JPH03297130A - Epitaxial growth method of si - Google Patents

Epitaxial growth method of si

Info

Publication number
JPH03297130A
JPH03297130A JP10061190A JP10061190A JPH03297130A JP H03297130 A JPH03297130 A JP H03297130A JP 10061190 A JP10061190 A JP 10061190A JP 10061190 A JP10061190 A JP 10061190A JP H03297130 A JPH03297130 A JP H03297130A
Authority
JP
Japan
Prior art keywords
substrate
gas
si2h6
supplied
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10061190A
Other languages
Japanese (ja)
Other versions
JP2900497B2 (en
Inventor
Atsushi Ogura
厚志 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10061190A priority Critical patent/JP2900497B2/en
Publication of JPH03297130A publication Critical patent/JPH03297130A/en
Application granted granted Critical
Publication of JP2900497B2 publication Critical patent/JP2900497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To accurately control the thickness of a growth film by controlling a digital amount as the number of simply operations of a raw material to a substrate by a method wherein the temperature of an Si substrate is kept at 200 to 500 deg.C, Si2H6 is used as a silane-based gas and the gas and Cl2 are supplied alternately. CONSTITUTION:Si2H6 11 is supplied to an Si (100) substrate 2 whose temperature has been kept at 200 to 500 deg.C and which is provided with a (100) plane; then, the Si2H6 11 is dissociated on the Si (100) substrate 2, and is decomposed into SiH2 12 and SiH4 10. Then, the SiH2 12 is bonded to unbonded hands 8 existing on the substrate 2; adsorbed SiH2 9 as a monomolecular layer is formed. Then, the remaining Si2H6 gas is discharged completely; after that, a gas of Cl2 7 is supplied to the substrate 2; then, the gas of Cl2 7 is reacted with 11 atoms adsorbed to the surface by a prescribed formula of (Cl2+2H 2HCl), and is changed into HCl 6; the H atoms are removed from the surface of the substrate. This assembly is returned to an initial state prior to the supply of the Si2H6. When this cycle is repeated, a digital growth operation of the monomolecular layer per cycle is achieved, the thickness of growth film is controlled accurately and a reproducible film thickness can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体素子の製造工程の一つであるSiのエ
ピタキシアル成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for epitaxial growth of Si, which is one of the manufacturing steps of semiconductor devices.

〔従来の技術〕[Conventional technology]

従来、この種のSiのエピタキシアル成長方法としては
、例えば、ジャーナル・エレクトロケミカル・ソサイエ
テイー(Journal−Ele−ctrochemi
cal−3ociety)第108巻、第7号(198
1年)の649頁に記載されているように、Siを含む
化合物をガス状にしたシラン系ガスを基板表面に供給し
て、Siのエピタキシアル成長を行なう気相成長方法が
ある。
Conventionally, as this type of Si epitaxial growth method, for example, the Journal-Ele-ctrochemistry method has been used.
cal-3ociety) Volume 108, No. 7 (198
As described on page 649 of 1999, there is a vapor phase growth method in which Si is epitaxially grown by supplying a silane-based gas containing a Si-containing compound to the substrate surface.

また、別の方法として、例えば、応用物理57巻、第9
号(1988年)の1393頁に記載されているように
、Siの塊りを電子線等で溶解し、そこから発生したS
iの分子線を基板表面に供給して、Siを成長させる分
子線エピタキシアル成長法がある。
In addition, as another method, for example, Applied Physics Volume 57, 9
No. (1988), p. 1393, a lump of Si is melted with an electron beam, etc., and the S generated from it is
There is a molecular beam epitaxial growth method in which Si is grown by supplying a molecular beam of i to the surface of a substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のいずれの方法も、基板温度、原料の供給
量と供給時間等のアナログ量を変化させて、成長膜の厚
さを制御する方法であり、これらのアナログ量の微小な
ゆらぎが、成長膜厚の制御が困難にする欠点がある。ま
た、Si成長層の膜厚は、本来、原子層の距離の整数倍
であるデジタル量である。例えば、Siの(100)面
の場合は、この原子層の距離は約0.14nmである。
In all of the conventional methods described above, the thickness of the grown film is controlled by changing analog quantities such as the substrate temperature and the supply amount and supply time of raw materials, and minute fluctuations in these analog quantities are There is a drawback that it is difficult to control the thickness of the grown film. Further, the thickness of the Si growth layer is originally a digital quantity that is an integral multiple of the distance between atomic layers. For example, in the case of the (100) plane of Si, the distance between the atomic layers is about 0.14 nm.

このような距離の制御をアナログ量として制御すること
は本質的に不可能である。すなわち、このような制御方
法で、超格子デバイスや原子層ドーピングの作製に適用
することが困難である。
It is essentially impossible to control such distance as an analog quantity. That is, it is difficult to apply such a control method to the production of superlattice devices or atomic layer doping.

本発明の目的は、かかる欠点を解消し、Si基板への原
料の供給回数というデジタル量の制御により、成長膜厚
を正確に制御できるSiのエピタキシアル成長方法を提
供することである。
An object of the present invention is to eliminate such drawbacks and provide a method for epitaxially growing Si in which the thickness of the grown film can be accurately controlled by digitally controlling the number of times raw materials are supplied to the Si substrate.

〔課題を解決するための手段〕[Means to solve the problem]

1、本発明のSiのエピタキシアル成長方法の第1の方
法は、(100)面をもつSi (100)基板を加熱
し、シラン系ガスを供給し、Si層を成長させるSiの
エピタキシアル成長方法において、前記基板の温度を2
00〜500℃に保つとともに前記シラン系ガスをSi
2H6として、Cl0と交互に供給することを特徴とし
ている。
1. The first method of the Si epitaxial growth method of the present invention is Si epitaxial growth in which a Si (100) substrate with a (100) plane is heated, a silane gas is supplied, and a Si layer is grown. In the method, the temperature of the substrate is
While maintaining the temperature at 00 to 500°C, the silane gas is
It is characterized in that it is supplied alternately with Cl0 as 2H6.

2、本発明のSiのエピタキシアル成長方法の第2の方
法は、前記基板の温度を300〜500Cに保ち、前記
シラン系ガスをSiH4として、Cl2と交互に供給す
ることを特徴としている。
2. The second method of the Si epitaxial growth method of the present invention is characterized in that the temperature of the substrate is maintained at 300 to 500 C, and the silane gas is supplied as SiH4 and Cl2 alternately.

〔作用〕[Effect]

本発明によれば、Si基板への原料の供給回数というデ
ジタル量を制御することによって、成長膜厚を正確にI
iJ御できるSiのエピタキシアル成長方法が得られる
According to the present invention, by controlling the digital quantity of the number of times the raw material is supplied to the Si substrate, the thickness of the grown film can be accurately determined by controlling the I.
A method for epitaxial growth of Si that can control iJ is obtained.

次に、この作用を図面を参照して説明する。Next, this effect will be explained with reference to the drawings.

第1図(a>及び(b)は本発明の第1のSiのエピタ
キシアル成長方法の作用を説明するための模式図である
。まず、第1図(a)に示すように、温度200〜50
0℃に保たれた(100)面をもつSi (100)基
板2に5i2H611を供給すると、5i2H611は
Si (100)基板2上で解離し、5iH212と5
iH410に分解される。次に、この5iH212は、
5i(Zoo)基板2に存在する未結合手8と結合して
1分子層である吸着5iH29を形成する。
FIGS. 1(a) and (b) are schematic diagrams for explaining the effect of the first Si epitaxial growth method of the present invention. First, as shown in FIG. ~50
When 5i2H611 is supplied to a Si (100) substrate 2 with a (100) plane kept at 0°C, 5i2H611 dissociates on the Si (100) substrate 2 and forms 5iH212 and 5iH611.
Decomposed into iH410. Next, this 5iH212 is
5i (Zoo) is combined with the dangling bonds 8 present in the substrate 2 to form a single molecular layer of adsorbed 5iH29.

通常、5j2H6による結晶成長は、さらにSi2H6
の供給を続けると、2分子層目、3分子層目とSi層の
成長が続くが、本発明の方法では、基板の温度が500
℃以下であるため、SiH2が一分子層吸着した後は、
H原子が表面から離脱しないため、2分子層目以降は吸
着しない。また、200℃以下であると、ジシランによ
る成長速度が遅く、所定の膜厚のSiの成長膜が得られ
ない。従って、この基板温度が200℃ないし500℃
は適切な温度である。
Usually, crystal growth by 5j2H6 is further accompanied by Si2H6
If the supply of Si continues, the second and third molecular layers continue to grow, but in the method of the present invention, the substrate temperature is 500°C.
Since the temperature is below ℃, after one molecular layer of SiH2 is adsorbed,
Since H atoms do not leave the surface, they are not adsorbed in the second and subsequent molecular layers. Further, if the temperature is 200° C. or lower, the growth rate due to disilane is slow and a grown Si film of a predetermined thickness cannot be obtained. Therefore, this substrate temperature is between 200°C and 500°C.
is the appropriate temperature.

次に、第1図(b)に示すように、残留するSi2H6
ガスを完全に排気した後、Cl27のガスをSi (1
00)基板2に供給すると、Cl27のガス7は、表面
に吸着しているH原子と次の式(1〉で反応し、HCI
 6となり、基板表面よりH原子を除去する。
Next, as shown in FIG. 1(b), the remaining Si2H6
After completely exhausting the gas, the Cl27 gas was replaced with Si (1
00) When supplied to the substrate 2, the Cl27 gas 7 reacts with the H atoms adsorbed on the surface according to the following formula (1), resulting in HCI
6, and H atoms are removed from the substrate surface.

Cl2+2H→2HCI・−・・・・・−・・・・・・
・(1)このようにして、Si2H6供給以前の初期状
態に戻る。このサイクルを繰り返すことによって、1サ
イクルにつき1分子層のデジタル成長が達成する。
Cl2+2H→2HCI・-・・・・・・・・・・・
- (1) In this way, the initial state before the supply of Si2H6 is returned. By repeating this cycle, digital growth of one molecular layer per cycle is achieved.

第2図(a)及び(b)は本発明の第2のSiのエピタ
キシアル成長方法の作用を説明するための模式図である
。また、供給ガスであるSi2H6の代りにSiH4と
した場合は、第2図(a)に示すように、基板温度を3
00〜500℃に保たれたSi (100)基板2にS
 i H4を供給すると、5iH414は、基板上で解
離し、5iH212とH2に分解される。このS i 
H2は、Si (100)基板2の表面に存在する未結
合手8と結合して1分子層である吸着5iH29を形成
する。ここで、前述したように、基板温度が500℃以
下であるので、SiH2が1分子層を吸着した後、H原
子が表面から離脱しないので、2分子層目以降の吸着は
生じない。
FIGS. 2(a) and 2(b) are schematic diagrams for explaining the operation of the second Si epitaxial growth method of the present invention. In addition, when SiH4 is used instead of Si2H6 as the supply gas, the substrate temperature is increased by 3.
S on the Si (100) substrate 2 kept at 00~500℃
When iH4 is supplied, 5iH414 dissociates on the substrate and decomposes into 5iH212 and H2. This Si
H2 combines with the dangling bonds 8 present on the surface of the Si (100) substrate 2 to form a single molecular layer of adsorbed 5iH29. Here, as described above, since the substrate temperature is 500° C. or less, H atoms do not leave the surface after adsorbing one molecular layer of SiH2, so adsorption of the second and subsequent molecular layers does not occur.

次に、第2図(b)に示すように、残留するSiH4ガ
スを排除した後、Cl27のガスを基板に供給すると、
CI□は表面のH原子と前述のく1)式で反応し、HC
I6となり、基板表面よりH原子を除去する。このよう
にして、S i H4供給前の初期状態に戻る。
Next, as shown in FIG. 2(b), after removing the remaining SiH4 gas, Cl27 gas is supplied to the substrate.
CI□ reacts with H atoms on the surface according to the above formula 1), and HC
becomes I6, and removes H atoms from the substrate surface. In this way, the initial state before S i H4 supply is returned.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第3図は本発明のSiのエピタキシアル成長方法に使用
したエピタキシアル成長装置の概略を示す模式断面図で
ある。このエピタキシアル成長装置は、同図に示すよう
に、チャンバ5内は1O−8Paの高真空に排気され、
基板加熱機$1!1にSi(]−00)基板2が装着さ
れている。また、成長ガスの供給は、第1ガスセル3及
び第2ガスセル4から行なわれる。
FIG. 3 is a schematic cross-sectional view showing an outline of an epitaxial growth apparatus used in the Si epitaxial growth method of the present invention. As shown in the figure, in this epitaxial growth apparatus, the inside of the chamber 5 is evacuated to a high vacuum of 10-8 Pa,
A Si(]-00) substrate 2 is attached to a substrate heater $1!1. Further, the growth gas is supplied from the first gas cell 3 and the second gas cell 4.

ここで、Si2H6によるシリコン層の成長について説
明する。まず、基板温度を200〜500℃にし、第1
ガスセル3によりSi2H6ガスの供給量を1〜101
05eで10〜60秒供給した。次に、Si2H6ガス
の供給量を停止し、10〜120秒間で残留しているS
i2H6ガスを排気し、さらに、Cl2ガスを10〜6
0秒間供給した。次に、残留CI2ガスを10〜120
秒間排気した。
Here, the growth of a silicon layer using Si2H6 will be explained. First, the substrate temperature is set to 200 to 500°C, and the first
The supply amount of Si2H6 gas is set from 1 to 101 by gas cell 3.
05e for 10-60 seconds. Next, the supply amount of Si2H6 gas is stopped, and the remaining S is removed for 10 to 120 seconds.
Exhaust the i2H6 gas and further evacuate the Cl2 gas to 10-6
It was supplied for 0 seconds. Next, reduce the residual CI2 gas to 10 to 120
Exhausted for seconds.

このようなサイクルを1サイクルとして、200〜20
00サイクル繰り返して得られたSiのエピタキシアル
成長層の膜厚を測定したところ、1サイクル当りの成長
膜厚が約0.14nmであった。このことは、前述した
ように、Si (100)面の1分子量と一致すること
が確認された。
Such a cycle is considered as one cycle, and the number of cycles is 200 to 20.
When the film thickness of the Si epitaxially grown layer obtained by repeating 00 cycles was measured, the film thickness grown per cycle was about 0.14 nm. As mentioned above, this was confirmed to be consistent with the 1 molecular weight of the Si (100) plane.

次に、S i H4によるSi層の成長を説明する。Next, the growth of the Si layer using SiH4 will be explained.

まず、基板温度を300〜500℃にし、第1ガスセル
3によりS i H4ガスの供給量を1〜10105e
で10〜60秒供給した。次に、SiH4ガスの供給量
を停止し、10〜120秒間で残留しているSiH4ガ
スを排気し、さらに、Cl□ガスを10〜60秒間供給
した。次に、残留CI2ガスを10〜120秒間排気し
た。この場合も前述と同様の結果が得られた。
First, the substrate temperature is set to 300 to 500°C, and the supply amount of Si H4 gas is set to 1 to 10105e by the first gas cell 3.
was supplied for 10 to 60 seconds. Next, the supply amount of SiH4 gas was stopped, the remaining SiH4 gas was exhausted for 10 to 120 seconds, and Cl□ gas was further supplied for 10 to 60 seconds. The residual CI2 gas was then evacuated for 10-120 seconds. In this case, the same results as above were obtained.

また、上述した実施例では、平板状の基板上にエピタキ
シアル層を成長しているが、例えば、表面に溝がある形
状の基板でも、原料ガスの吸着を利用したものであるか
ら、溝の底あるいは側壁でも一様の厚さの成長膜が得ら
れるという利点がある。
In addition, in the above-mentioned embodiments, the epitaxial layer is grown on a flat substrate, but for example, even if the substrate has a groove on its surface, adsorption of the source gas is utilized, so the grooves can be grown on the substrate. There is an advantage that a grown film having a uniform thickness can be obtained even on the bottom or side walls.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、Si基板への原料
の供給回数というデジタル量の制御によって、成長膜の
厚さを正確に制御できるととも再現性のある膜厚が得ら
れるSiのエピタキシアル成長方法が実現できる。この
ことはその効果が甚大である。
As explained above, according to the present invention, the thickness of the grown film can be accurately controlled by digitally controlling the number of times the raw material is supplied to the Si substrate, and a reproducible film thickness can be obtained by Si epitaxy. Al growth method can be realized. The effect of this is enormous.

するための模式図、第3図は本発明のSiのエピタキシ
アル成長方法に使用したエピタキシアル成長装置の概略
を示す模式断面図である。
FIG. 3 is a schematic sectional view schematically showing an epitaxial growth apparatus used in the Si epitaxial growth method of the present invention.

Claims (1)

【特許請求の範囲】 1、(100)面をもつSi(100)基板を加熱し、
シラン系ガスを供給し、Si層を成長させるSiのエピ
タキシアル成長方法において、前記基板の温度を200
〜500℃に保つとともに前記シラン系ガスをSi_2
H_6として、Cl_2と交互に供給することを特徴と
するSiのエピタキシアル成長方法。 2、前記基板の温度を300〜500℃に保ち、前記シ
ラン系ガスをSiH_4として、Cl_2と交互に供給
することを特徴とする請求項1記載のSiのエピタキシ
アル成長方法。
[Claims] 1. Heating a Si (100) substrate with a (100) plane,
In a Si epitaxial growth method in which a silane-based gas is supplied to grow a Si layer, the temperature of the substrate is set to 200°C.
While maintaining the temperature at ~500°C, the silane gas is heated to Si_2
A method for epitaxial growth of Si, characterized in that H_6 is alternately supplied with Cl_2. 2. The Si epitaxial growth method according to claim 1, wherein the temperature of the substrate is maintained at 300 to 500°C, and the silane-based gas is SiH_4 and Cl_2 is supplied alternately.
JP10061190A 1990-04-17 1990-04-17 Method for epitaxial growth of Si Expired - Fee Related JP2900497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10061190A JP2900497B2 (en) 1990-04-17 1990-04-17 Method for epitaxial growth of Si

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10061190A JP2900497B2 (en) 1990-04-17 1990-04-17 Method for epitaxial growth of Si

Publications (2)

Publication Number Publication Date
JPH03297130A true JPH03297130A (en) 1991-12-27
JP2900497B2 JP2900497B2 (en) 1999-06-02

Family

ID=14278643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10061190A Expired - Fee Related JP2900497B2 (en) 1990-04-17 1990-04-17 Method for epitaxial growth of Si

Country Status (1)

Country Link
JP (1) JP2900497B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514803B1 (en) * 1993-12-22 2003-02-04 Tdk Corporation Process for making an amorphous silicon thin film semiconductor device
JP2014127693A (en) * 2012-12-27 2014-07-07 Tokyo Electron Ltd Formation method of seed layer, deposition method of silicon film and deposition film device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514803B1 (en) * 1993-12-22 2003-02-04 Tdk Corporation Process for making an amorphous silicon thin film semiconductor device
JP2014127693A (en) * 2012-12-27 2014-07-07 Tokyo Electron Ltd Formation method of seed layer, deposition method of silicon film and deposition film device

Also Published As

Publication number Publication date
JP2900497B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US5294286A (en) Process for forming a thin film of silicon
JP3707726B2 (en) Silicon carbide manufacturing method, composite material manufacturing method
JP2534525B2 (en) Method for manufacturing β-silicon carbide layer
JPH0639357B2 (en) Method for growing element semiconductor single crystal thin film
JP2002057115A (en) Selective epitaxial growth method
Nagasawa et al. Atomic level epitaxy of 3C-SiC by low pressure vapour deposition with alternating gas supply
JPH0766909B2 (en) Element semiconductor single crystal thin film growth method
US3941647A (en) Method of producing epitaxially semiconductor layers
JPH0547665A (en) Vapor growth method
JPH03297130A (en) Epitaxial growth method of si
EP0573269B1 (en) Method of preparing compound semiconductor
JPH06224127A (en) Method and device for growth of silicon film
JPS58151397A (en) Production of vapor phase epitaxial crystal
JPH01134912A (en) Manufacture of semiconductor thin film
JPS6254424A (en) Vapor growing process of gaas thin film
JPS6369220A (en) Manufacture of group iv semiconductor thin film
CN113046725B (en) NV color center diamond covered by boron nitride surface layer, and preparation method and application thereof
JP4265073B2 (en) Method for producing FeSi2
JPH01313927A (en) Compound-semiconductor crystal growth method
JPH0212814A (en) Crystal growth method of compound semiconductor
JP3112796B2 (en) Chemical vapor deposition method
JPH0547668A (en) Crystal growth method for compound semiconductor
JPH04175299A (en) Compound semiconductor crystal growth and compound semiconductor device
JPH0323294A (en) Method for growing compound semiconductor crystal
JPH04118921A (en) Growth method of compound semiconductor crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees