JPH04118921A - Growth method of compound semiconductor crystal - Google Patents

Growth method of compound semiconductor crystal

Info

Publication number
JPH04118921A
JPH04118921A JP23964090A JP23964090A JPH04118921A JP H04118921 A JPH04118921 A JP H04118921A JP 23964090 A JP23964090 A JP 23964090A JP 23964090 A JP23964090 A JP 23964090A JP H04118921 A JPH04118921 A JP H04118921A
Authority
JP
Japan
Prior art keywords
compound semiconductor
raw material
raw
supplied
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23964090A
Other languages
Japanese (ja)
Inventor
Nobuyuki Otsuka
信幸 大塚
Masashi Ozeki
尾関 雅志
Kunihiko Kodama
邦彦 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23964090A priority Critical patent/JPH04118921A/en
Publication of JPH04118921A publication Critical patent/JPH04118921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute a high-concentration doping operation without worsening a surface morphology and to control a steep impurity concentration by a method wherein a first raw material and a second raw material of elements constituting a compound semiconductor crystal are supplied alternately to the inside of a growth chamber and a doping raw material is supplied to one out of the first raw material and the second raw material or both of them. CONSTITUTION:A substrate 4 is fixed to a carbon susceptor 3 at the inside of a growth chamber constituted of a quartz reaction tube 1. When a compound semiconductor is doped with impurities, raw-material gases are supplied alternately or sequentially by using a changeover valve 7. Then, the raw-material gas which has been supplied previously is adsorbed to the surface of the semiconductor substrate; adsorbed atoms of the raw-material gas are reacted with a reactive gas which has been supplied next; a compound semiconductor is produced and grown. A raw-material gas for a doping operation of impurities is supplied to the growth chamber together with any raw-material gas or all raw-material gases. Thereby, it is possible to solve a problem that a high-concentration doping operation and/or a growth operation at a monomolecular layer unit are impossible.

Description

【発明の詳細な説明】 【概要】 原子層単位で結晶成長を行い、かつ高濃度ドーピングを
可能にする化合物半導体結晶成長方法に関し、 表面モホロジーを悪化することなく高濃度ドーピングを
可能にし、また急峻な不純物濃度の制御を可能にするこ
とを目的とし、 二元化合物半導体結晶へ不純物ドーピング行う際に、化
合物半導体結晶を構成する元素の第一の原材料と化合物
半導体結晶を構成する第二の原材料を交互に成長室内へ
供給し、ドーピング原料を第一の原材料もしくは第二の
原材料の何れか−方、又は両方とともに供給するように
構成する。 【産業上の利用分野〕 この発明は化合物半導体結晶成長方法にかかり、特に原
子層単位で結晶成長を行い、かつ高濃度ドーピングを可
能にする化合物半導体結晶成長方法に関する。 電子デバイスの微細化を進めてその性能を向上し、更に
は従来のバルク材料にはない物性を実現して新しい機能
を有する電子デバイスを開発するなどの目的で、化合物
半導体結晶及びその不純物濃度を原子層単位で制御する
ことが強く要望されている。 また、化合物半導体結晶中への不純物濃度制街に関して
は、より高濃度なドーピング技術の開発が彊く要望され
ている。 【従来の技術〕 従来、有機金属を用いた気相成長法(MOCVD)にお
いては、たとえば良質のInP結晶を成長する場合、I
n原料にトリメチルインジュウム(TMI)、P原料に
ホスフィン(PH,)を用いて、成長温度600℃にて
原料を同時に反応管に供給して成長を行っていた。 〔発明が解決しようとする課題〕 前述の方法でInP結晶中に高濃度のドーピングを行う
際、ドーピングガスの濃度を増加してもドーピング濃度
が飽和してしまう傾向があった。 第1図の「従来法」を附記したカーブは、上記方法でセ
レン化水素、Hz Se (Ha希釈5ppm)をドー
ピングガスとしてn型不純物をドープしたときの不純物
濃度とH2Se流量との関係を示し、不純物濃度は10
 ”〜10 ”/ c m”で飽和していることを示す
。 また、高濃度ドーピングが達成された場合でも結晶の表
面モホロジーが悪化して、半導体層の厚みが不均一にな
り超格子構造をもつデバイスの作製が困難に成るといっ
た問題点を生じていた。 さらに、前述の600℃の温度でヘテロ界面を持ち不純
物濃度が異なる化合物半導体結晶の成長を行った場合、
成長中に不純物の拡散が起こるために単原子層の厳密さ
で急峻な不純物濃度の制御を行うことも困難であった。 したがって、本発明は表面モホロジーを悪化することな
く高濃度ドーピングを可能にする化合物半導体結晶成長
法を提供することを目的とする。 さらに、本発明は急峻な不純物濃度の制御を可能にする
化合物半導体結晶成長法を提供することを目的とする。 〔課題を解決するための手段J 本発明は、二元化合物半導体結晶の成長の場合は、化合
物半導体結晶を構成する元素の第一の原材料と化合物半
導体結晶を構成する第二の原材料を交互に成長室内へ供
給し、ドーピング原料を第一の原材料もしくは第二の原
材料の何れか一方、又は両方とともに供給し、 三元化合物半導体結晶の成長の場合は、化合物半導体結
晶を構成する三種の元素を順次成長室内へ供給し、ドー
ピング原料を何れか一種又は二種以上の原料ガスととも
に供給することを要旨とする。 本発明においては化合物半導体結晶へ不純物ドーピング
行う際に、原料ガスを成長室に一挙に供給するのではな
く交互または順次供給すると、先に供給された原料ガス
が半導体基板表面に吸着しており、この原料ガスの吸着
原子と次に供給された反応ガスが基板上にて反応し化合
物半導体が生成・成長する。不純物をドープするための
原料ガスは何れかの原料ガスあるいはすべての原料ガス
とともに成長室へ供給する。従来法のように原料ガスを
反応室に一挙に供給すると反応室内の気相反応が結晶成
長の速度や不純物の取り込みに支配的に成り、高濃度ド
ーピングかつ/または単原子層単位の成長が不可能に成
る。これらに起因する問題点を避けるために本発明は上
述のように交互にまたは順次原料ガスを供給することに
した。 本発明の具体例によれば、例えばInP結晶を従来のM
O−CVD法の装置を用いて原材料にTMIおよびPH
,を用い、原材料を交互に供給し成長を行う、各供給の
間にH2ガスによるパージを行い成長室内の原料ガスを
追い出すと、原料ガス相互の気相中でのまじりを無くす
ることができる。 キャリアガスとしてはH2を用い、成長温度350℃に
て成長を行う。n型ドーピングの原料としてはセレン化
水素(H,Se)などを用い、る。 成長温度は350℃とする。 [作用〕 請求項1および2記載の発明によれば成長室に供給され
た原料ガスがO〜1原子層の化合物層をつくる。不純物
はかかるO〜l原子層にドープされるので高濃度ドーピ
ングが可能となり、また、成長層の表面モホロジーも良
好である。不純物のドーピングは半導体構成原子の場合
と同様に基板への吸着によると考えられる。 従来法のように化学反応により生成した化合物中に不純
物が取り込まれる場合と比較して多くの原子が取り込ま
れることができ、これにより本発明の高濃度ドーピング
が可能に成ると考えられる。 請求項3記載の方法ではこれまでの方法に比べて基板温
度がかなり低いために不純物のドープ量がさらに多くな
る。このように低温で化合物の成長が可能に成ったのは
、原料ガスを交互または順次供給して、膜を形成すべき
基板そのものにて1n−situ反応を行うからである
。従来法と同様の温度での反応ももちろん可能であるが
不純物の拡散が問題になるようなときは本方法が極めて
好ましい。 請求項4記載の方法は低温で高濃度ドーピングが実施さ
れるために高ドープ化合物半導体層から低ドープ化合物
半導体層への不純物の拡散が少なく、ヘテロ界面の作製
には特に有効である。低濃度層の成長は従来法により行
ってもよいが、請求項4のように交互または順次原料ガ
スを供給する本発明の方法を行うことにより単原子層制
御成長を行うことができる。 以下、実施例によりさらに詳しく本発明を説明する。 [実施例] 本実施例では、InP (100)基板上へのInP結
晶の原子層エピタキシャル成長によるn型不純物ドーピ
ングを、従来からMO−CVD法に用いている気相成長
装置を用いて以下に説明するように実施しており、第1
図に「本発明実施例」として例示する如き結果を得た。 本実施例では、第2図に示す通りの成長システムを用い
た。成長システムの構成は以下の通りである。石英反応
管1より構成される成長室内に、RFコイル2により加
熱されるカーボンサセプタ3に基板4を固定する0石英
反応管1の一端を蓋5で閉じ、その一部に排気管7を取
り付け、これを圧力コントローラー6を介して真空排気
系に接続する。 石英反応管1の他端にはガス切り換えバルブ7を接続し
、これにTMI、TEG、PH,。 AsHs 、Hsなとのそれぞれのガスを流入させると
ともに、圧力コントローラー8を取り付けた排気管9に
よりTMIなどの圧力を制御する。 本実施例では成長中の圧力を例えば20Torr成長温
度を350℃として成長を行った。TMIのバブラー温
度を27.1℃とし、H2キャリアを通気して原料の供
給を行った。P原料にはホスフィン(HX希釈20%)
、n型ドーパントとしてはH2Se (Hz希釈5pp
m)を用いた。1周期が下記の各時間と流量からなる成
長を例えば1704周期繰り返し、InPを2ooo〜
5oo。 人の厚さに成長させ、Hs S e (P Hz供給時
に0.2s間供給)の供給量を変化させて成長を行いそ
の不純物濃度を評価した結果が第1図に示されている。 (以下余白) 本実施例では350℃という低温で高濃度のn型ドーピ
ングを行う際、In原料にTMI、Ga原料にTEG、
As原料にアルシン(ASH3゜H2希釈20%)、n
型ドーパントとしてH2Se (H2希釈5ppm)を
用いる。成長条件は下記のとうりである。 (以下余白) なお、かっこ内は各有機金属のバブラー温度である。本
実施例の場合も前記実施例1とほぼ同様な結果が得られ
ている。 〔発明の効果〕 本発明は高濃度の数原子層の化合物半導体な有する電子
デバイス材料や、あるいは、物性の大きく異なる化合物
半導体からなるペテロ界面を有する電子デバイス材料の
開発などに大きく貢献する。
[Detailed Description of the Invention] [Summary] This method relates to a compound semiconductor crystal growth method that grows crystals in atomic layer units and enables high-concentration doping. With the aim of making it possible to control the impurity concentration, when doping impurities into a binary compound semiconductor crystal, the first raw material of the element constituting the compound semiconductor crystal and the second raw material constituting the compound semiconductor crystal are combined. The doping raw material is alternately supplied into the growth chamber, and the doping raw material is supplied together with either the first raw material, the second raw material, or both. [Industrial Application Field] The present invention relates to a method for growing compound semiconductor crystals, and more particularly to a method for growing compound semiconductor crystals that allows crystal growth in units of atomic layers and enables high concentration doping. Compound semiconductor crystals and their impurity concentrations are being refined to advance the miniaturization of electronic devices and improve their performance, as well as to develop electronic devices with new functions by realizing physical properties not found in conventional bulk materials. There is a strong demand for control on an atomic layer basis. Furthermore, with regard to controlling the concentration of impurities in compound semiconductor crystals, there is a strong demand for the development of techniques for doping with higher concentrations. [Prior art] Conventionally, in organic metal vapor deposition (MOCVD), when growing a high-quality InP crystal, for example, I
Growth was performed by using trimethyl indium (TMI) as the n raw material and phosphine (PH, ) as the p raw material, and simultaneously supplying the raw materials to a reaction tube at a growth temperature of 600°C. [Problems to be Solved by the Invention] When doping an InP crystal at a high concentration using the method described above, the doping concentration tends to be saturated even if the concentration of the doping gas is increased. The curve labeled "Conventional method" in Figure 1 shows the relationship between the impurity concentration and the H2Se flow rate when n-type impurities are doped using hydrogen selenide, Hz Se (Ha dilution 5 ppm) as a doping gas, using the above method. , the impurity concentration is 10
In addition, even if high concentration doping is achieved, the surface morphology of the crystal deteriorates and the thickness of the semiconductor layer becomes non-uniform, resulting in a superlattice structure. Furthermore, when compound semiconductor crystals with heterointerfaces and different impurity concentrations are grown at the aforementioned temperature of 600°C,
Since impurity diffusion occurs during growth, it is difficult to control the impurity concentration steeply with the precision of a monoatomic layer. Therefore, an object of the present invention is to provide a compound semiconductor crystal growth method that enables high concentration doping without deteriorating surface morphology. A further object of the present invention is to provide a compound semiconductor crystal growth method that allows steep control of impurity concentration. [Means for Solving the Problems J] In the case of growing a binary compound semiconductor crystal, the present invention consists of alternately using a first raw material of an element constituting the compound semiconductor crystal and a second raw material constituting the compound semiconductor crystal. In the case of growing a ternary compound semiconductor crystal, the three elements constituting the compound semiconductor crystal are The gist is to supply the doping raw material into the growth chamber sequentially, and to supply the doping raw material together with any one or more raw material gases. In the present invention, when doping a compound semiconductor crystal with impurities, if the raw material gas is supplied to the growth chamber alternately or sequentially instead of all at once, the raw material gas supplied first is adsorbed on the surface of the semiconductor substrate. The adsorbed atoms of this raw material gas react with the next supplied reaction gas on the substrate to generate and grow a compound semiconductor. The raw material gas for doping with impurities is supplied to the growth chamber together with any or all of the raw material gases. When raw material gas is supplied all at once to the reaction chamber as in the conventional method, the gas phase reaction within the reaction chamber becomes dominant in the rate of crystal growth and incorporation of impurities, resulting in high concentration doping and/or growth in monoatomic layer units. It becomes possible. In order to avoid these problems, the present invention supplies the source gas alternately or sequentially as described above. According to embodiments of the present invention, for example, an InP crystal can be replaced with a conventional M
TMI and PH are added to the raw materials using O-CVD equipment.
, to perform growth by supplying the raw materials alternately. By purging with H2 gas between each supply and expelling the raw material gas from the growth chamber, it is possible to eliminate the mixture of raw material gases in the gas phase. . Growth is performed at a growth temperature of 350° C. using H2 as a carrier gas. Hydrogen selenide (H, Se) or the like is used as a raw material for n-type doping. The growth temperature is 350°C. [Function] According to the invention described in claims 1 and 2, the raw material gas supplied to the growth chamber forms a compound layer of 0 to 1 atomic layer. Since the impurity is doped into the O-l atomic layer, high concentration doping is possible, and the surface morphology of the grown layer is also good. Doping of impurities is thought to be due to adsorption to the substrate, similar to the case of semiconductor constituent atoms. Compared to the case where impurities are incorporated into a compound produced by a chemical reaction as in the conventional method, more atoms can be incorporated, which is considered to enable the high concentration doping of the present invention. In the method according to claim 3, the substrate temperature is considerably lower than in the conventional methods, so that the amount of impurity doped is further increased. The reason why it is possible to grow the compound at such a low temperature is because the raw material gases are supplied alternately or sequentially to carry out the 1n-situ reaction on the substrate itself on which the film is to be formed. Although it is of course possible to carry out the reaction at the same temperature as in the conventional method, this method is extremely preferable when diffusion of impurities is a problem. The method according to claim 4 is particularly effective for producing a heterointerface because the doping is carried out at a high concentration at a low temperature, so that there is little diffusion of impurities from the highly doped compound semiconductor layer to the lightly doped compound semiconductor layer. Although the growth of the low concentration layer may be performed by a conventional method, controlled growth of a monoatomic layer can be performed by performing the method of the present invention in which raw material gases are alternately or sequentially supplied as described in claim 4. Hereinafter, the present invention will be explained in more detail with reference to Examples. [Example] In this example, n-type impurity doping by atomic layer epitaxial growth of InP crystal on an InP (100) substrate will be explained below using a vapor phase growth apparatus conventionally used in MO-CVD method. The first
The results illustrated in the figure as "Example of the present invention" were obtained. In this example, a growth system as shown in FIG. 2 was used. The structure of the growth system is as follows. A substrate 4 is fixed to a carbon susceptor 3 heated by an RF coil 2 in a growth chamber composed of a quartz reaction tube 1. One end of the quartz reaction tube 1 is closed with a lid 5, and an exhaust pipe 7 is attached to a part of it. , which is connected to a vacuum exhaust system via a pressure controller 6. A gas switching valve 7 is connected to the other end of the quartz reaction tube 1, and TMI, TEG, PH, etc. are connected to the gas switching valve 7. Gases such as AsHs and Hs are allowed to flow in, and the pressure of TMI and the like is controlled by an exhaust pipe 9 to which a pressure controller 8 is attached. In this example, growth was performed at a pressure during growth of, for example, 20 Torr and a growth temperature of 350°C. The TMI bubbler temperature was set at 27.1° C., and the raw material was supplied by aerating the H2 carrier. Phosphine as P raw material (HX dilution 20%)
, H2Se (Hz dilution 5pp
m) was used. For example, repeat growth for 1704 cycles, where one cycle consists of the following times and flow rates, and grow InP from 2ooo to
5oo. FIG. 1 shows the results of growing to a human thickness and evaluating the impurity concentration by varying the supply amount of Hs S e (supplied for 0.2 seconds when P Hz was supplied). (Left below) In this example, when performing high-concentration n-type doping at a low temperature of 350°C, TMI is used for the In raw material, TEG is used for the Ga raw material,
Arsine (ASH3゜H2 dilution 20%), n
H2Se (H2 dilution 5 ppm) is used as a type dopant. The growth conditions are as follows. (Left below) The bubbler temperature of each organometallic is shown in parentheses. In this example, almost the same results as in Example 1 were obtained. [Effects of the Invention] The present invention greatly contributes to the development of electronic device materials having several atomic layers of highly concentrated compound semiconductors, or electronic device materials having Peter interfaces made of compound semiconductors with widely different physical properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例でドーピングガス供給量と不純
物濃度の関係を示した図、 第2図は本発明法の実施に使用した成長システムの概念
図である。 l−石英反応管、2−RFコイル、3−カーボンサセプ
タ、4一基板、7−排気管7.8−圧力コントローラー
8 H2SelE 給量(SCCM) HzSe供1合量と不肚笥ン層度の関係八号ンス7A
FIG. 1 is a diagram showing the relationship between doping gas supply amount and impurity concentration in an example of the present invention, and FIG. 2 is a conceptual diagram of a growth system used to implement the method of the present invention. 1-Quartz reaction tube, 2-RF coil, 3-carbon susceptor, 4-substrate, 7-exhaust pipe 7.8-pressure controller 8 H2SelE supply amount (SCCM) HzSe supply 1 total amount and degree of layering Related No. 8 7A

Claims (1)

【特許請求の範囲】 1、二元化合物半導体結晶へ不純物ドーピング行う際に
、化合物半導体結晶を構成する元素の第一の原材料と化
合物半導体結晶を構成する第二の原材料を交互に成長室
内へ供給し、ドーピング原料を第一の原材料もしくは第
二の原材料の何れか一方、又は両方とともに供給するこ
とを特徴とする化合物半導体結晶成長方法。 2、三元化合物半導体結晶へ不純物ドーピング行う際に
、化合物半導体結晶を構成する三種の元素を順次成長室
内へ供給し、ドーピング原料を何れか一種又は二種以上
の原料ガスとともに供給することを特徴とする化合物半
導体結晶成長方法。 3、成長温度が300〜600℃であることを特徴とす
る請求項1または2記載の化合物半導体結晶成長方法。 4、不純物濃度が10^1^9/cm^3以上の第一の
化合物半導体結晶の成長を請求項1から3までのいずれ
か1項記載の方法で行う第1工程と、第1工程の前また
は後に、不純物濃度が10^1^9/cm^3未満の第
二の化合物半導体結晶のヘテロ接合成長を請求項1から
3までのいずれか1項記載の方法で行う第2工程とを有
する化合物半導体結晶成長方法。
[Claims] 1. When doping a binary compound semiconductor crystal with impurities, a first raw material of an element constituting the compound semiconductor crystal and a second raw material constituting the compound semiconductor crystal are alternately supplied into a growth chamber. A compound semiconductor crystal growth method characterized in that a doping raw material is supplied together with either the first raw material or the second raw material, or both. 2. When doping a ternary compound semiconductor crystal with impurities, the three elements constituting the compound semiconductor crystal are sequentially supplied into the growth chamber, and the doping raw material is supplied together with one or more raw material gases. A method for growing compound semiconductor crystals. 3. The compound semiconductor crystal growth method according to claim 1 or 2, wherein the growth temperature is 300 to 600°C. 4. A first step of growing a first compound semiconductor crystal having an impurity concentration of 10^1^9/cm^3 or more by the method described in any one of claims 1 to 3; Before or after, a second step of growing a second compound semiconductor crystal with an impurity concentration of less than 10^1^9/cm^3 by the method according to any one of claims 1 to 3. A method for growing compound semiconductor crystals.
JP23964090A 1990-09-10 1990-09-10 Growth method of compound semiconductor crystal Pending JPH04118921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23964090A JPH04118921A (en) 1990-09-10 1990-09-10 Growth method of compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23964090A JPH04118921A (en) 1990-09-10 1990-09-10 Growth method of compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH04118921A true JPH04118921A (en) 1992-04-20

Family

ID=17047722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23964090A Pending JPH04118921A (en) 1990-09-10 1990-09-10 Growth method of compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH04118921A (en)

Similar Documents

Publication Publication Date Title
US5270247A (en) Atomic layer epitaxy of compound semiconductor
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
JPH0547665A (en) Vapor growth method
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JPH04118921A (en) Growth method of compound semiconductor crystal
JP2577550B2 (en) Impurity doping of III-V compound semiconductor single crystal thin films
JP2736655B2 (en) Compound semiconductor crystal growth method
JPH05335241A (en) Compound semiconductor and manufacture thereof
JP3159788B2 (en) Compound semiconductor crystal growth method
JPH0323294A (en) Method for growing compound semiconductor crystal
JPH03185716A (en) Method of growing compound semiconductor crystal
JPH01313927A (en) Compound-semiconductor crystal growth method
JPH11268996A (en) Method for growing compound semiconductor mixed crystal
JP2900497B2 (en) Method for epitaxial growth of Si
JPH08245291A (en) Method for growing iii-v compound semiconductor crystal
JPH04132214A (en) Manufacture of compound semiconductor thin film
JPS61260622A (en) Growth for gaas single crystal thin film
JPH0323624A (en) Method and apparatus for vapor growth
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPH02116120A (en) Crystal growth method
JPH04207021A (en) Growth method of compound semiconductor crystal
JPH01290222A (en) Semiconductor vapor growth method
JPH05190474A (en) Crystal growth method of compound semiconductor
JPS62202894A (en) Vapor growth method for iii-v compound semiconductor
JPH04259212A (en) Crystal growth method of compound semiconductor