JPH03297009A - Compound dielectrics - Google Patents

Compound dielectrics

Info

Publication number
JPH03297009A
JPH03297009A JP2101216A JP10121690A JPH03297009A JP H03297009 A JPH03297009 A JP H03297009A JP 2101216 A JP2101216 A JP 2101216A JP 10121690 A JP10121690 A JP 10121690A JP H03297009 A JPH03297009 A JP H03297009A
Authority
JP
Japan
Prior art keywords
glass
oxide
dielectric constant
mol
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2101216A
Other languages
Japanese (ja)
Other versions
JP2520970B2 (en
Inventor
Kiyotaka Komori
清孝 古森
Tadashi Kokubo
正 小久保
Seishiro Yamakawa
山河 清志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2101216A priority Critical patent/JP2520970B2/en
Publication of JPH03297009A publication Critical patent/JPH03297009A/en
Application granted granted Critical
Publication of JP2520970B2 publication Critical patent/JP2520970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To prevent a reinforcing material made of glass from interfering with maintaining a high dielectric constant by using non-lead glass having a dielectric constant 9 or higher as at least a part of glass of glass constituting the reinforcing material made of resin reinforcing glass. CONSTITUTION:This is compound dielectrics wherein resin is reinforced by a reinforcing material made of glass, while at least a part of the glass constituting the reinforcing material is non-lead glass of a dielectric constant 9 or higher. The reinforcing material made of glass may be cloth-like, mat-like or fiber-like, for example, which can normally be obtained by spinning melt solution of glass material to be glass fiber (fiber molded) and then processing it. The entire reinforcing material is preferably made of non-lead glass of a dielectric constant 9 or higher, while only a part may be the lead glass of a dielectric constant 9 or higher. Thus it is easy to maintain a high dielectric constant of compound dielectrics itself and the derivative is free from lead poisoning of non-lead glass and safe so that it is highly practical.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は複合誘電体に関する。[Detailed description of the invention] [Industrial application field] This invention relates to composite dielectrics.

〔従来の技術〕[Conventional technology]

高度情報化時代を迎え、情報伝達はより高速化・高周波
化の傾向にある。自動車電話やパーソナル無線等の移動
無線、衛星放送、衛星通信やCATV等のニューメディ
アも実用化の段階にある。
As we enter the advanced information age, information transmission tends to become faster and more frequent. Mobile radios such as car telephones and personal radios, new media such as satellite broadcasting, satellite communications, and CATV are also at the stage of practical application.

一方、移動無線やニューメディアでは、機器のコンパク
ト化が推し進められており、これに伴い誘電体共振器等
のマイクロ波用回路素子に対しても小型化が強く望まれ
ている。
On the other hand, in mobile radio and new media, devices are becoming more compact, and along with this, there is a strong demand for smaller microwave circuit elements such as dielectric resonators.

マイクロ波用回路素子の大きさは、使用電磁波の波長が
基準となる。比誘電率εrの誘電体中を伝搬する電磁波
の波長λは、真空中の伝播波長をλ、とすると、λ=λ
、/εr0・5となる。したがって、素子は、使用され
るプリント回路板用基板の比誘電率が大きいほど小型に
なる。また、基板の比誘電率が大きいと、電磁エネルギ
ーが基板内に集中するため、電磁波の漏れが少なく好都
合でもある。
The size of a microwave circuit element is based on the wavelength of the electromagnetic waves used. The wavelength λ of an electromagnetic wave propagating in a dielectric material with relative permittivity εr is λ=λ, where λ is the propagation wavelength in vacuum.
, /εr0·5. Therefore, the larger the relative dielectric constant of the printed circuit board substrate used, the smaller the device becomes. Further, when the dielectric constant of the substrate is large, electromagnetic energy is concentrated within the substrate, which is advantageous in that leakage of electromagnetic waves is small.

上記プリント回路板用基板として、樹脂(高周波特性に
優れるPPO樹脂等)をガラスからなる補強材(ガラス
製補強材)で補強されてなる複合誘電体を用いた基板が
ある。このプリント回路板用基板は、Aら0.セラミッ
ク基板に比べ、価格や後加工(切断、孔開、接着等)の
点で優れるため、注目されている。
As the substrate for the printed circuit board, there is a substrate using a composite dielectric material made of a resin (such as a PPO resin having excellent high frequency characteristics) reinforced with a reinforcing material made of glass (glass reinforcing material). This printed circuit board substrate is manufactured by A et al. It is attracting attention because it is superior to ceramic substrates in terms of price and post-processing (cutting, drilling, adhesion, etc.).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ただ、樹脂をガラス製補強材で補強した複合誘電体から
なる従来の基板は、誘電率の点では十分とは言えない。
However, conventional substrates made of composite dielectrics made of resin reinforced with glass reinforcing materials cannot be said to have sufficient dielectric constant.

樹脂は比誘電率が低いので、これを補うために普通は無
機誘電体粉末を併用させるようにするのであるが、それ
でも、適度に大きな比誘電率をもたせることは中々でき
ない。無機誘電体粉末の量の含育量を増やせば比誘電率
は上がるけれども、コスト高や界面トラブルが起こり易
くなるなどの不都合がある。無機誘電率を併用しても比
誘電率が十分に高まらないのは、ガラス製補強材の方の
比誘電率が高くないからである。比誘電率の低いガラス
製補強材が無機誘電体粉末を分散した高誘電率樹脂域を
分断し、いわば容量の直列結合状態を内部に生じさせる
形で、結果的に基板の高比誘電率化を阻んでしまうので
ある。なお、基板用の複合誘電体の比誘電率を適度な大
きさ(例えば、10〜数10)とする理由は、比誘電率
が余り大きいと回路形成のための加工が難しくなるから
である。
Since resin has a low dielectric constant, inorganic dielectric powder is usually used in combination to compensate for this, but even then, it is difficult to achieve a suitably large dielectric constant. Although increasing the content of inorganic dielectric powder increases the dielectric constant, there are disadvantages such as increased cost and increased interface trouble. The reason why the dielectric constant cannot be increased sufficiently even when an inorganic dielectric constant is used in combination is because the dielectric constant of the glass reinforcing material is not high. A glass reinforcing material with a low relative permittivity divides the high permittivity resin region in which inorganic dielectric powder is dispersed, creating a series-coupled state of capacitance internally, resulting in a high relative permittivity of the substrate. This prevents the The reason why the dielectric constant of the composite dielectric material for the substrate is set to an appropriate value (for example, 10 to several 10) is that if the dielectric constant is too large, processing for forming a circuit becomes difficult.

この発明は、上記事情に鑑み、ガラスからなる補強材が
高比誘電率確保の妨げとなるようなことのない複合誘電
体を掃供することを課題とする。
In view of the above circumstances, it is an object of the present invention to provide a composite dielectric material in which a reinforcing material made of glass does not interfere with ensuring a high relative dielectric constant.

(課題を解決するための手段〕 前記課題を解決するため、この発明の複合誘電体では、
樹脂を補強するガラスからなる補強材を構成するガラス
のうちの少なくとも一部のガラスを比誘電率9以上の非
鉛系ガラスとするようにしている。さらには、前記非鉛
系ガラスの比誘電率は12以上であることが好ましい。
(Means for Solving the Problems) In order to solve the above problems, in the composite dielectric of the present invention,
At least a part of the glass constituting the reinforcing material made of glass reinforcing the resin is made of lead-free glass having a dielectric constant of 9 or more. Furthermore, it is preferable that the relative dielectric constant of the lead-free glass is 12 or more.

以下、この発明の複合誘電体を、より具体的に説明する
The composite dielectric of the present invention will be explained in more detail below.

この発明における複合化(マトリックス)用樹脂として
は、必要に応じて適宜に選択された樹脂が用いられるが
、高周波域の用途では、高周波損失の少ない(低tan
δ)樹脂が好ましく、例えば、PPO(ポリフェニレン
オキサイド)樹脂、フッ素樹脂(例えば、通称テフロン
のようなポリフッ化エチレン系樹脂)、ポリカーボネイ
ト、ポリエチレン、ポリエチレンテレフタレート、ポリ
プロピレン、ポリスチレンなどが挙げられる。これらの
樹脂の比誘電率εrは、普通、2.0〜3.2程度であ
る。その他の用途の場合、損失の点で多少劣るが、ポリ
エステル、エポキシ、あるいは、比誘電率の大きなPV
DF (ポリフッ化ビニリデン)などの樹脂でもよい。
As the composite (matrix) resin in this invention, an appropriately selected resin is used as required, but in applications in the high frequency range, resins with low high frequency loss (low tan) are used.
δ) Resins are preferred, and include, for example, PPO (polyphenylene oxide) resins, fluororesins (for example, polyfluoroethylene resins commonly known as Teflon), polycarbonates, polyethylene, polyethylene terephthalate, polypropylene, polystyrene, and the like. The dielectric constant εr of these resins is usually about 2.0 to 3.2. For other applications, polyester, epoxy, or PV with a high dielectric constant may be used, although the loss is somewhat inferior.
A resin such as DF (polyvinylidene fluoride) may also be used.

ガラスからなる補強材としては、クロス状、マット状、
ファイバー状のものが例示され、これらは、通常、ガラ
ス原料の融液を紡糸しガラス繊維化(繊維成形)したの
ち加工することで得られるものである。クロスやマット
の場合は、通常、厚み1.5.n−1,5fi程度、ガ
ラス繊維径0.5〜30p程度のものを使う。ファイバ
ーの場合は、通常、長さ20〜300n程度、ガラス繊
維径2〜50n程度のものを使う。補強材は全体が比誘
電率9以上の非鉛系ガラスであることが好ましいが、一
部だけが比誘電率9以上の非鉛系ガラスであってもよい
。例えば、縦糸だけが比誘電率9以上の非鉛系ガラスの
繊維であり、横糸が比誘電率9以上の非鉛系ガラス以外
のガラスの繊維であるクロスでもよいのである。
Reinforcing materials made of glass include cross-shaped, matt-shaped,
Fiber-like fibers are exemplified, and these are usually obtained by spinning a melt of a glass raw material to form glass fibers (fiber molding) and then processing the fibers. In the case of cloth or mat, the thickness is usually 1.5. A glass fiber with a diameter of about n-1.5fi and a glass fiber diameter of about 0.5 to 30p is used. In the case of fibers, those with a length of about 20 to 300 nm and a glass fiber diameter of about 2 to 50 nm are usually used. The entire reinforcing material is preferably made of lead-free glass with a dielectric constant of 9 or more, but only a portion may be made of lead-free glass with a dielectric constant of 9 or more. For example, it may be a cloth in which only the warp threads are fibers of non-lead glass having a dielectric constant of 9 or more, and the weft threads are fibers of glass other than lead-free glass having a dielectric constant of 9 or more.

ガラス製補強材に使われている比誘電率9以上の非鉛系
ガラスとしては、酸化ケイ素(Stow)を15mol
%以上60mol%以下、酸化マグネシウム(MgO)
、酸化カルシウム(Cab)、酸化ストロンチウム(S
 r O)および酸化バリウム(B a O)のうちの
少なくともひとつの酸化物(以下、適宜「A群酸化物」
と言う)を0Il101%以上40+woffi%以下
、酸化チタン(T i O−)、酸化ジルコニウム(Z
rOs)および酸化スズ(SnO3)のうちの少なくと
もひとつの酸化物(以下、適宜「B群酸化物」と言う)
をO+*o 1%以上55m。
Lead-free glass with a dielectric constant of 9 or more used in glass reinforcement materials includes 15 mol of silicon oxide (Stow).
% or more and 60 mol% or less, magnesium oxide (MgO)
, calcium oxide (Cab), strontium oxide (S
r O) and barium oxide (B a O) (hereinafter referred to as "Group A oxide" as appropriate)
0Il101% or more and 40+woffi% or less, titanium oxide (T i O-), zirconium oxide (Z
rOs) and at least one oxide of tin oxide (SnO3) (hereinafter appropriately referred to as "Group B oxide")
O+*o 1% or more 55m.

1%以下の割合で含み、これら酸化物(酸化ケイ素、A
群酸化物およびB群酸化物)の総合計量が85mol%
以上であるものが挙げられる。
These oxides (silicon oxide, A
The total amount of group oxides and group B oxides is 85 mol%.
The above can be mentioned.

酸化ケイ素が60mol%を越えると、9以上の比誘電
率の確保が難しくなる。
When silicon oxide exceeds 60 mol %, it becomes difficult to ensure a dielectric constant of 9 or more.

酸化ケイ素が15a+oj!%を下回わったり、A群酸
化物が40+o1%を越えたり、あるいは、B群酸化物
が55mol%を越えたりすると繊維成形性が低下する
ようになる。
Silicon oxide is 15a+oj! %, if the amount of group A oxide exceeds 40+o1%, or if the amount of group B oxide exceeds 55 mol%, fiber formability will decrease.

さらに、請求項2に示す組成の非鉛系ガラスにおいて、
請求項3のように、酸化ケイ素の含有量が35s+oj
!%以上50a+oj!%以下、酸化マグネシウム、酸
化カルシウム、酸化ストロンチウムおよび酸化バリウム
のうちの少なくともひとつの酸化物(A群酸化物)の含
有量が20a+o#%以上40yao1%以下、酸化チ
タン、酸化ジルコニウムおよび酸化スズのうちの少なく
ともひとつの酸化物(B群酸化物)の含有量が20mo
A%以上4011IO1%以下の範囲であることがより
好ましい。これは12以上のガラス比誘電率や良好な繊
維成形性が容易に確保されるからである。
Furthermore, in the lead-free glass having the composition shown in claim 2,
As in claim 3, the content of silicon oxide is 35s+oj
! % or more 50a+oj! % or less, the content of at least one oxide (group A oxide) among magnesium oxide, calcium oxide, strontium oxide, and barium oxide is 20a+o#% or more and 40yao1% or less, among titanium oxide, zirconium oxide, and tin oxide The content of at least one oxide (B group oxide) is 20 mo
More preferably, it is in the range of A% or more and 4011IO1% or less. This is because a glass dielectric constant of 12 or more and good fiber formability can be easily ensured.

酸化ケイ素が50mol%以上になると12以上の非誘
電率の確保が難しく、35mol%より少なくなると良
好な繊維成形性の確保が難しくなる。
When the silicon oxide content is 50 mol % or more, it is difficult to ensure a dielectric constant of 12 or more, and when it is less than 35 mol %, it is difficult to ensure good fiber formability.

A群酸化物、あるいは、B群酸化物が20mol%以上
40+io4%以下の範囲を外れると良好な繊維成形性
の確保が難しくなる。
If the amount of the group A oxide or the group B oxide is out of the range of 20 mol% or more and 40+io4% or less, it becomes difficult to ensure good fiber formability.

請求項2.3に示す組成の非鉛系ガラスは、15 yx
o j!%を越えない範囲で、例えば、下記の他の酸化
物(以下、適宜「0群酸化物」と言う)、Li20、N
atOlK、  Ol Z n OX M n OS 
Fe01Bz  Ox  、Alx  Os  、B 
 it  Os  、Flz  Os  、Ge0z 
 、TeOx  、 Pg  Os  、 V*  O
s 、Nbz Os 、Tax Os 、Lag Ox
のうちの少なくともひとつを含んでいてもよい。
The lead-free glass having the composition shown in claim 2.3 is 15 yx
oj! For example, the following other oxides (hereinafter referred to as "Group 0 oxides"), Li20, N
atOlK, Ol Z n OX M n OS
Fe01BzOx, AlxOs, B
it Os , Flz Os , Ge0z
, TeOx, PgOs, V*O
s, NbzOs, TaxOs, LagOx
It may contain at least one of the following.

なお、0群酸化物が1511o1%以上になると、高比
誘電率の確保が難しくなったり、あるいは、繊維成形性
が低下したりする。
Note that if the content of group 0 oxides is 1511o1% or more, it becomes difficult to ensure a high relative dielectric constant, or fiber formability decreases.

この発明の複合誘電体の樹脂中には、請求項4のように
、無機誘電体粉末が分散されていることが好ましい。具
体的な無機誘電体粉末としては、例えば、B a T 
i Os系、Sr T i Ox系、pbT i+/*
 Z r l/l Ox系、P b (M g *yx
 N b l/3)o、系、Ba (Snx Mgy 
Taz )Ox系、Ba  (Zrx Zny Taz
 )Os系などのペロプスカイト型結晶構造(あるいは
複合ペロブスカイト型結晶構造)を有するもの、その他
、TiOx 、ZrOx 、Snowの単独およびその
複合酸化物などの無機化合物等が具体的に挙げられる。
Preferably, inorganic dielectric powder is dispersed in the resin of the composite dielectric of the present invention. As a specific inorganic dielectric powder, for example, B a T
iOs series, SrTiOx series, pbTi+/*
Z r l/l Ox system, P b (M g *yx
N b l/3) o, system, Ba (Snx Mgy
Taz ) Ox system, Ba (Zrx Zny Taz
) Those having a perovskite type crystal structure (or composite perovskite type crystal structure) such as those based on Os, and other inorganic compounds such as TiOx, ZrOx, and Snow alone and their composite oxides.

普通、0.05〜100n程度の粒径の無機誘電体粉末
が用いられる。
Usually, inorganic dielectric powder having a particle size of about 0.05 to 100 nm is used.

樹脂中への分散方法には、無機誘電体粉末を予め分散さ
せた樹脂を補強材に含浸等する方法が普通であるが、無
機誘電体粉末だけを先に付着させた補強材に樹脂を含浸
させ結果的に無機誘電体粉末を樹脂中に分散させた状態
とする方法などもある。
The usual method for dispersing into resin is to impregnate reinforcing material with resin in which inorganic dielectric powder has been previously dispersed. There is also a method in which the inorganic dielectric powder is dispersed in the resin.

この発明の複合誘電体(100vot’%)におけるマ
トリックス用樹脂、ガラスからなる補強材、無機誘電体
粉末の配合割合は、樹脂10〜95v。
The compounding ratio of the matrix resin, the reinforcing material made of glass, and the inorganic dielectric powder in the composite dielectric material (100 vot'%) of this invention is 10 to 95 volts of resin.

1%、補強材5〜7Ovo1%、無機誘電体粉末0〜7
0voj2%(通常、O〜40vof%)程度である。
1%, reinforcing material 5-7Ovo1%, inorganic dielectric powder 0-7
It is about 0voj2% (usually 0 to 40vof%).

この発明の複合誘電体の用途には、プリント回路板用基
板が例示されるが、これに限らない。
Applications of the composite dielectric of the present invention include, but are not limited to, substrates for printed circuit boards.

〔作   用〕[For production]

請求項1〜4記載の複合誘電体では、ガラス製の補強材
の比誘電率が高いために、複合誘電体自体の高比誘電率
確保が容易である。非鉛系ガラスは鉛毒の心配がなく安
全でもある。
In the composite dielectric material according to claims 1 to 4, since the glass reinforcing material has a high dielectric constant, it is easy to ensure a high dielectric constant of the composite dielectric material itself. Lead-free glass is also safe, with no concerns about lead poisoning.

請求項2記載の複合誘電体のように、比誘電率9以上の
非鉛系ガラスが、酸化ケイ素を15mol%以上60m
ol%以下、A群酸化物を0■O1%以上40mof%
以下、B群酸化物をOmoβ%以上55mol%以下の
割合で含み、これら酸化物(酸化ケイ素、A群酸化物お
よびB1#酸化物)の総合計量が8511oI1%以上
である場合には、9以上の比誘電率や繊維成形性の確保
が容易であるため、高比誘電率の補強材を得る上で好ま
しい。
As in the composite dielectric according to claim 2, the lead-free glass having a dielectric constant of 9 or more contains silicon oxide in an amount of 15 mol% or more and 60 m
ol% or less, group A oxide 0■O1% or more 40mof%
Hereinafter, if the group B oxide is contained in a proportion of Omoβ% or more and 55 mol% or less, and the total amount of these oxides (silicon oxide, A group oxide, and B1# oxide) is 8511oI1% or more, 9 or more Since it is easy to ensure the relative permittivity and fiber formability of the material, it is preferable for obtaining a reinforcing material with a high relative permittivity.

請求項3記載の複合誘電体のように、上記非鉛系ガラス
において、酸化ケイ素を35mof%以上50mol%
以下、A群酸化物を20II+01%以上40vao1
1%以下、B群酸化物を20IIIOI1%以上40I
Iio1%以下の範囲で含む場合には、12以上の比誘
電率や良好な繊維成形性の確保が容易であるため、より
高比誘電率の補強材を得る上で非常に好ましい。
In the composite dielectric according to claim 3, in the lead-free glass, silicon oxide is contained in an amount of 35 mof% or more and 50 mol%.
Below, group A oxide is 20II+01% or more 40vao1
1% or less, Group B oxide 20IIIOI 1% or more 40I
When it is contained in a range of 1% or less of Iio, it is easy to ensure a dielectric constant of 12 or more and good fiber formability, so it is very preferable for obtaining a reinforcing material with a higher dielectric constant.

請求項4の複合誘電体のように、無機誘電体粉末を併用
した場合には、無機誘電体粉末の高誘電特性が十分に生
かされ、複合誘電体自体の比誘電率が容易に10以上と
なる。
When an inorganic dielectric powder is used in combination as in the composite dielectric of claim 4, the high dielectric properties of the inorganic dielectric powder can be fully utilized, and the dielectric constant of the composite dielectric itself can easily reach 10 or more. Become.

〔実 施 例〕〔Example〕

続いて、この発明の詳細な説明する。もちろん、この発
明は下記実施例に限らない。
Next, the present invention will be explained in detail. Of course, the present invention is not limited to the following embodiments.

まず、補強材に用いる非誘電率9以上の非鉛系ガラス繊
維の製造例を説明する。
First, an example of manufacturing a lead-free glass fiber having a dielectric constant of 9 or more to be used as a reinforcing material will be described.

酸化物、炭酸塩あるいは水酸化物等の原材料を含有酸化
物が所定割合で含まれるガラスが得られるように配合し
、白金るつぼに入れて電気炉で加熱(条件:1450℃
、2時間)し溶融する。
Raw materials such as oxides, carbonates, or hydroxides are blended to obtain a glass containing a predetermined proportion of oxides, placed in a platinum crucible, and heated in an electric furnace (conditions: 1450°C).
, 2 hours) and melt.

つぎに、得られた融液を融液粘度が約10”ポイズにな
る温度に熱しておいた別のノズル付白金るつぼに移し、
るつぼ裏のノズルから引き出して5〜30n程度の径の
ガラス繊維を得る。このあと、得られたガラス繊維を織
ったり裁断したりしてガラスクロスやファイバー等の補
強材に仕上げることは言うまでもない。
Next, the obtained melt was transferred to another platinum crucible with a nozzle that had been heated to a temperature where the melt viscosity was about 10" poise,
The glass fibers are pulled out from the nozzle on the back of the crucible to obtain glass fibers with a diameter of about 5 to 30 nm. Needless to say, the obtained glass fibers are then woven or cut into reinforcing materials such as glass cloth or fibers.

ガラス組成を色々換えて、比誘電率および繊維成形の難
易を調べた。
The dielectric constant and difficulty of fiber molding were investigated by changing the glass composition.

比誘電率はバルク状のガラスを作り、インピダンスアナ
ライザで測定(測定周波数IMHz)L、た。結果を第
1.2表に示す。
The relative permittivity was determined by making a bulk glass and measuring it with an impedance analyzer (measurement frequency IMHz). The results are shown in Table 1.2.

繊維成形の難易については、得られた融液が約108ポ
イズになる温度の白金るつぼ中に24時間保持した後、
糸が引けるかどうかで調べた。ガラス繊維を量産する場
合、晋通、融液が白金等のるつぼ中に長時間(例えば、
20時間前後)保持される。融液が白金等のるつぼに長
時間保持されても糸が引けなければ、融液を得たあと速
やかに繊維成形を行うようにするなど繊維化方法が限ら
れてくる。ガラスサンプル番号[相]〜[相]のものは
24時間るつぼに保持した後ではうまく繊維成形できな
かった。
Regarding the difficulty of fiber molding, after holding the obtained melt in a platinum crucible at a temperature of about 108 poise for 24 hours,
I checked to see if the string could be pulled. When mass producing glass fiber, the melt is kept in a crucible made of platinum etc. for a long time (for example,
(approximately 20 hours). If a thread cannot be drawn even if the melt is kept in a crucible made of platinum or the like for a long time, there are limitations to the fiberizing method, such as forming fibers immediately after obtaining the melt. Glass samples numbered [Phase] to [Phase] could not be successfully formed into fibers after being held in the crucible for 24 hours.

実施例1− 補強材として、第1表のガラスサンプル番号■の組成の
ガラス繊維(繊維径9μ)で作った厚み100μのガラ
スクロスを準備した。一方、PPO樹脂45gを80℃
のトルエン215gに溶かした後、平均粒径2nのBa
TiOs粉末110gを添加し分散させたワニスを準備
した。
Example 1 - As a reinforcing material, a 100 μm thick glass cloth made of glass fibers (fiber diameter 9 μm) having the composition of glass sample number (■) in Table 1 was prepared. On the other hand, 45 g of PPO resin was heated at 80°C.
After dissolving in 215g of toluene, Ba with an average particle size of 2n was dissolved.
A varnish in which 110 g of TiOs powder was added and dispersed was prepared.

ワニス中に前記ガラスクロスを入れてワニスを含浸させ
乾燥(115℃、90秒)した後、4枚重ねて、温度1
80℃、圧力50kg/aJ、120分間の成形条件で
熱プレス成形して厚み約0.8簡の複合誘電体を得た。
The glass cloth was placed in the varnish, impregnated with the varnish, dried (115°C, 90 seconds), then stacked 4 times and heated to a temperature of 1.
A composite dielectric material having a thickness of approximately 0.8 strips was obtained by hot press molding at 80.degree. C., pressure of 50 kg/aJ, and 120 minutes.

なお、複合誘電体におけるPPO樹脂、無機誘電体粉末
、基材の割合は、それぞれ、49vo1%、21vo1
%、30vo1%であった。
The proportions of PPO resin, inorganic dielectric powder, and base material in the composite dielectric were 49vol% and 21vol%, respectively.
%, 30vo1%.

一実施例2− 補強材として、第1表のガラスサンプル番号■の組成の
ガラス繊維(繊維径9m)で作った厚み100μのガラ
スクロスを用いた他は、実施例1と同様にして複合誘電
体を得た。
Example 2 - Composite dielectric was fabricated in the same manner as in Example 1, except that a glass cloth with a thickness of 100μ made of glass fibers (fiber diameter 9m) having the composition of glass sample number ■ in Table 1 was used as a reinforcing material. I got a body.

実施例3− 補強材として、第1表のガラスサンプル番号■の組成の
ガラス繊維(繊維径9.w)で作った厚み100、nの
ガラスクロスを用いた他は、実施例1と同様にして複合
誘電体を得た。
Example 3 - The same procedure as in Example 1 was used, except that a glass cloth with a thickness of 100 and n made of glass fibers (fiber diameter 9.W) having the composition of glass sample number ■ in Table 1 was used as the reinforcing material. A composite dielectric was obtained.

実施例4 補強材として、第2表のガラスサンプル番号■の組成の
ガラス繊維(繊維径9.w)で作った厚み100nのガ
ラスクロスを用いた他は、実施例1と同様にして複合誘
電体を得た。
Example 4 A composite dielectric was prepared in the same manner as in Example 1, except that a glass cloth with a thickness of 100 nm made of glass fibers (fiber diameter 9.W) having the composition of glass sample number ■ in Table 2 was used as a reinforcing material. I got a body.

一実施例5− 補強材として、第2表のガラスサンプル番号■の組成の
ガラス繊維(繊維径9i1M)で作った厚み100μの
ガラスクロスを用いた他は、実施例1と同様にして複合
誘電体を得た。
Example 5 - Composite dielectric material was prepared in the same manner as in Example 1, except that a glass cloth with a thickness of 100μ made of glass fibers (fiber diameter 9i1M) having the composition of glass sample number ■ in Table 2 was used as a reinforcing material. I got a body.

一比較例1− ガラスクロスを構成するガラスが比誘電率約6゜7のE
ガラスである他は、実施例1と同様にして複合誘電体を
得た。
Comparative Example 1 - The glass constituting the glass cloth has a dielectric constant of about 6°7.
A composite dielectric material was obtained in the same manner as in Example 1 except that the material was glass.

実施例および比較例の各複合誘電体の表面・裏面に電極
を設け、インピーダンスアナライザを用いて比誘電率を
測定(測定周波数IMtfz)した。
Electrodes were provided on the front and back surfaces of each of the composite dielectrics of Examples and Comparative Examples, and the relative permittivity was measured using an impedance analyzer (measurement frequency IMtfz).

測定結果を第3表に示す。The measurement results are shown in Table 3.

第3表 実施例1〜5の複合誘電体は、いずれも10を越える比
誘電率である。実施例1〜5と比較例1の比誘電率を比
べれば、補強材の比誘電率の高いことが高比誘電率の確
保に非常に有効であることがよく分かる。なお、PPO
樹脂と13 aTi Os粉末からなる部分の比誘電率
を別途に調べたところ11.0であり、この発明の複合
誘電体では補強材が高比誘電率確保を阻害していないこ
とが明確に裏付けられた。
The composite dielectric materials of Examples 1 to 5 in Table 3 all have relative dielectric constants exceeding 10. Comparing the dielectric constants of Examples 1 to 5 and Comparative Example 1, it is clear that the high dielectric constant of the reinforcing material is very effective in ensuring a high dielectric constant. In addition, PPO
The dielectric constant of the part made of resin and 13aTiOs powder was separately investigated and found to be 11.0, clearly proving that the reinforcing material does not hinder securing a high dielectric constant in the composite dielectric of this invention. It was done.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、請求項1〜4の複合誘電体は、ガ
ラスからなる補強材の比誘電率が高いために複合誘電体
自体の高比誘電率確保が容易であり、しかも、非鉛系ガ
ラスは鉛毒の心配がなく安全であるため、実用性が高い
As described above, the composite dielectric of claims 1 to 4 can easily ensure a high dielectric constant of the composite dielectric itself because the reinforcing material made of glass has a high dielectric constant, and is lead-free. Glass is highly practical because it is safe and free from lead poisoning.

請求項2記載の複合誘電体では、加えて、高比誘電率の
補強材が得やすく、そのため、複合誘電体が製造し易く
好ましい。
In addition, in the composite dielectric according to the second aspect, a reinforcing material having a high dielectric constant can be easily obtained, and therefore the composite dielectric can be easily manufactured, which is preferable.

請求項3記載の複合誘電体では、加えて、より高比誘電
率の補強材が得やすく、そのため、複合誘電体が製造し
易く非常に好ましい。
In addition, in the composite dielectric according to the third aspect, it is easy to obtain a reinforcing material having a higher dielectric constant, and therefore the composite dielectric is easy to manufacture, which is very preferable.

請求項4記載の複合誘電体では、加えて、10以上の高
比誘電率確保が容易であるため、非常に実用性が高い。
In addition, the composite dielectric material according to the fourth aspect of the present invention can easily secure a high dielectric constant of 10 or more, so that it is very practical.

Claims (1)

【特許請求の範囲】 1 樹脂がガラスからなる補強材で補強されてなる複合
誘電体において、前記補強材を構成するガラスのうちの
少なくとも一部のガラスが比誘電率9以上の非鉛系ガラ
スであることを特徴とする複合誘電体。 2 比誘電率9以上の非鉛系ガラスは、酸化ケイ素を1
5mol%以上60mol%以下、酸化マグネシウム、
酸化カルシウム、酸化ストロンチウムおよび酸化バリウ
ムのうちの少なくともひとつの酸化物を0mol%以上
40mol%以下、酸化チタン、酸化ジルコニウムおよ
び酸化スズのうちの少なくともひとつの酸化物を0mo
l%以上55mol%以下の割合で含み、これら酸化物
の総合計量が85mol%以上となっているものである
請求項1記載の複合誘電体。 3 酸化ケイ素の含有量が35mol%以上50mol
%以下、酸化マグネシウム、酸化カルシウム、酸化スト
ロンチウムおよび酸化バリウムのうちの少なくともひと
つの酸化物の含有量が20mol%以上40mol%以
下、酸化チタン、酸化ジルコニウムおよび酸化スズのう
ちの少なくともひとつの酸化物の含有量が20mol%
以上40mol%以下の範囲にある請求項2記載の複合
誘電体。 4 樹脂中に無機誘電体粉末が分散されている請求項1
から3までのいずれかに記載の複合誘電体。
[Scope of Claims] 1. In a composite dielectric material in which a resin is reinforced with a reinforcing material made of glass, at least a part of the glass constituting the reinforcing material is a lead-free glass having a dielectric constant of 9 or more. A composite dielectric material characterized by: 2 Lead-free glass with a dielectric constant of 9 or more contains silicon oxide of 1
5 mol% or more and 60 mol% or less, magnesium oxide,
0 mol% to 40 mol% of at least one oxide of calcium oxide, strontium oxide, and barium oxide, and 0 mol of at least one oxide of titanium oxide, zirconium oxide, and tin oxide.
The composite dielectric material according to claim 1, wherein the composite dielectric material contains 1% or more and 55 mol% or less, and the total amount of these oxides is 85 mol% or more. 3 Silicon oxide content is 35 mol% or more and 50 mol
% or less, the content of at least one oxide of magnesium oxide, calcium oxide, strontium oxide, and barium oxide is 20 mol% or more and 40 mol% or less, the content of at least one oxide of titanium oxide, zirconium oxide, and tin oxide is Content is 20mol%
3. The composite dielectric material according to claim 2, wherein the amount is in the range of 40 mol% or more. 4 Claim 1 wherein inorganic dielectric powder is dispersed in the resin
3. The composite dielectric material according to any one of 3 to 3.
JP2101216A 1990-04-16 1990-04-16 Composite dielectric Expired - Lifetime JP2520970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101216A JP2520970B2 (en) 1990-04-16 1990-04-16 Composite dielectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101216A JP2520970B2 (en) 1990-04-16 1990-04-16 Composite dielectric

Publications (2)

Publication Number Publication Date
JPH03297009A true JPH03297009A (en) 1991-12-27
JP2520970B2 JP2520970B2 (en) 1996-07-31

Family

ID=14294715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101216A Expired - Lifetime JP2520970B2 (en) 1990-04-16 1990-04-16 Composite dielectric

Country Status (1)

Country Link
JP (1) JP2520970B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367537A (en) * 1991-06-14 1992-12-18 Matsushita Electric Works Ltd Glass composition and substrate for circuit
WO2006098075A1 (en) * 2005-03-16 2006-09-21 Nitto Denko Corporation Dielectric forming sheet and process for producing dielectric layer provided substrate
JP2022510887A (en) * 2018-11-30 2022-01-28 コーニング インコーポレイテッド High refractive index glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250834A (en) * 1988-08-12 1990-02-20 Matsushita Electric Works Ltd Laminated sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250834A (en) * 1988-08-12 1990-02-20 Matsushita Electric Works Ltd Laminated sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367537A (en) * 1991-06-14 1992-12-18 Matsushita Electric Works Ltd Glass composition and substrate for circuit
WO2006098075A1 (en) * 2005-03-16 2006-09-21 Nitto Denko Corporation Dielectric forming sheet and process for producing dielectric layer provided substrate
JP2006260902A (en) * 2005-03-16 2006-09-28 Nitto Denko Corp Dielectric forming sheet and manufacturing method for dielectric layer-forming substrate
JP2022510887A (en) * 2018-11-30 2022-01-28 コーニング インコーポレイテッド High refractive index glass

Also Published As

Publication number Publication date
JP2520970B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
US4242213A (en) Dielectric ceramic compositions based on magnesium, calcium and rare earth metal titanates
US6147021A (en) Dielectric ceramic composition of microwave MGTIO3 CATIO3 group and dielectric ceramic fabrication method using the same
US6121174A (en) Dielectric material with low temperature coefficient and high quality
JPH04106806A (en) Complex dielectric
CN100424038C (en) A low-temperature sintered high-frequency thermally stable dielectric ceramic and its preparation method
JPH03297009A (en) Compound dielectrics
KR19980014911A (en) Dielectric material for CaTiO3-La (Mg1 / 2Ti1 / 2) O3-LaA103 microwave
US4791078A (en) Ceramic composition with improved electrical and mechanical properties
JPS6118283B2 (en)
US5320991A (en) Microwave dielectric ceramic composition
JPS58106702A (en) Dielectric porcelain composition
JPH03297008A (en) Compound dielectrics
KR0134555B1 (en) Material of dielectric for high frequency
US5296424A (en) System of dielectric ceramic compositions suitable for microwave applications
US4717694A (en) Dielectric ceramic composition for high frequencies
JP3016002B2 (en) High frequency dielectric material
JPH01227303A (en) Microwave dielectric porcelain composition material
JPH02225357A (en) Complex dielectric material
KR100434004B1 (en) High Frequency Dielectric Composition
JPS63117958A (en) Microwave dielectric ceramic composition
JP3531289B2 (en) Microwave dielectric porcelain composition
JPS6178007A (en) Dielectric ceramic composition for high frequency
CN114751745A (en) Microwave dielectric ceramic and preparation method and application thereof
JPH04104946A (en) Dielectric porcelain composition
JPH04114919A (en) Production of multiple perovskite-type dielectric porcelain powder and porcelain capacitor using same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 14

EXPY Cancellation because of completion of term