JPH02192774A - Quasi-planar type josephson junction element - Google Patents

Quasi-planar type josephson junction element

Info

Publication number
JPH02192774A
JPH02192774A JP1012185A JP1218589A JPH02192774A JP H02192774 A JPH02192774 A JP H02192774A JP 1012185 A JP1012185 A JP 1012185A JP 1218589 A JP1218589 A JP 1218589A JP H02192774 A JPH02192774 A JP H02192774A
Authority
JP
Japan
Prior art keywords
substrate
bridge
thin film
film
ybco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1012185A
Other languages
Japanese (ja)
Inventor
Junichi Kita
純一 喜多
Yasuharu Yamada
康晴 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1012185A priority Critical patent/JPH02192774A/en
Publication of JPH02192774A publication Critical patent/JPH02192774A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an excellent Josephson element by using oxide high temperature superconductor by a method wherein a superconducting thin film of almost uniform thickness is formed on the surface of a substrate, on which a step- difference is formed, so as to interpose the step-difference and to be positioned on both sides thereof, and both of the film surfaces are joined by a bridge of superconductor. CONSTITUTION:On the surface of an MgO substrate 1, a step-difference is formed. High temperature superconducting films 2, 3 made of YBCO are formed on the surface of the upper step side and the lower step side, respectively, so as to interpose the step part 1a. The surfaces of the thin films 2, 3 are joined by a bridge 4 made of YBCO. This manufacturing method is as follows. Resist is spread uniformly on a substrate; one side half thereof is eliminated by photolithography; Ar ion milling is performed by using the left resist as a mask, thereby manufacturing the substrate 1; a YBCO thin film is uniformly sputtered on the substrate; thereon negative resist is spread uniformly, and eliminated by exposure and development so as to leave the bridge 4 part; by using the remaining resist film as a mask, the YBCO thin film is etched, thereby obtaining the bridge 4 coming into contact with the thin films 2, 3.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はジョセフソン接合を有する素子に関し、更に詳
しくは、準平面型のジョセフソン接合素子に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an element having a Josephson junction, and more particularly to a quasi-planar Josephson junction element.

なお、本発明は、超高感度磁場計測用の5QUIDや、
超高感度電磁波検出器等、ジョセフソン効果を利用した
あらゆるデバイスに応用可能である。
In addition, the present invention includes 5QUID for ultra-high sensitivity magnetic field measurement,
It can be applied to all devices that utilize the Josephson effect, such as ultra-sensitive electromagnetic wave detectors.

〈従来の技術〉 良好な性能のジョセフソン接合を得るためには、そのブ
リッジ長(弱接合部の長さ)を、理想的には使用するブ
リフジ材料のコヒーレント長の3〜5倍程度にすべきで
あること、また、この理想的なブリッジ長が得られなく
とも、これにできるだけ近づくようにブリッジ長を短く
すべきであることが知られている。
<Conventional technology> In order to obtain a Josephson junction with good performance, the bridge length (length of the weak junction) should ideally be about 3 to 5 times the coherent length of the bridging material used. It is also known that even if this ideal bridge length cannot be obtained, the bridge length should be shortened so as to get as close to it as possible.

Nbを用いたジョセフソン接合において、その理想的な
ブリッジ長は数百人程度となる。このような極めて短い
ブリッジ長を再現性よく得るためには、準平面型のジョ
セフソン接合が有利である。
In a Josephson junction using Nb, the ideal bridge length is about several hundred. In order to obtain such an extremely short bridge length with good reproducibility, a quasi-planar Josephson junction is advantageous.

準平面型のジョセフソン接合は、平坦な基板表面に形成
された超電導薄膜の上面に、絶縁層を介して別の超電導
薄膜を積層形成し、上方の超電導薄膜の端面部において
、双方の超電導薄膜にまたがるブリッジを形成した構造
であり、比較的容易にコントロールできる膜厚寸法によ
ってブリッジ長を決定することができ、平面上の微細加
工に顧る平面型のジョセフソン接合に比して極めて有利
である。
In a quasi-planar Josephson junction, another superconducting thin film is layered on top of a superconducting thin film formed on a flat substrate surface, with an insulating layer interposed between the two superconducting thin films. The bridge length can be determined by the film thickness dimension, which can be controlled relatively easily, which is extremely advantageous compared to the planar Josephson junction, which is suitable for microfabrication on a plane. be.

〈発明が解決しようとする課題〉 ところで、YBCOに代表される酸化物高温超電導体を
用いてジョセフソン接合素子を作る場合、以下に示す理
由によって、Nb系等の従来の超電導体を用いた場合の
ような良好な準平面型のジョセフソン接合を得ることが
困難である。
<Problem to be solved by the invention> By the way, when making a Josephson junction element using an oxide high-temperature superconductor represented by YBCO, for the following reasons, when using a conventional superconductor such as Nb-based superconductor, It is difficult to obtain a good quasi-planar Josephson junction like this.

まず、YBCO等の高温超電導薄膜は、一般に不安定で
拡散しやすく、良好な状態で積層形成すること自体が容
易でない。
First, high-temperature superconducting thin films such as YBCO are generally unstable and easily diffused, and it is not easy to stack them in good condition.

また、現在の製膜技術で得られる高温超電導薄膜は、そ
の表面平坦度が100人程皮表悪く、絶縁層を介して相
互に積層した場合にピンコンタクトが生じ易い。
Furthermore, high-temperature superconducting thin films obtained using current film-forming techniques have a surface flatness that is approximately 100% poor, and pin contact is likely to occur when they are stacked on each other with an insulating layer interposed between them.

更に、酸化物高温超電導体は水に対して劣化しやすい等
、加工上の制約があり、Nb系超電導体のように比較的
自由に工程を選択することはできない。
Furthermore, oxide high-temperature superconductors are subject to processing limitations such as being susceptible to deterioration due to water, and processes cannot be selected relatively freely as in the case of Nb-based superconductors.

本発明はこのような点に鑑みてなされたもので、酸化物
高温超電導体を用いても高性能で、がっ、製造の再現性
が良好な準平面型ジョセフソン接合素子の提供を目的と
している。
The present invention was made in view of these points, and aims to provide a quasi-planar Josephson junction element that has high performance even when using an oxide high-temperature superconductor and has good manufacturing reproducibility. There is.

く課題を解決するための手段〉 上記の目的を達成するため、本発明では、実施例に対応
する第1図に示すように、段差が設けられた基板1の表
面に、段部1aを挟んでその両側に略一様な膜厚の超電
導薄膜2.3を成形しているとともに、その超電導薄膜
2と3を、双方の膜表面にまたがって形成した超電導体
もしくは常電導体のブリッジ4で接合している。
Means for Solving the Problems> In order to achieve the above object, in the present invention, as shown in FIG. A superconducting thin film 2.3 having a substantially uniform thickness is formed on both sides of the superconducting thin film 2.3, and the superconducting thin films 2 and 3 are formed by a bridge 4 of a superconductor or a normal conductor formed across the surfaces of both films. It is joined.

く作用〉 超電4薄1ff2と3を絶縁層を介して積層することな
く互いの表面間に落差を設けて、実質的に従来と同等の
構造の準平面型ジョセフソン接合を得ている。ブリッジ
長は、基板1の段差寸法と下段側の超電導薄膜3の膜厚
寸法との差で決まり、平面上の微細加工の精度に依存し
ない点も従来と同等である。
Function> A quasi-planar Josephson junction with substantially the same structure as the conventional one is obtained by providing a drop between the surfaces of superconductor 4-thin 1ff2 and 3 without stacking them with an insulating layer interposed therebetween. The bridge length is determined by the difference between the step dimension of the substrate 1 and the film thickness dimension of the superconducting thin film 3 on the lower stage side, and is similar to the conventional method in that it does not depend on the accuracy of microfabrication on a plane.

〈実施例〉 第1図は本発明実施例の斜視図である。<Example> FIG. 1 is a perspective view of an embodiment of the present invention.

MgO製基板1の表面には段差が設けられており、段部
1aを挟んで上段側および下段側の面に、それぞれYB
CO製の高温超電導薄膜2および3が形成されている。
A step is provided on the surface of the MgO substrate 1, and YB is formed on the upper and lower surfaces with the step 1a in between.
High temperature superconducting thin films 2 and 3 made of CO are formed.

高温超電導薄膜2と3の膜厚は互いにほぼ等しく、従っ
て高温超電導薄膜2と3の表面は、基板1の段差とほぼ
等しい高低差を持っている。
The film thicknesses of the high-temperature superconducting thin films 2 and 3 are approximately equal to each other, and therefore the surfaces of the high-temperature superconducting thin films 2 and 3 have a height difference that is approximately equal to the step of the substrate 1.

そし4て、この高温超電導薄膜2と3は、これらの表面
双方にまたがって形成されたYBCO製のブリッジ4に
よって接合されている。
4, these high temperature superconducting thin films 2 and 3 are joined by a YBCO bridge 4 formed across both of these surfaces.

この実施例において、基板1の段差は500r+m、高
温超電導薄膜2および3の膜厚は300nmであり、ブ
リッジ4は高温超電導薄膜2の端面および高温超電導薄
膜3の表面と完全に超電導コンタクトがとられており、
これによって200nmのブリッジ長が得られている。
In this example, the height difference of the substrate 1 is 500 r+m, the film thickness of the high temperature superconducting thin films 2 and 3 is 300 nm, and the bridge 4 is in complete superconducting contact with the end face of the high temperature superconducting thin film 2 and the surface of the high temperature superconducting thin film 3. and
This results in a bridge length of 200 nm.

以下、この実施例の製造方法を説明する。第2図乃至第
9図はその製造手順の説明図である。
The manufacturing method of this example will be explained below. FIGS. 2 to 9 are explanatory diagrams of the manufacturing procedure.

まず、第2図に示すような適当な厚さの平板状のM g
 O(100)基板10を用意し、その表面に一様にレ
ジストを塗布した後、フォトリソグラフィによってその
略中央部を境に片側を残して他側を除去した(第3図)
First, as shown in Fig. 2, a flat plate-shaped Mg of an appropriate thickness is
An O(100) substrate 10 was prepared, a resist was uniformly applied to its surface, and then one side was left and the other side was removed by photolithography with the approximate center as a boundary (Figure 3).
.

次に、残されたレジスト膜5をマスクとしてArイオン
ミリングで基板100表面を500nmエッヂングしく
第4図)、残っているレジスト膜5を除去することによ
って、第5図に示すような段部1aを備えた基板1を得
た。
Next, using the remaining resist film 5 as a mask, the surface of the substrate 100 is etched by 500 nm by Ar ion milling (Fig. 4), and by removing the remaining resist film 5, a stepped portion 1a as shown in Fig. 5 is formed. A substrate 1 was obtained.

そして、この500nmの段差を持つ基板1の表面に、
第6図(alに示すように、−様にYBCo薄膜20を
スパッタリングによって形成した。そのスパッタ条件は
基板温度620℃、雰囲気ガスAr10 □= 40/
60、圧力20 m Torrで、ターゲットの組成は
Y : Ba : Cu= 1 :6.7:18.3と
し、レート30人/ m i nで膜厚5QQnmのY
BCQ薄膜20を得た。このとき、得られたYBCo薄
膜20は、第6図(blにその要部拡大図を示すように
、基板1の段部の1aの上方部分が他部に比して薄くな
った。
Then, on the surface of the substrate 1 having a step of 500 nm,
As shown in FIG. 6 (al), a YBCo thin film 20 was formed by sputtering as shown in FIG.
60, the pressure was 20 m Torr, the composition of the target was Y:Ba:Cu=1:6.7:18.3, and the Y film thickness was 5QQnm at a rate of 30 people/min.
A BCQ thin film 20 was obtained. At this time, the obtained YBCo thin film 20 was thinner in the upper part of the stepped part 1a of the substrate 1 than in other parts, as shown in an enlarged view of the main part in FIG.

次に、第7図に示すように、YBCo薄膜20の上面に
ネガレジスト60(例えば東洋曹達工業■製CMS−E
X−(R))を−様に塗布した後、電子ビーム露光およ
び有機溶媒を用いた現像により、第8図(a)に側面図
、(b)に上面図を示すように、1.3μm幅で段部1
aをその上方でまたぐ短冊状パターンのレジスト膜6を
形成した。
Next, as shown in FIG. 7, a negative resist 60 (for example, CMS-E manufactured by Toyo Soda Industries Ltd.
After applying X-(R)) in a -like manner, electron beam exposure and development using an organic solvent resulted in a 1.3 μm thick film, as shown in the side view in FIG. 8(a) and the top view in FIG. 8(b). Step 1 in width
A resist film 6 having a strip-shaped pattern was formed to straddle above a.

そして、このレジスト膜6をマスクとして、Arイオン
ミリングによってYBCo薄膜20の表面を約200n
mエツチングした。これにより、第9図に示すように、
YBCO薄膜20は、段部1aの上方の薄い部分におい
て、レジスト膜6で保護された部分を除いて上段側の薄
膜2と下段側の薄膜3に分離された。その薄膜2,3の
膜厚はそれぞれ約300nmとなるが、レジスト膜6で
保護された部分のみが膜厚500nmとして残り、この
部分が幅】、3メ1m、厚さ約200nmで上段、下段
の薄膜2.3にコンタクトするブリッジ4となる。最後
にレジスト膜6を除去することにより第1図の構造の素
子を得た。なお、段部1aにおいてブリッジ以外の部分
で多少のYBCO薄膜が残存していても、膜が劣化して
超電導を示さなければ有効である。
Then, using this resist film 6 as a mask, the surface of the YBCo thin film 20 is approximately 200 nm thick by Ar ion milling.
m-etched. As a result, as shown in Fig. 9,
The YBCO thin film 20 was separated into an upper thin film 2 and a lower thin film 3 except for the portion protected by the resist film 6 in the thin portion above the stepped portion 1a. The thickness of the thin films 2 and 3 is about 300 nm each, but only the part protected by the resist film 6 remains with a film thickness of 500 nm, and this part has a width of 1 m and a thickness of about 200 nm. The bridge 4 is in contact with the thin film 2.3. Finally, the resist film 6 was removed to obtain an element having the structure shown in FIG. Note that even if some YBCO thin film remains in the step portion 1a other than the bridge, it is effective as long as the film does not deteriorate and exhibit superconductivity.

この製造方法によって得られた素子において特に注目す
べき点は、ブリッジ4は高温超電導薄膜2および3の上
に別途成膜されたものではなく、一体に成膜されたYB
CO薄膜20をイオンミリングすることによって上・下
段の高温超電導薄膜2・3とブリッジ4を得ている点で
ある。これにより、ブリッジ4は上段の高温超電導薄膜
2の端面と、下段の高温超電導薄膜3の表面に確実に超
電導コンタクトされることになる。YBCO等の酸化物
高温超電導薄膜では、一般にその表面に超電導を示さな
い層(表面劣化層)が生じ、ブリッジ4を後で成膜によ
って積層形成した場合に薄膜2,3に超電導的にコンタ
クトすることが困難であるが、上記した製法によってこ
の問題は解消される。
What is particularly noteworthy about the device obtained by this manufacturing method is that the bridge 4 is not formed separately on the high-temperature superconducting thin films 2 and 3, but is formed integrally with YB.
The point is that the upper and lower high temperature superconducting thin films 2 and 3 and the bridge 4 are obtained by ion milling the CO thin film 20. Thereby, the bridge 4 is reliably brought into superconducting contact with the end face of the upper high temperature superconducting thin film 2 and the surface of the lower high temperature superconducting thin film 3. In high-temperature superconducting thin films made of oxides such as YBCO, a layer that does not exhibit superconductivity (surface deterioration layer) generally occurs on its surface, and when the bridge 4 is laminated later by film formation, it contacts the thin films 2 and 3 in a superconducting manner. Although this is difficult, this problem can be solved by the above-described manufacturing method.

また、この製造方法においては、水を全く使用しておら
ず、酸化物超電導体を用いる場合に製造工程中での劣化
が生じにくいという利点もある。
This manufacturing method also has the advantage that no water is used at all, and when an oxide superconductor is used, deterioration during the manufacturing process is less likely to occur.

更に、この製造方法においては一体の薄膜からイオンミ
リングで薄膜2.3およびブリッジ4を形成し、また、
その素子構造ではブリッジ長は基板10段差と下段の薄
膜3の膜厚との差によって決まることから、イオンミリ
ングの深さを調整することでブリッジ長を調整できるこ
とになり、積層構造のものにおいてはブリッジ形成時点
でそのブリッジ長の調整が不可能であることに比して、
素子の歩留りや性能の均一化に対しても有利である。
Furthermore, in this manufacturing method, the thin film 2.3 and the bridge 4 are formed from an integrated thin film by ion milling, and
In this element structure, the bridge length is determined by the difference between the step difference in the substrate 10 and the thickness of the lower thin film 3, so the bridge length can be adjusted by adjusting the depth of ion milling. Compared to the fact that it is impossible to adjust the bridge length at the time of bridge formation,
This is also advantageous in terms of uniformity of device yield and performance.

なお、以上の実施例において、超電導薄膜2,3および
ブリッジ4の材質はYBCOに限られず、他の酸化物高
温超電導体、あるいはNb等の金属系の超電導体を使用
することができる。また、基板1の材質についても、M
gOのほかZrO,やysz等の、使用する超電導体と
整合性のよい任意のものを使用することができる。
In the above embodiments, the materials of the superconducting thin films 2 and 3 and the bridge 4 are not limited to YBCO, but other oxide high-temperature superconductors or metal-based superconductors such as Nb can be used. Also, regarding the material of the substrate 1, M
In addition to gO, any material having good compatibility with the superconductor used can be used, such as ZrO or ysz.

そして、本発明の構造は、ブリ・ノジ4の材質が超電導
薄膜2,3の材質と同一でないものについても適用でき
る。もちろん、この場合は上記した製造方法を採用する
ことはできないが、以下、ブリッジをAu等の常電導体
で形成した、いわゆるSNS構造の準平面型ジョセフソ
ン接合素子の製造方法の一例を説明する。第10図乃至
第13図はその説明図である。
The structure of the present invention can also be applied to a case where the material of the fillet nozzle 4 is not the same as the material of the superconducting thin films 2 and 3. Of course, in this case, the above manufacturing method cannot be adopted, but below we will explain an example of a method for manufacturing a quasi-planar Josephson junction element with a so-called SNS structure in which the bridge is formed of a normal conductor such as Au. . FIG. 10 to FIG. 13 are explanatory diagrams thereof.

まず、先の製造方法と全く同様にして、第6図のような
段差を持つ基板1の上面にYBCO薄膜20を一様に形
成する。
First, in exactly the same manner as in the previous manufacturing method, a YBCO thin film 20 is uniformly formed on the upper surface of the substrate 1 having a step as shown in FIG.

次にそのYBCOi膜20をArイオンミリングし、第
10図に示すように上段側と下段側の薄膜2と3に分離
する。そして、第11図に示すように、その上面にポジ
レジスト70を塗布した後、露光と現像によって、第1
2図(a)に中央縦断面図、同図fb)に上面図を示す
ように、段部1aをまたぐ適当な幅の窓7aを有するパ
ターンのレジスト膜7を形成する。
Next, the YBCOi film 20 is subjected to Ar ion milling and separated into upper and lower thin films 2 and 3 as shown in FIG. Then, as shown in FIG. 11, after applying a positive resist 70 on the upper surface, a first resist 70 is applied by exposure and development.
As shown in FIG. 2(a) as a central vertical cross-sectional view and as shown in FIG.

次に、そのレジスト膜7の上方からAuを蒸着して、−
様なAu成膜0を形成する。最後にリフトオフ法によっ
て余分なAu膜をレジスト膜7とともに除去することに
より、窓7aの部分にAu製のブリッジ4が残る。
Next, Au is deposited from above the resist film 7, and -
A similar Au film 0 is formed. Finally, by removing the excess Au film together with the resist film 7 by a lift-off method, the Au bridge 4 remains in the window 7a.

この製造方法において、第10図に示す構造を得るため
にイオンミリングを用いず、第5図の状態から基板1の
段差よりも薄いYBCO薄膜を形成することで、上下に
分離した薄膜2.3を得ることもできる。この場合、第
14図に示すように、基板1の段部1aをわずかにオー
バーハングさせておくことによって、薄膜2と3は分離
しやすくなる。
In this manufacturing method, in order to obtain the structure shown in FIG. 10, a YBCO thin film thinner than the step of the substrate 1 is formed from the state shown in FIG. 5 without using ion milling. You can also get In this case, as shown in FIG. 14, by slightly overhanging the stepped portion 1a of the substrate 1, the thin films 2 and 3 can be easily separated.

なお、以上の各実施例の製造方法において基板1に段差
を付す方法として、基板1をエツチングするほか、平坦
な基板の上面に基板物質をエピタキシャル成長させても
よい。
In addition to etching the substrate 1 as a method for forming a step on the substrate 1 in the manufacturing method of each of the embodiments described above, a substrate material may be epitaxially grown on the upper surface of a flat substrate.

〈発明の効果〉 以上説明したように、本発明によれば、超電導薄膜を積
層することなく準平面型ジョセフソン接合が得られるの
で、酸化物高温超電導体を用いても高性能の素子を再現
性よく得ることができる。
<Effects of the Invention> As explained above, according to the present invention, a quasi-planar Josephson junction can be obtained without stacking superconducting thin films, making it possible to reproduce high-performance devices even using oxide high-temperature superconductors. You can get it easily.

また、超電導薄膜は一層のみ成膜すれば良いので、製造
プロセスが簡素化されるという利点もある。
Further, since only one layer of the superconducting thin film needs to be formed, there is an advantage that the manufacturing process is simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の斜視図、 第2図乃至第9図はその製造方法の説明図、第10図乃
至第13図は本発明の他の実施例の製造方法の説明図、 第14図は本発明の更に他の実施例の基板の段部形状の
説明図である。 ・基板 ・段部 ・超電導薄膜 ・ブリッジ
FIG. 1 is a perspective view of an embodiment of the present invention; FIGS. 2 to 9 are explanatory diagrams of a manufacturing method thereof; FIGS. 10 to 13 are explanatory diagrams of a manufacturing method of another embodiment of the present invention; FIG. 14 is an explanatory diagram of the step shape of a substrate according to still another embodiment of the present invention.・Substrates, steps, superconducting thin films, bridges

Claims (1)

【特許請求の範囲】[Claims] 段差が設けられた基板表面に、その段部を挟んで両側に
略一様な膜厚の超電導薄膜が形成され、その段部の両側
の超電導薄膜が、双方の膜の表面にまたがって形成され
た超電導体もしくは常電導体のブリッジで接合されてな
る、準平面型ジョセフソン接合素子。
A superconducting thin film with a substantially uniform thickness is formed on both sides of the step on the surface of a substrate provided with a step, and the superconducting thin film on both sides of the step is formed across the surfaces of both films. A quasi-planar Josephson junction device that is connected by a bridge of superconductors or normal conductors.
JP1012185A 1989-01-21 1989-01-21 Quasi-planar type josephson junction element Pending JPH02192774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1012185A JPH02192774A (en) 1989-01-21 1989-01-21 Quasi-planar type josephson junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1012185A JPH02192774A (en) 1989-01-21 1989-01-21 Quasi-planar type josephson junction element

Publications (1)

Publication Number Publication Date
JPH02192774A true JPH02192774A (en) 1990-07-30

Family

ID=11798355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1012185A Pending JPH02192774A (en) 1989-01-21 1989-01-21 Quasi-planar type josephson junction element

Country Status (1)

Country Link
JP (1) JPH02192774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160454A (en) * 1991-12-10 1993-06-25 Sumitomo Electric Ind Ltd Superconducting field effect device and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248272A (en) * 1986-04-21 1987-10-29 Nippon Telegr & Teleph Corp <Ntt> Superconducting microbridge
JPS63306675A (en) * 1987-06-08 1988-12-14 Mitsubishi Electric Corp Josephson junction element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248272A (en) * 1986-04-21 1987-10-29 Nippon Telegr & Teleph Corp <Ntt> Superconducting microbridge
JPS63306675A (en) * 1987-06-08 1988-12-14 Mitsubishi Electric Corp Josephson junction element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160454A (en) * 1991-12-10 1993-06-25 Sumitomo Electric Ind Ltd Superconducting field effect device and manufacture thereof

Similar Documents

Publication Publication Date Title
US5750474A (en) Method for manufacturing a superconductor-insulator-superconductor Josephson tunnel junction
JPH02192774A (en) Quasi-planar type josephson junction element
US4264916A (en) Semiconductor barrier Josephson junction
JPS5978585A (en) Josephson integrated circuit
JP2684745B2 (en) Quasi-planar Josephson junction device
JP2853251B2 (en) Method of manufacturing wedge-type Josephson junction device
JP2682136B2 (en) Method of manufacturing Josephson device
JPS61181178A (en) Josephson junction element and manufacture thereof
JPH0432275A (en) Stepped region type josephson junction element
Blamire et al. A new self-aligning process for whole-wafer tunnel junction fabrication
JPS59182586A (en) Josephson junction element
JPS60147179A (en) Superconducting multi-terminal element
JP2656364B2 (en) Superconducting element manufacturing method
US20010003118A1 (en) Squid formed on a sapphire substrate and method for manufacturing the same
JPS60208873A (en) Manufacture of josephson junction element
JPS61144892A (en) Production of josephson integrated circuit
JPS61263179A (en) Manufacture of josephson junction element
JPH11307831A (en) Manufacture of oxide superconducting junction
JPH03283680A (en) Squid device using proximity effect
JPH0228384A (en) Josephson junction device
JPH03297178A (en) Squid device
JPH0519993B2 (en)
JPH04302181A (en) Manufacture of quasi-plane josephson junction element
JPH0613672A (en) Manufacture of josephson junction device
JPH03297177A (en) Ic adjusting method of squid device