As a result, magnetic flux is prevented from entering the electrode portion, and noises such as magnetic flux fluctuation, l/f noise, or magnetic flux flow caused by this are eliminated.

次に、以上の本発明実施例の製造方法を述べる。Next, a manufacturing method of the above embodiment of the present invention will be described.

第2図はその製造手順の説明図である。FIG. 2 is an explanatory diagram of the manufacturing procedure.

まず、同図(a)に示すように、適当な厚さの平板状の
基板10を用意し、その表面に一様にレジストを塗布し
た後、フォトリソグラフィによって、第2図(b)に示
すようにその略中央部を境に片側を残して他側を除去す
る。
First, as shown in FIG. 2(a), a flat substrate 10 of an appropriate thickness is prepared, and a resist is uniformly applied to its surface. Leave one side and remove the other side with approximately the center as the border.

次に、残されたレジスト膜11をマスクとしてArイオ
ンミリングで基板10の表面をエツチングすることによ
って、第2図(C)に示すような段部1aを持つ基板1
を得る。
Next, by etching the surface of the substrate 10 by Ar ion milling using the remaining resist film 11 as a mask, the substrate 10 having the stepped portion 1a as shown in FIG. 2(C) is etched.
get.

そして、このような段部1aを持った基板1の上方から
スパッタリング等によって第2図(d)のようにYBC
O薄膜12を一様に成膜する。このとき、第3図にこの
状態での要部拡大図を示すように、得られるYBCOI
膜12は膜板2の段部1aの部分で上段側と下段側の膜
が弱く結合される。
Then, as shown in FIG. 2(d), YBC is formed by sputtering or the like from above the substrate 1 having such a stepped portion 1a.
An O thin film 12 is uniformly formed. At this time, as shown in Fig. 3, which shows an enlarged view of the main part in this state, the obtained YBCOI
The upper and lower membranes of the membrane 12 are weakly connected at the stepped portion 1a of the membrane plate 2.

この状態で、YBCO)!膜12の上からスパッタリン
グ等によってAu薄膜を成膜する。このとき、第4図に
示すように基板1をターゲット41からのスパッタ粒子
の進行方向に対して傾ける。
In this state, YBCO)! An Au thin film is formed on the film 12 by sputtering or the like. At this time, as shown in FIG. 4, the substrate 1 is tilted with respect to the traveling direction of sputtered particles from the target 41.

これにより、第2図(e)に示すように、段部1aが影
になってAu薄膜はこの段部1aの部分においてYBC
O薄膜12の上に形成されない部分が生じ、上段側と下
段側の平面部分におけるYBCO薄膜12上にAu薄膜
5および6が成膜される。
As a result, as shown in FIG. 2(e), the step 1a becomes a shadow, and the Au thin film becomes YBC in the step 1a.
There are parts that are not formed on the O thin film 12, and the Au thin films 5 and 6 are formed on the YBCO thin film 12 in the upper and lower planar parts.

次に、第2図(f)に平面図で示すように、段部1aの
部分で上段側と下段側のYBCO薄膜12が2箇所で接
合されるようなりC−3QUI Dのパターンをレジス
ト15により形成し、これをマスクとしてArイオンミ
リングでAu薄膜およびYBCOI膜をエツチングする
。これによって第1図に示したDC−3QU I D素
子が得られる。
Next, as shown in the plan view in FIG. 2(f), a pattern of C-3QUID is formed on the resist 15 so that the upper and lower YBCO thin films 12 are bonded at two places at the stepped portion 1a. Using this as a mask, the Au thin film and YBCOI film are etched by Ar ion milling. As a result, the DC-3QUID element shown in FIG. 1 is obtained.

なお、以上の実施例において、高温超電導体薄膜2,3
はYBCO薄膜に限らず、他の高温超電導体薄膜を使用
することが可能であることは勿論であるし、基板1の材
質としても、使用する高温超電導体と整合性の良好なも
のであれば何でもいい。また、近接効果を発揮する金属
としては、Auのほか、AI、Pt等があり、これらを
用いても良いことは言うまでもない。
Note that in the above embodiments, the high temperature superconductor thin films 2 and 3
Of course, it is possible to use not only the YBCO thin film but also other high-temperature superconductor thin films, and the material of the substrate 1 may be any material that has good compatibility with the high-temperature superconductor used. whatever. In addition to Au, there are other metals that exhibit the proximity effect, such as AI and Pt, and it goes without saying that these may also be used.

〈発明の効果〉 以上説明したように、本発明によれば、段部を挟んで上
段側と下段側の高温超電導体薄膜を、その段部において
相互に弱く接合するとともに、上段側と下段側の平面部
における各高温超電導体薄膜の上にそれぞれ近接効果を
発揮する金属薄膜を形成したので、電極部における高温
超電導体薄膜のコヒーレント長が、金属薄膜としてAu
を用いた場合には1000人程度変色で長くなる。
<Effects of the Invention> As explained above, according to the present invention, the high-temperature superconductor thin films on the upper and lower sides with the stepped portion in between are weakly bonded to each other at the stepped portion, and the upper and lower side Since a metal thin film exhibiting a proximity effect was formed on each high-temperature superconductor thin film in the plane part of the metal thin film, the coherent length of the high-temperature superconductor thin film in the electrode part was
If you use , it will be about 1000 times longer due to discoloration.

その結果、電極部の膜内への磁束の侵入によるヒステリ
シスがなくなるとともに、膜内にトラップされた磁束の
ゆらぎによる1/fノイズが軽減される。
As a result, hysteresis due to the intrusion of magnetic flux into the film of the electrode portion is eliminated, and 1/f noise due to fluctuations in the magnetic flux trapped within the film is reduced.

また、磁束移動等による抵抗の出現や、発熱等が発生し
たとき、高温超電導体薄膜上の金属薄膜が放熱板として
働き、自己発熱を抑制するという効果もある。
Furthermore, when resistance appears due to magnetic flux movement or heat generation occurs, the metal thin film on the high-temperature superconductor thin film acts as a heat sink and has the effect of suppressing self-heating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の斜視図、 第2図はその製造手順の説明図 第3図および第4図はその製造手順内における工程の補
足説明図である。 1・・・・基板 1a・・・・段部 2.3・・・・高温超電導体薄膜 4a、4b・・・・接合部 5.6・・・・Au薄膜
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is an explanatory diagram of its manufacturing procedure, and FIGS. 3 and 4 are supplementary explanatory diagrams of steps in the manufacturing procedure. 1...Substrate 1a...Step part 2.3...High temperature superconductor thin film 4a, 4b...Joint part 5.6...Au thin film

Claims (1)

【特許請求の範囲】[Claims]  段差が設けられた基板表面に、その段部を挟んで両側
の平面に高温超電導体薄膜が形成され、かつ、その上段
側および下段側の高温超電導体薄膜が上記段部において
高温超電導体薄膜の狭窄部によって互いに接合されてい
るとともに、上記上段側および下段側の平面部の高温超
電導体薄膜の上には、それぞれ当該高温超電導体薄膜に
対して近接効果を発揮する金属薄膜が形成されてなる、
近接効果を用いたSQUID素子。
A high-temperature superconductor thin film is formed on the surface of a substrate provided with a step, on both planes across the step, and the high-temperature superconductor thin film on the upper and lower sides of the step is formed at the step. Metal thin films are formed on the high-temperature superconductor thin films in the upper and lower plane parts, which are connected to each other by the narrowed portions, and exert a proximity effect on the high-temperature superconductor thin films, respectively. ,
SQUID device using proximity effect.
JP2085096A 1990-03-30 1990-03-30 Squid device using proximity effect Pending JPH03283680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2085096A JPH03283680A (en) 1990-03-30 1990-03-30 Squid device using proximity effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2085096A JPH03283680A (en) 1990-03-30 1990-03-30 Squid device using proximity effect

Publications (1)

Publication Number Publication Date
JPH03283680A true JPH03283680A (en) 1991-12-13

Family

ID=13849079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2085096A Pending JPH03283680A (en) 1990-03-30 1990-03-30 Squid device using proximity effect

Country Status (1)

Country Link
JP (1) JPH03283680A (en)

Similar Documents

Publication Publication Date Title
JP2812060B2 (en) SQUID
JPH03283680A (en) Squid device using proximity effect
JPH03297178A (en) Squid device
JPH0432275A (en) Stepped region type josephson junction element
JP2001111123A (en) Squid element
JPH02213176A (en) Quasi-plane-type josephson junction device
JP2853251B2 (en) Method of manufacturing wedge-type Josephson junction device
JP2644284B2 (en) Superconducting element
JPS5846197B2 (en) Josephson junction device and its manufacturing method
JPH01101676A (en) Superconducting transistor
JPH02192774A (en) Quasi-planar type josephson junction element
JPS5916430B2 (en) Josephson junction device and its manufacturing method
JP3319205B2 (en) Method of manufacturing Josephson junction device
JPH04233286A (en) Squid element
JP2656364B2 (en) Superconducting element manufacturing method
JPH01318981A (en) Unified squid
JP3084043B2 (en) Elements using superconductivity
JPH01214178A (en) Manufacture of josephson junction
JP2564246B2 (en) SQUID magnetic sensor
JPH0323684A (en) Josephson junction element
JPS592390B2 (en) Josephson junction device and its manufacturing method
JPH0378675A (en) Squid element
JP2641972B2 (en) Superconducting element and manufacturing method thereof
JPS63244860A (en) Extra-high speed semiconductor device
JPH05291632A (en) Superconductive junction structure