JPH08245291A - Method for growing iii-v compound semiconductor crystal - Google Patents

Method for growing iii-v compound semiconductor crystal

Info

Publication number
JPH08245291A
JPH08245291A JP5120395A JP5120395A JPH08245291A JP H08245291 A JPH08245291 A JP H08245291A JP 5120395 A JP5120395 A JP 5120395A JP 5120395 A JP5120395 A JP 5120395A JP H08245291 A JPH08245291 A JP H08245291A
Authority
JP
Japan
Prior art keywords
group
raw material
carbon
iii
semiconductor crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5120395A
Other languages
Japanese (ja)
Inventor
Mitsuru Shimazu
充 嶋津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5120395A priority Critical patent/JPH08245291A/en
Publication of JPH08245291A publication Critical patent/JPH08245291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To provide a method for growing a DI-V compd. semiconductor crystal by which the thickness of a layer in which carbon has been doped at a high concn. can be controlled on an atomic layer level and highly uniform growth can be carried out even on a substrate of a large diameter. CONSTITUTION: When a III-V compd. semiconductor crystal is grown by an organometallic vapor growth method, organometallic stock of a group III metal and organometallic stock of a group V metal are alternately fed and carbon is doped. If necessary, hydride of a group V metal is fed between the feeds of the stocks or added to the latter stock and fed, the amt. of the hydride fed and the feeding time are regulated and the amt. of carbon doped is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、III-V族化合物半導体
結晶の有機金属気相成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal organic chemical vapor deposition method for III-V compound semiconductor crystals.

【0002】[0002]

【従来の技術】有機金属気相成長方法(OMVPE法)
は、膜厚制御に優れ、化合物半導体を用いたヘテロ接合
デバイス用基板の作製に用いられてきた。ヘテロ接合デ
バイスの中でもHBT(ヘテロジャンクション・バイポ
ーラ・トランジスタ)は超高速で動作するため、盛んに
開発されている。HBTの構造は、n−GaAsのコレ
クタ、p−AlGaAsのベース及びn−AlGaAs
のエミッタで構成されている。HBTの特性は、ベース
層の正孔濃度が高いほど、また、ベース層の厚さが薄い
ほど高い特性が得られる。また、エミッタ側からコレク
タ側に向けてベース層中のAl組成を傾斜させることに
より、さらに高速動作が可能になる。
2. Description of the Related Art Metal Organic Chemical Vapor Deposition Method (OMVPE Method)
Has excellent film thickness control, and has been used for producing a substrate for a heterojunction device using a compound semiconductor. Among the heterojunction devices, HBT (heterojunction bipolar transistor) is actively developed because it operates at a very high speed. The structure of HBT is as follows: n-GaAs collector, p-AlGaAs base and n-AlGaAs
It consists of an emitter. The HBT characteristics are higher as the hole concentration of the base layer is higher and the thickness of the base layer is thinner. Further, by grading the Al composition in the base layer from the emitter side to the collector side, higher speed operation becomes possible.

【0003】従来、OMVPE法では、p型ドーパント
としてZnが用いられていたが、Znの拡散係数が大き
いため、成長中にベース領域からエミッタ領域に拡散し
てしまい、急峻なpn接合を得ることができないという
問題があった。また、Znに比べて拡散係数が5桁小さ
いMgのドーピングも検討されているが、Mg原料が配
管や反応管に吸着されやすいため、急峻なドーピング・
プロファイルを形成することが難しい。そのため、最近
では炭素ドーピングが検討されている。例えば、成長圧
力76TorrでIII 族原料としてTMGa、V族原料
としてTMAsを用いて2×1019cm-3の炭素ドーピ
ングを行うことが提案された(Appl. Phys. Lett. Vol.
53, No.14,p.1317〜1319:T.F.Kuech et al.)。
Conventionally, Zn has been used as a p-type dopant in the OMVPE method, but since the diffusion coefficient of Zn is large, it diffuses from the base region to the emitter region during growth to obtain a sharp pn junction. There was a problem that I could not do it. In addition, doping of Mg, which has a diffusion coefficient five orders of magnitude smaller than that of Zn, has been studied, but since the Mg raw material is likely to be adsorbed by the pipe or the reaction tube, the steep doping
It is difficult to form a profile. Therefore, recently, carbon doping has been studied. For example, it has been proposed to perform carbon doping of 2 × 10 19 cm −3 using TMGa as a group III source material and TMAs as a group V source material at a growth pressure of 76 Torr (Appl. Phys. Lett. Vol.
53, No. 14, p. 1317-1319: TF Kuech et al.).

【0004】本発明者等は、V族有機金属原料を用い、
減圧成長させることにより、OMVPE法で2.5×1
20cm-3という高濃度の炭素ドーピングが可能である
ことを報告した(Inst. Phys. Conf. Ser. No 112: Cha
pter 3, Paper presented atInt. Symp. GaAs and Rela
ted Compounds, Jersey, 1990)。また、III 族原料と
してTMGaを、また、V族原料としてTMAsを同時
に流してOMVPE法で炭素ドープGaAs気相成長す
るときに、AsH3 を添加して炭素のドーピング量を制
御することを提案した(特開平2─3516号公報)。
The present inventors have used a Group V organometallic raw material,
2.5 × 1 by OMVPE method by growing under reduced pressure
It was reported that carbon doping with a high concentration of 0 20 cm -3 is possible (Inst. Phys. Conf. Ser. No 112: Cha.
pter 3, Paper presented at Int. Symp. GaAs and Rela
ted Compounds, Jersey, 1990). In addition, when TMGa as a group III source and TMAs as a group V source were simultaneously flown to perform carbon-doped GaAs vapor phase growth by the OMVPE method, it was proposed to add AsH 3 to control the carbon doping amount. (Japanese Patent Laid-Open No. 2-3516).

【0005】一方、ベース層の厚さに関しては、100
nm以下の厚さを正確に制御する必要があり、また、基
板面内の均一性も高いことが要求される。従来のOMV
PE法では、結晶薄膜の成長速度が基本的にはIII 族原
料の基板表面への供給速度で決まるため、ベース層の厚
さを正確に制御するためには原料供給量の正確な制御が
必要になるが、原子層レベルでの制御は困難である。ま
た、基板面内の厚さの均一性はガス流に依存するため、
大口径基板での均一性を確保することも困難である。
On the other hand, regarding the thickness of the base layer, 100
It is necessary to accurately control the thickness of nm or less, and it is also required that the uniformity within the substrate surface is high. Conventional OMV
In the PE method, since the growth rate of the crystal thin film is basically determined by the supply rate of the group III raw material to the substrate surface, accurate control of the raw material supply amount is necessary to accurately control the thickness of the base layer. However, control at the atomic layer level is difficult. Moreover, since the uniformity of the thickness in the plane of the substrate depends on the gas flow,
It is also difficult to ensure uniformity on a large-diameter substrate.

【0006】このように、高性能のHBTを実現するた
めには、ベース層として1020cm -3以上の高濃度ドー
ピング及び100nm以下で原子層レベルの厚さの均一
性が要求されるため、従来のV族有機金属を用いたOM
VPE法による炭素ドープ層の成長では不十分であっ
た。また、傾斜型ベース層の場合、100nmの中でA
l組成を所定のプロファイルで変化させる必要があっ
た。
Thus, a high-performance HBT has been realized.
As a base layer, 1020cm -3High concentration dose
Ping and uniform atomic layer level thickness below 100 nm
OM using conventional Group V organometallics is required because
Growth of the carbon-doped layer by the VPE method is not sufficient.
Was. Further, in the case of a tilted base layer, A within 100 nm
l It is necessary to change the composition in a predetermined profile.
Was.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明では、
上記の問題を解消し、炭素を高濃度にドーピングした層
を原子層レベルの厚さで制御でき、大口径基板上にも高
均一な成長を行うことのできるIII-V族化合物半導体結
晶の成長方法を提供しようとするものである。
Therefore, according to the present invention,
Growth of III-V group compound semiconductor crystal capable of solving the above problems and controlling a layer doped with high concentration of carbon at a thickness of atomic layer level and capable of performing highly uniform growth even on a large-diameter substrate. It is intended to provide a method.

【0008】[0008]

【課題を解決するための手段】本発明は、(1) III-V族
化合物半導体結晶の有機金属気相成長方法において、II
I 族有機金属原料とV族有機金属原料を交互に供給する
ことにより炭素をドーピングすることを特徴とするIII-
V族化合物半導体結晶の成長方法、(2) III 族有機金属
原料の供給からV族有機金属原料の供給への間、及び/
又は、V族有機金属原料の供給からIII 族有機金属原料
の供給への間に、V族水素化物を供給し、その供給量及
び供給時間を調節して炭素ドーピング量を制御すること
を特徴とする上記(1) 記載のIII-V族化合物半導体結晶
の成長方法、及び、(3) V族有機金属原料にV族水素化
物を添加して供給し、V族水素化物の添加量を調節して
炭素ドーピング量を制御することを特徴とする上記(1)
記載のIII-V族化合物半導体結晶の成長方法である。
The present invention provides (1) a metal-organic vapor phase epitaxy method for III-V compound semiconductor crystals, comprising:
Carbon is doped by alternately supplying Group I organometallic raw materials and Group V organometallic raw materials III-
Method for growing V group compound semiconductor crystal, (2) Between supply of group III organometallic raw material and supply of group V organometallic raw material, and /
Alternatively, a Group V hydride is supplied between the supply of the Group V organometallic raw material and the supply of the Group III organometallic raw material, and the carbon doping amount is controlled by adjusting the supply amount and supply time. The method for growing a III-V compound semiconductor crystal according to the above (1), and (3) adding a group V hydride to a group V organometallic raw material and supplying the raw material to adjust the amount of the group V hydride added. (1) characterized by controlling the carbon doping amount by
The method for growing a III-V compound semiconductor crystal described above.

【0009】本発明で使用するIII 族有機金属原料とし
ては、トリメチルガリウム(TMGa)、トリメチルア
ルミニウム(TMAl)等を使用することができ、V族
有機金属原料としては、トリメチルひ素(TMAs)、
トリエチルひ素(TEAs)等を使用することができ、
V族水素化物としては、アルシン(AsH3 )、ターシ
ャリーブチルアルシン〔(C4 7 )AsH2 =TBA
s〕トリエチルガリウム(TEGa)、トリエチルアル
ミニウム(TEAl)等を使用することができる。
Trimethylgallium (TMGa), trimethylaluminum (TMAl), etc. can be used as the group III organic metal raw material used in the present invention, and trimethylarsenic (TMAs), trimethylarsenic (TMAs), etc. can be used as the group V organic metal raw material.
Triethyl arsenic (TEAs) etc. can be used,
Group V hydrides include arsine (AsH 3 ), tertiary butyl arsine [(C 4 H 7 ) AsH 2 = TBA
s] Triethylgallium (TEGa), triethylaluminum (TEAl) and the like can be used.

【0010】[0010]

【作用】TMGaとTMAsを原料として用い、GaA
sを成長する場合の手順を説明すると次のようになる。 TMGaを成長室に導入して基板表面に1原子層を吸
着させる。 成長室内の余剰のTMGaをパージする。 TMAsを成長室に導入して基板表面に吸着している
Ga化合物と反応させてGaAsを1分子層だけ成長さ
せる。 成長室内のTMAsをパージする。
[Operation] Using TMGa and TMAs as raw materials, GaA
The procedure for growing s is as follows. TMGa is introduced into the growth chamber to adsorb one atomic layer on the substrate surface. Excess TMGa in the growth chamber is purged. The TMAs are introduced into the growth chamber and reacted with the Ga compound adsorbed on the substrate surface to grow only one molecular layer of GaAs. Purge TMAs in the growth chamber.

【0011】の工程でTMGaが基板に1層吸着する
と、Gaにメチル基が1個又は2個結合したGa化合物
となり、その上にはGa化合物は吸着しない。の工程
でTMAsを導入してGaAsが1分子層成長する際
に、Gaと結合していたメチル基のCは、結晶中に取り
込まれてアクセプタになる。As層の上にはAsは吸着
しないので、の工程でTMAsをパージし、その後、
からの工程を繰り返す。このように、GaとAsを
1原子層づつ吸着・反応させて結晶を成長させるため、
膜厚を原子層単位で制御することが可能になる。
When TMGa is adsorbed on the substrate in a single layer in the step (1), it becomes a Ga compound in which one or two methyl groups are bonded to Ga, and the Ga compound is not adsorbed on it. When TMAs is introduced and GaAs grows as a monolayer in the step of, the C of the methyl group that has been bonded to Ga is taken into the crystal and becomes an acceptor. Since As is not adsorbed on the As layer, TMAs is purged in the step of
Repeat steps from. Thus, in order to grow crystals by adsorbing and reacting one atomic layer of Ga and As,
It becomes possible to control the film thickness in atomic layer units.

【0012】通常、原子層エピタキシャル法又は分子層
エピタキシャル法と呼ばれる成長方法では、アルシン
(AsH3 )を導入するが、この場合にはアルシンが分
解してできる水素原子がTMGaのメチル基と結合して
メタンとなり、大部分の炭素は結晶に取り込まれないと
考えられる。しかし、本発明では、水素原子を発生しな
いV族有機金属原料を用いるため、大部分の炭素が結晶
に取り込まれるので高濃度の炭素ドーピングが可能とな
る。
Usually, in a growth method called an atomic layer epitaxial method or a molecular layer epitaxial method, arsine (AsH 3 ) is introduced. In this case, a hydrogen atom formed by decomposition of arsine is bonded to a methyl group of TMGa. It is thought that most of the carbon is not incorporated into the crystal. However, in the present invention, since a Group V organometallic raw material that does not generate hydrogen atoms is used, most of the carbon is incorporated into the crystal, so high-concentration carbon doping is possible.

【0013】上記のGaAs成長速度は、ガス流によっ
て基板表面に供給されるIII 族原料の量に依存しないた
め、大口径の基板上でも極めて均一な層厚を可能にす
る。なお、上記のGaAsの成長において、TMAsの
代わりにTEAsを用いて同様の成長を行うことができ
る。また、TMGaの代わりにTMAlを用いてAlA
sを同様に成長することもできる。
Since the above GaAs growth rate does not depend on the amount of the group III raw material supplied to the substrate surface by the gas flow, it enables an extremely uniform layer thickness even on a large-diameter substrate. In the above GaAs growth, TEAs can be used instead of TMAs to perform the same growth. Also, using TMAl instead of TMGa, AlA
s can be similarly grown.

【0014】V族有機金属を用いたOMVPE法の炭素
ドーピングでは、成長温度を変化させることにより炭素
のドーピング量を制御できる。本発明でも、成長温度で
ドーピング量を制御することはある程度可能である。成
長温度が高いほど基板に吸着しているGaと結合したメ
チル基が熱分解するため、炭素の取り込みが減少するか
らである。
In carbon doping of the OMVPE method using a group V organic metal, the doping amount of carbon can be controlled by changing the growth temperature. Even in the present invention, it is possible to control the doping amount by the growth temperature to some extent. This is because the higher the growth temperature is, the more the methyl group bonded to Ga adsorbed on the substrate is thermally decomposed, and the carbon uptake is reduced.

【0015】しかし、成長温度が低すぎる場合及び高す
ぎる場合には、1原子層づつの成長が維持できなくな
る。即ち、低温の場合は成長反応が起こり難くなり、高
温の場合にはTMGaの熱分解が進み、Gaが基板表面
に析出するためである。したがって、成長温度以外のド
ーピング量の制御方法が必要になる。
However, if the growth temperature is too low or too high, the growth of each atomic layer cannot be maintained. That is, when the temperature is low, the growth reaction becomes difficult to occur, and when the temperature is high, the thermal decomposition of TMGa proceeds, and Ga is deposited on the substrate surface. Therefore, a method of controlling the doping amount other than the growth temperature is required.

【0016】ところで、III 族有機金属原料を基板表面
に吸着させた後にアルシン等のV族水素化物を供給する
と、基板表面に吸着しているIII 族有機金属原料のメチ
ル基やエチル基がアルシンから発生する水素原子と反応
してメタンやエタンとなり、基板表面から離脱するた
め、炭素の取り込みが抑制される。
By the way, when a Group V hydride such as arsine is supplied after adsorbing a Group III organometallic raw material on the substrate surface, the methyl group or ethyl group of the Group III organometallic raw material adsorbed on the substrate surface is converted from arsine. It reacts with the generated hydrogen atoms to form methane or ethane, which is released from the substrate surface, so that carbon uptake is suppressed.

【0017】そこで、本発明では、アルシン等のV族水
素化物の供給量及び/又は供給時間を調節することによ
り、炭素のドーピング量を制御しようとするものであ
る。V族水素化物の供給は、III 族有機金属原料の供給
とV族有機金属原料の供給の間に行うか、V族有機金属
原料に添加して供給してもよい。
Therefore, in the present invention, the doping amount of carbon is controlled by adjusting the supply amount and / or supply time of the group V hydride such as arsine. The supply of the group V hydride may be performed between the supply of the group III organic metal raw material and the supply of the group V organic metal raw material, or may be added to the group V organic metal raw material and supplied.

【0018】本発明によれば、III-V族化合物半導体結
晶への炭素ドーピング量は、5×1016〜1×1021
-3の範囲で制御することが可能であり、前記ドーピン
グ量を確保するために、V族水素化物の供給量は、III
族有機金属原料の供給量の0〜200%の範囲が適して
いる。
According to the present invention, the doping amount of carbon into the III-V compound semiconductor crystal is 5 × 10 16 to 1 × 10 21 c.
It is possible to control in the range of m −3 , and in order to secure the doping amount, the supply amount of the group V hydride is III
A range of 0 to 200% of the supply amount of the group organometallic raw material is suitable.

【0019】[0019]

【実施例】【Example】

(実施例1)半絶縁性GaAs基板を反応管内に設置
し、管内の圧力を10Torrに保ち、予めTMAsを
流した状態で基板を700℃まで加熱してクリーニング
した後、基板温度を450℃に下げてTMAsの供給を
止めた。なお、キャリアガスの水素は常時500scc
mで供給した。
(Example 1) A semi-insulating GaAs substrate was placed in a reaction tube, the pressure in the tube was kept at 10 Torr, and the substrate was heated to 700 ° C and cleaned in advance with TMAs flowing, and then the substrate temperature was raised to 450 ° C. Lowered the supply of TMAs. The carrier gas hydrogen is always 500 scc.
supplied in m.

【0020】次に、TMGaを6sccmで5秒間導入
し、次いで10秒間水素でパージした後、TMAsを5
0sccmで5秒間導入し、次いで10秒間水素でパー
ジした。この操作を500周期繰り返した後、TMAs
を流した状態で基板温度を室温に戻して成長を終了し
た。成長した結晶の厚さは1400Åとなり、1周期当
たり1分子層(2.83Å)成長したときの値と一致
し、成長が1分子層づつの分子層エピタキシャルになっ
ていることが確認された。SIMS測定で炭素濃度を測
定したところ、1×1021cm-3の高濃度ドーピングが
確認された。なお、基板温度を350℃及び550℃に
変更し、その他の条件を上記と同様にして成長させたと
ころ、350℃では0.5分子層しか成長せず、550
℃では.1.5分子層と厚くなった。
Next, TMGa was introduced at 6 sccm for 5 seconds and then purged with hydrogen for 10 seconds.
It was introduced at 0 sccm for 5 seconds and then purged with hydrogen for 10 seconds. After repeating this operation for 500 cycles, TMAs
The substrate temperature was returned to room temperature while flowing, and the growth was completed. The thickness of the grown crystal was 1400Å, which was in agreement with the value obtained when one molecular layer (2.83Å) was grown per cycle, and it was confirmed that the growth was one molecular layer epitaxial. When the carbon concentration was measured by SIMS measurement, high concentration doping of 1 × 10 21 cm −3 was confirmed. In addition, when the substrate temperature was changed to 350 ° C. and 550 ° C. and other conditions were the same as those described above, only 0.5 molecular layer was grown at 350 ° C.
At ° C. It became thick with 1.5 molecular layers.

【0021】(実施例2)半絶縁性GaAs基板を反応
管内に設置し、管内の圧力を10Torrに保ち、予め
TEAsを流した状態で基板を700℃まで加熱してク
リーニングした後、基板温度を550℃に下げてTEA
sの供給を止めた。なお、キャリアガスの水素は常時5
00sccmで供給した。
Example 2 A semi-insulating GaAs substrate was placed in a reaction tube, the pressure in the tube was kept at 10 Torr, and the substrate was heated to 700 ° C. in a state where TEAs was flowed in advance and cleaned. TEA down to 550 ° C
The supply of s was stopped. The carrier gas hydrogen is always 5
Supplied at 00 sccm.

【0022】次に、TMAlを8sccmで5秒間導入
し、次いで10秒間水素でパージした後、TEAsを1
00sccmで5秒間導入し、次いで10秒間水素でパ
ージした。この操作を500周期繰り返した後、TEA
sを流した状態で基板温度を室温に戻して成長を終了し
た。成長した結晶の厚さは1400Åとなり、1周期当
たり1分子層(2.83Å)成長したときの値と一致
し、成長が1分子層づつの分子層エピタキシャルになっ
ていることが確認された。SIMS測定で炭素濃度を測
定したところ、3×1021cm-3の高濃度ドーピングが
確認された。なお、基板温度を350℃及び650℃に
変更し、その他の条件を上記と同様にして成長させたと
ころ、350℃では0.4分子層しか成長せず、550
℃では.1.4分子層と厚くなった。
Next, TMAl was introduced at 8 sccm for 5 seconds and then purged with hydrogen for 10 seconds.
It was introduced at 00 sccm for 5 seconds and then purged with hydrogen for 10 seconds. After repeating this operation for 500 cycles, TEA
The growth was completed by returning the substrate temperature to room temperature with s flowing. The thickness of the grown crystal was 1400Å, which was in agreement with the value obtained when one molecular layer (2.83Å) was grown per cycle, and it was confirmed that the growth was one molecular layer epitaxial. When the carbon concentration was measured by SIMS measurement, high-concentration doping of 3 × 10 21 cm −3 was confirmed. When the substrate temperature was changed to 350 ° C. and 650 ° C. and the other conditions were the same as above, only 0.4 molecular layer was grown at 350 ° C.
At ° C. It became thick with 1.4 molecular layers.

【0023】(実施例3)実施例1において、TMGa
とTMAsの供給の間に1%のアルシンを含有する水素
50sccmを1秒間供給した。ガスの供給手順は次の
通りである。 TMGa(6sccm)を5秒間供給 水素(500sccm)パージを10秒間 1%アルシン含有水素(50sccm)を1秒間供給 水素(500sccm)パージを10秒間 TMAa(50sccm)を5秒間供給 水素(500sccm)パージを10秒間 1%アルシン含有水素(50sccm)を1秒間供給 水素(500sccm)パージを10秒間 上記の操作を500周期繰り返した結晶の厚さは140
0Åとなり、成長が1分子層づつの分子層エピタキシャ
ルになっていることが確認された。SIMS測定で炭素
濃度を測定したところ、2×1020cm-3であり、アル
シン供給により炭素のドーピングが制御できることが確
認された。
(Third Embodiment) In the first embodiment, TMGa is used.
50 sccm of hydrogen containing 1% arsine was supplied for 1 second between the supply of TMAs and TMAs. The gas supply procedure is as follows. TMGa (6 sccm) supplied for 5 seconds Hydrogen (500 sccm) purge for 10 seconds 1% arsine-containing hydrogen (50 sccm) supplied for 1 second Hydrogen (500 sccm) purge for 10 seconds TMAa (50 sccm) supplied for 5 seconds Hydrogen (500 sccm) purge 10 seconds 1% arsine-containing hydrogen (50 sccm) was supplied for 1 second Hydrogen (500 sccm) purging for 10 seconds The above operation was repeated 500 cycles to give a crystal thickness of 140
It became 0 Å, and it was confirmed that the growth was one molecular layer epitaxial. When the carbon concentration was measured by SIMS, it was 2 × 10 20 cm −3 , and it was confirmed that carbon doping could be controlled by supplying arsine.

【0024】(実施例4)実施例2において、TMAl
とTEAsを供給し、TEAsと同時にTBAsを10
0sccmで供給した。ガスの供給手順は次の通りであ
る。 TMAl(8sccm)を5秒間供給 水素(500sccm)パージを10秒間 TEAa(100sccm)とTBAs(100sc
cm)を5秒間供給 水素(500sccm)パージを10秒間 上記の操作を500周期繰り返した結晶の厚さは140
0Åとなり、成長が1分子層づつの分子層エピタキシャ
ルになっていることが確認された。SIMS測定で炭素
濃度を測定したところ、5×1020cm-3であり、TB
As供給により炭素のドーピングが制御できることが確
認された。
(Example 4) In Example 2, TMAl
And TEAs are supplied, and at the same time as TEAs, TBAs are set to 10
Supplied at 0 sccm. The gas supply procedure is as follows. Supply TMAl (8 sccm) for 5 seconds Hydrogen (500 sccm) purge for 10 seconds TEAa (100 sccm) and TBAs (100 sc)
cm) for 5 seconds Hydrogen (500 sccm) purge for 10 seconds The above operation was repeated 500 cycles to obtain a crystal thickness of 140
It became 0 Å, and it was confirmed that the growth was one molecular layer epitaxial. When the carbon concentration was measured by SIMS, it was 5 × 10 20 cm −3 , and TB
It was confirmed that the carbon doping can be controlled by supplying As.

【0025】なお、従来法で得た直径3インチ基板のエ
ピタキシャル層厚を測定すると、5〜10%のバラツキ
があったが、上記実施例では、全て1%以下の測定誤差
範囲内であった。
When the epitaxial layer thickness of the 3-inch diameter substrate obtained by the conventional method was measured, there was a variation of 5 to 10%, but in the above examples, all were within the measurement error range of 1% or less. .

【0026】[0026]

【発明の効果】本発明は、上記のように、III 族有機金
属原料とV族有機金属原料を交互に基板上に供給するこ
とにより、炭素を高濃度にドーピングした層を原子層レ
ベルの厚さで制御することができ、大口径基板上にも高
い均一性を有するエピタキシャル層を成長することが可
能になった。また、V族水素化物を、III 族有機金属原
料とV族有機金属原料の供給の間か、V族有機金属原料
に添加して供給することにより、炭素のドーピング量を
広い範囲で制御することが可能になった。
As described above, according to the present invention, by supplying the group III organic metal raw material and the group V organic metal raw material alternately onto the substrate, the layer doped with carbon at a high concentration can be formed at the atomic layer level. It has become possible to grow an epitaxial layer having high uniformity even on a large-diameter substrate. Further, the doping amount of carbon can be controlled in a wide range by supplying the Group V hydride between the supply of the Group III organic metal raw material and the Group V organic metal raw material or by adding it to the Group V organic metal raw material. Became possible.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 III-V族化合物半導体結晶の有機金属気
相成長方法において、III 族有機金属原料とV族有機金
属原料を交互に供給することにより炭素をドーピングす
ることを特徴とするIII-V族化合物半導体結晶の成長方
法。
1. A metal-organic vapor phase epitaxy method for a III-V group compound semiconductor crystal, wherein carbon is doped by alternately supplying a group III organic metal raw material and a group V organic metal raw material. Method for growing group V compound semiconductor crystal.
【請求項2】 III 族有機金属原料の供給からV族有機
金属原料の供給への間、及び/又は、V族有機金属原料
の供給からIII 族有機金属原料の供給への間に、V族水
素化物を供給し、その供給量及び供給時間を調節して炭
素ドーピング量を制御することを特徴とする請求項1記
載のIII-V族化合物半導体結晶の成長方法。
2. A group V organic metal raw material supply to a group V organic metal raw material supply and / or a group V organic metal raw material supply to a group III organic metal raw material supply. The method for growing a III-V compound semiconductor crystal according to claim 1, wherein hydride is supplied, and the carbon doping amount is controlled by adjusting the supply amount and the supply time.
【請求項3】 V族有機金属原料にV族水素化物を添加
して供給し、V族水素化物の供給量を調節して炭素ドー
ピング量を制御することを特徴とする請求項1記載のII
I-V族化合物半導体結晶の成長方法。
3. The II according to claim 1, wherein a group V hydride is added to a group V organometallic raw material and supplied, and the amount of the group V hydride supplied is adjusted to control the carbon doping amount.
Method for growing group IV compound semiconductor crystal.
JP5120395A 1995-03-10 1995-03-10 Method for growing iii-v compound semiconductor crystal Pending JPH08245291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5120395A JPH08245291A (en) 1995-03-10 1995-03-10 Method for growing iii-v compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5120395A JPH08245291A (en) 1995-03-10 1995-03-10 Method for growing iii-v compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH08245291A true JPH08245291A (en) 1996-09-24

Family

ID=12880348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5120395A Pending JPH08245291A (en) 1995-03-10 1995-03-10 Method for growing iii-v compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH08245291A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036771A (en) * 1997-09-30 2000-03-14 Nec Corporation Method of manufacturing optical semiconductor device
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036771A (en) * 1997-09-30 2000-03-14 Nec Corporation Method of manufacturing optical semiconductor device
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers

Similar Documents

Publication Publication Date Title
US5270247A (en) Atomic layer epitaxy of compound semiconductor
JPH06204149A (en) Manufacture of compound semi- conductor
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
JPH0547665A (en) Vapor growth method
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JPH08245291A (en) Method for growing iii-v compound semiconductor crystal
JP3013992B2 (en) Method for growing compound semiconductor crystal
US5622559A (en) Method of preparing compound semiconductor
JP3386302B2 (en) N-type doping method for compound semiconductor, chemical beam deposition method using the same, compound semiconductor crystal formed by these crystal growth methods, and electronic device and optical device constituted by this compound semiconductor crystal
JPH0649633B2 (en) Doping method in epitaxial growth of compound crystals
JP2577550B2 (en) Impurity doping of III-V compound semiconductor single crystal thin films
JP2736655B2 (en) Compound semiconductor crystal growth method
JP2020535626A (en) High growth rate deposition of III / V materials
JP2821563B2 (en) Compound crystal epitaxial growth method and doping method thereof
CA1210526A (en) Device having semi-insulating indium phosphides based compositions
JP2936620B2 (en) Vapor phase growth of compound semiconductor crystals
JP2861199B2 (en) Vapor phase growth of compound semiconductor crystals
JP3141628B2 (en) Compound semiconductor device and method of manufacturing the same
JPH0535719B2 (en)
JP3430621B2 (en) III-V compound semiconductor crystal growth method
JP3424315B2 (en) Vapor phase growth method of III-V compound mixed crystal semiconductor thin film
JPH01290222A (en) Semiconductor vapor growth method
JPH03232220A (en) Vapor growth method for compound semiconductor crystal
JP2793239B2 (en) Method for manufacturing compound semiconductor thin film
JPH053160A (en) Growth method of chemical compound semiconductor crystal