JPH04106806A - Complex dielectric - Google Patents
Complex dielectricInfo
- Publication number
- JPH04106806A JPH04106806A JP2225863A JP22586390A JPH04106806A JP H04106806 A JPH04106806 A JP H04106806A JP 2225863 A JP2225863 A JP 2225863A JP 22586390 A JP22586390 A JP 22586390A JP H04106806 A JPH04106806 A JP H04106806A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- glass
- mol
- less
- dielectric constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 claims abstract description 115
- 239000012779 reinforcing material Substances 0.000 claims abstract description 57
- 239000011347 resin Substances 0.000 claims abstract description 26
- 229920005989 resin Polymers 0.000 claims abstract description 26
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 22
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000002131 composite material Substances 0.000 claims description 70
- 239000003989 dielectric material Substances 0.000 claims description 43
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 19
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 claims description 17
- 239000000843 powder Substances 0.000 claims description 16
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 claims description 15
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 11
- 229910000464 lead oxide Inorganic materials 0.000 claims description 10
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 claims description 10
- 239000000395 magnesium oxide Substances 0.000 claims description 9
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 8
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 8
- 229910001887 tin oxide Inorganic materials 0.000 claims description 8
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 7
- 239000000292 calcium oxide Substances 0.000 claims description 7
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 7
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 7
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 7
- 230000002787 reinforcement Effects 0.000 abstract 3
- 239000000835 fiber Substances 0.000 description 51
- 239000003365 glass fiber Substances 0.000 description 34
- 239000000203 mixture Substances 0.000 description 27
- 239000004744 fabric Substances 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 14
- 239000000758 substrate Substances 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000009477 glass transition Effects 0.000 description 6
- 239000004721 Polyphenylene oxide Substances 0.000 description 5
- 229920006380 polyphenylene oxide Polymers 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 239000002966 varnish Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- KOAWAWHSMVKCON-UHFFFAOYSA-N 6-[difluoro-(6-pyridin-4-yl-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)methyl]quinoline Chemical compound C=1C=C2N=CC=CC2=CC=1C(F)(F)C(N1N=2)=NN=C1C=CC=2C1=CC=NC=C1 KOAWAWHSMVKCON-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 206010027439 Metal poisoning Diseases 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910010253 TiO7 Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002419 bulk glass Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 208000008127 lead poisoning Diseases 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Glass Compositions (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は複合誘電体に関する。[Detailed description of the invention] [Industrial application field] This invention relates to composite dielectrics.
高度情報化時代を迎え、情報伝達はより高速化・高周波
化の傾向にある。自動車電話やパーソナル無線等の移動
無線、衛星放送、衛星通信やCATV等のニューメディ
アも実用化の段階にある。As we enter the advanced information age, information transmission tends to become faster and more frequent. Mobile radios such as car telephones and personal radios, new media such as satellite broadcasting, satellite communications, and CATV are also at the stage of practical application.
一方、移動無線やニューメディアでは、機器のコンパク
ト化が推し進められており、これに伴い誘電体共振器等
のマイクロ波用回路素子に対しても小型化が強く望まれ
ている。On the other hand, in mobile radio and new media, devices are becoming more compact, and along with this, there is a strong demand for smaller microwave circuit elements such as dielectric resonators.
マイクロ波用回路素子の大きさは、使用電磁波の波長が
基準となる。比誘電率εrの誘電体中を伝搬する電磁波
の波長λは、真空中の伝搬波長をλ。とすると、λ−λ
、/εr05となる。したがって、素子は、使用される
プリント回路板用基板の比誘電率が大きいほど小型にな
る。また、基板の比誘電率が大きいと、電磁エネルギー
が基板内に集中するため、電磁波の漏れが少なく好都合
でもある。The size of a microwave circuit element is based on the wavelength of the electromagnetic waves used. The wavelength λ of an electromagnetic wave propagating in a dielectric material with relative permittivity εr is the propagation wavelength in vacuum. Then, λ−λ
, /εr05. Therefore, the larger the relative dielectric constant of the printed circuit board substrate used, the smaller the device becomes. Further, when the dielectric constant of the substrate is large, electromagnetic energy is concentrated within the substrate, which is advantageous in that leakage of electromagnetic waves is small.
上記プリント回路板用基板として、樹脂(高周波特性に
優れるPPO樹脂等)をガラスからなる補強材(ガラス
製補強材)で補強されてなる複合誘電体を用いた基板が
ある。このプリント回路板用基板は、A11zOzセラ
ミツク基板に比べ、価格や後加工(切断、孔開、接着等
)の点で優れるため、注目されている。As the above-mentioned printed circuit board substrate, there is a substrate using a composite dielectric material made of resin (such as PPO resin having excellent high frequency characteristics) reinforced with a reinforcing material made of glass (glass reinforcing material). This printed circuit board substrate is attracting attention because it is superior to A11zOz ceramic substrates in terms of price and post-processing (cutting, hole punching, adhesion, etc.).
ただ、樹脂をガラス製補強材で補強した複合誘電体から
なる従来の基板は、誘電率の点では十分とは言えない。However, conventional substrates made of composite dielectrics made of resin reinforced with glass reinforcing materials cannot be said to have sufficient dielectric constant.
樹脂は比誘電率が低いので、これを補うために無機誘電
体粉末を併用するのであるが、それでも、適度に大きな
比誘電率をもたせることは中々できない。無機誘電体粉
末含有量を増せば比誘電率は上がるけれども、コスト高
や界面トラブルが起こり易くなるなどの不都合がある。Since resin has a low dielectric constant, inorganic dielectric powder is used in combination to compensate for this, but even then it is difficult to provide a suitably large dielectric constant. Although increasing the content of the inorganic dielectric powder increases the relative dielectric constant, there are disadvantages such as increased cost and increased likelihood of interface troubles.
無機誘電体を併用しても比誘電率が十分に高まらないの
は、補強材の方の比誘電率が高くないからである。比誘
電率の低いガラス製補強材が無機誘電体粉末を分散した
高誘電率樹脂域を分断し、いわば容量の直列結合状態を
内部に生じさせる形で、結果的に基板の高比誘電率化を
阻んでしまうのである。なお、基板用の複合誘電体を適
度な大きさ(例えば、10〜数10)程度とする理由は
、比誘電率が余り大きいと回路形成のための加工が難し
くなるからである。The reason why the dielectric constant cannot be increased sufficiently even when an inorganic dielectric is used in combination is because the dielectric constant of the reinforcing material is not high. A glass reinforcing material with a low relative permittivity divides the high permittivity resin region in which inorganic dielectric powder is dispersed, creating a series-coupled state of capacitance internally, resulting in a high relative permittivity of the substrate. This will prevent you from doing so. The reason why the composite dielectric material for the substrate is set to an appropriate size (for example, 10 to several 10) is that if the dielectric constant is too large, processing for forming a circuit becomes difficult.
また、高比誘電率化に加えて、低tanδ化(誘電損失
を減らす)も強く望まれている。低tanδでないと伝
送損失が大きく、それに小型化も図り難い。Furthermore, in addition to a high relative dielectric constant, a low tan δ (reducing dielectric loss) is also strongly desired. If the tan δ is not low, transmission loss will be large and it will be difficult to achieve miniaturization.
この発明は、上記事情に鑑み、ガラスからなる補強材が
高比誘電率確保の妨げとなるようなことがなく、しかも
、誘電損失の少ない複合誘電体を提供することを課題と
する。In view of the above-mentioned circumstances, it is an object of the present invention to provide a composite dielectric material in which a reinforcing material made of glass does not interfere with ensuring a high relative dielectric constant and has low dielectric loss.
前記課題を解決するため、この発明にかかる複合誘電体
では、樹脂を補強するためのガラスからなる補強材を構
成するガラスのうちの少なくとも一部のガラスを比誘電
率9以上で10mol%以下の酸化セリウムを含むガラ
スとするようにしている。In order to solve the above problems, in the composite dielectric material according to the present invention, at least a part of the glass constituting the reinforcing material made of glass for reinforcing the resin has a dielectric constant of 9 or more and 10 mol% or less. The glass is made to contain cerium oxide.
以下、この発明の複合誘電体をより具体的に説明する。The composite dielectric of the present invention will be explained in more detail below.
比誘電率9以上で10smol%以下の酸化セリウムを
含むガラスは、鉛系ガラスである場合と非鉛系ガラスで
ある場合とがある。前者の非鉛系ガラスの場合は比誘電
率が12以上であることが好ましく、後者の鉛系ガラス
の場合は比誘電率が14以上であることが好ましい。Glass containing cerium oxide having a dielectric constant of 9 or more and 10 smol % or less may be lead-based glass or lead-free glass. In the case of the former lead-free glass, the dielectric constant is preferably 12 or more, and in the case of the latter lead-based glass, the dielectric constant is preferably 14 or more.
この発明における複合化(マトリックス)用樹脂として
は、必要に応じて適宜に選択された樹脂が用いられるが
、高周波域の用途では、高周波損失の少ない(低tan
δ)樹脂が好ましく、例えば、PP○(ポリフェニレン
オキサイド)樹脂、フッ素樹脂(例えば、通称テフロン
のようなポリフッ化エチレン系樹脂)、ポリカーボネイ
ト、ポリエチレン、ポリエチレンテレフタレート、ポリ
プロピレン、ポリスチレンなどが挙げられる。これらの
樹脂の比誘電率εrは、普通、2.0〜3.2程度であ
る。その他の用途の場合、損失の点で多少劣るが、ポリ
エステル、エポキシ、あるいは、比誘電率の大きなPV
DF (ポリフッ化ビニリデン)などの樹脂でもよい。As the composite (matrix) resin in this invention, an appropriately selected resin is used as required, but in applications in the high frequency range, resins with low high frequency loss (low tan) are used.
δ) Resins are preferred, and examples thereof include PP◯ (polyphenylene oxide) resin, fluororesin (for example, polyfluorinated ethylene resin commonly known as Teflon), polycarbonate, polyethylene, polyethylene terephthalate, polypropylene, polystyrene, and the like. The dielectric constant εr of these resins is usually about 2.0 to 3.2. For other applications, polyester, epoxy, or PV with a high dielectric constant may be used, although the loss is somewhat inferior.
A resin such as DF (polyvinylidene fluoride) may also be used.
ガラスからなる補強材としては、クロス状、マント状、
ファイバー状のものが例示され、これらは、通常、ガラ
ス原料の融液を紡糸しガラス繊維化(繊維成形)したの
ち加工することで得られるものである。クロスやマント
の場合は、通常、厚み15n〜1.5鶴程度、ガラス繊
維径0.5〜30n程度のものを使う。ファイバーの場
合は、通常、長さ20〜3001程度、ガラス繊維径2
〜5On程度のものを使う。補強材は全体が比誘電率9
以上で酸化セリウムを含むガラスであることが好ましい
が、一部だけが比誘電率9以上で酸化セリウムを含むガ
ラスであってもよい。例えば、縦糸だけが比誘電率9以
上で酸化セリウムを含むガラスの繊維であり、横糸が比
誘電率9以上で酸化セリウムを含むガラス以外のガラス
の繊維であるクロスでもよいのである。Reinforcing materials made of glass include cross-shaped, cloak-shaped,
Fiber-like fibers are exemplified, and these are usually obtained by spinning a melt of a glass raw material to form glass fibers (fiber molding) and then processing the fibers. In the case of cloths and cloaks, those with a thickness of about 15 nm to 1.5 nm and a glass fiber diameter of about 0.5 to 30 nm are usually used. In the case of fiber, the length is usually about 20 to 300 mm, and the glass fiber diameter is 2
~ Use something about 5 On. The entire reinforcing material has a dielectric constant of 9
Although it is preferable that the glass contains cerium oxide, only a part of the glass may have a dielectric constant of 9 or more and contain cerium oxide. For example, a cloth may be used in which only the warp yarns are fibers of glass containing cerium oxide and a dielectric constant of 9 or more, and the weft yarns are fibers of glass other than glass that has a dielectric constant of 9 or more and containing cerium oxide.
ガラスが非鉛系ガラスである場合、例えば、請求項2の
ように、酸化ケイ素(Sin、)を15m。When the glass is lead-free glass, for example, as in claim 2, 15 m of silicon oxide (Sin) is added.
1%以上60mol%以下、酸化マグネシウム(MgO
)、酸化カルシウム(CaO)、酸化ストロンチウム(
SrO)および酸化バリウム(BaO)のうちの少なく
ともひとつの酸化物(以下、適宜「A群酸化物」と言う
)をOvao 1%以上40−01%以下、酸化チタン
(T i O,)、酸化ジルコニウム(ZrO,)およ
び酸化スズ(SnO,)のうちの少なくともひとつの酸
化物(以下、適宜「B群酸化物」と言う)を0II10
1%以上55wo7%以下の割合で含み、これら酸化物
(r!It化ケイ素、A群酸化物およびBl¥酸化物)
の総合計量が85no1%以上であり、しかも、10m
o&%以下の酸化セリウム(Ce O□)を含むものが
挙げられる。1% or more and 60 mol% or less, magnesium oxide (MgO
), calcium oxide (CaO), strontium oxide (
At least one oxide of SrO) and barium oxide (BaO) (hereinafter appropriately referred to as "group A oxide") is 1% or more and 40-01% or less, titanium oxide (T i O,), oxide At least one oxide of zirconium (ZrO,) and tin oxide (SnO,) (hereinafter appropriately referred to as "Group B oxide") is 0II10
Contains at a ratio of 1% to 55wo7%, and these oxides (r!It silicon, A group oxide, and Bl\ oxide)
The total amount is 85no1% or more, and 10m
Examples include those containing cerium oxide (Ce O□) of less than o&%.
酸化ケイ素が15mol%を下回わったり、A群酸化物
が4011I01%を越えたり、B群酸化物が55 m
o 1%を越えたり、あるいは、酸化セリウムが10m
ol%を越えたりすると、繊維成形性が低下するように
なる。Silicon oxide is less than 15 mol%, group A oxide is more than 4011I01%, group B oxide is less than 55 m
o Exceeding 1% or 10m of cerium oxide
If it exceeds ol%, the fiber formability will deteriorate.
ガラスが非鉛系ガラスである場合、さらに、請求項3の
ように、酸化ケイ素の含有量が35moA%以上50+
+o#%以下、酸化マグネシウム、酸化カルシウム、酸
化ストロンチウムおよび酸化バリウムのうちの少なくと
もひとつの酸化物(A群酸化物)の含有量が20+wo
f%以上40mol%以下、酸化チタン、酸化ジルコニ
ウムおよび酸化スズのうちの少なくともひとつの酸化物
(B群酸化物)の含有量が20mo/%以上40w+o
I1%以下の範囲であることがより好ましい。これは、
12以上の比誘電率や良好な繊維成形性が容易に確保さ
れるからである。When the glass is lead-free glass, further, as in claim 3, the content of silicon oxide is 35 moA% or more 50+
+o#% or less, the content of at least one oxide (group A oxide) of magnesium oxide, calcium oxide, strontium oxide, and barium oxide is 20+wo
f% or more and 40 mol% or less, and the content of at least one oxide (group B oxide) of titanium oxide, zirconium oxide, and tin oxide is 20 mo/% or more 40w+o
The range of I is more preferably 1% or less. this is,
This is because a dielectric constant of 12 or more and good fiber formability can be easily ensured.
酸化ケイ素が50moJ%を越えると、12以上のガラ
ス比誘電率の確保が難しく、35IIIO1%より少な
くなると良好な繊維成形性の確保が難しくなる。When silicon oxide exceeds 50 moJ%, it is difficult to ensure a glass dielectric constant of 12 or more, and when it is less than 35IIIO1%, it becomes difficult to ensure good fiber formability.
A群酸化物あるいはB群酸化物の含有量が20mol%
以上40mol%以下の範囲を外れると良好な繊維成形
性の確保が難しくなる。Content of group A oxide or group B oxide is 20 mol%
If the content is outside the above range of 40 mol% or less, it becomes difficult to ensure good fiber formability.
請求項2.3に示す組成の非鉛系ガラスは、15mo4
2%を越えない範囲で、例えば、下記の他の酸化物(以
下、適宜「0群酸化物」と言う)、Li2O、Nano
、K、01ZnO,、Mn01FeO1Bz Os 、
Alz O! 、B j* Os 、Fegos、Ge
Ox、Te0z、PzOs、VzOs 、Nbz Os
、Tax Os 、Lag Osのうちの少なくとも
ひとつを含んでいてもよい。The lead-free glass having the composition shown in claim 2.3 is 15mo4
Within a range not exceeding 2%, for example, the following other oxides (hereinafter referred to as "Group 0 oxides"), Li2O, Nano
,K,01ZnO,,Mn01FeO1BzOs,
Alz O! , B j * Os , Fegos, Ge
Ox, Te0z, PzOs, VzOs, NbzOs
, Tax Os, and Lag Os.
なお、0群酸化物が15mol%を越えるようになると
、高比誘電率の確保が難しくなったり、あるいは、繊維
成形性が低下したりする。Note that if the content of group 0 oxide exceeds 15 mol %, it becomes difficult to ensure a high dielectric constant or fiber formability deteriorates.
一方、ガラスが鉛を含む場合は、繊維成形性に富むため
結果的に補強材が得やすく、複合誘電体を製造する上で
好都合である。また、鉛系ガラスは、鉛成分を含む分、
比誘電率の点で少なく方がよいケイ素成分を少なくでき
るため、補強材の高比誘電率化の面でも都合がよい。た
だ、複合誘電体を加工する際の公害対策を確り行う必要
はあるガラスが鉛系ガラスである場合、例えば、請求項
4のように、酸化ケイ素(Sift)を15mol%以
上60IIIO1%以下、酸化マグネシウム(MgO)
、酸化カルシウム(Cab)、酸化ストロンチウム(S
rO)および酸化バリウム(B a O)のうちの少な
(ともひとつの酸化物(以下、適宜「A′群酸化物ヨと
言う)をOso 12%以上40m。On the other hand, when the glass contains lead, the fibers have good formability, so it is easy to obtain a reinforcing material, which is convenient for manufacturing a composite dielectric. In addition, lead-based glass contains lead components,
Since the silicon component, which is better in terms of dielectric constant, can be reduced, it is convenient in terms of increasing the dielectric constant of the reinforcing material. However, it is necessary to take strict measures against pollution when processing composite dielectrics. For example, when the glass is lead-based glass, as in claim 4, silicon oxide (Sift) is added in an amount of 15 mol% or more and 60IIIO 1% or less, oxidized Magnesium (MgO)
, calcium oxide (Cab), strontium oxide (S
rO) and barium oxide (B a O) (hereinafter referred to as ``A' group oxides'') in an amount of 12% or more and 40m.
1%以下、酸化チタン(Tie、)、酸化ジルコニウム
(ZrO,)および酸化スズ(SnO□)のうちの少な
くともひとつの酸化物(以下、適宜「B′群酸化物」と
言う)をOvao 1%以上55IIIO1%以下、酸
化鉛(p b o)を8Onmol%以下の割合で含み
、これら酸化物(酸化ケイ素、A′群酸化物、B′群酸
化物および酸化鉛)の総合計量が85rao1%以上で
あり、しかも、10mol%以下の酸化セリウム(Ce
O□)を含むものが挙げられる酸化ケイ素が6011
I01%を越えると、9以上の比誘電率の確保が難しく
なる。Ovao 1% or less, at least one oxide of titanium oxide (Tie), zirconium oxide (ZrO, ), and tin oxide (SnO□) (hereinafter appropriately referred to as "B' group oxide") Contains 1% or less of 55IIIO or less, lead oxide (p b o) at a ratio of 8 Onmol% or less, and the total amount of these oxides (silicon oxide, group A' oxide, group B' oxide, and lead oxide) is 85rao1% or more Moreover, 10 mol% or less of cerium oxide (Ce
Silicon oxides including those containing O□) are 6011
When I01% is exceeded, it becomes difficult to ensure a dielectric constant of 9 or more.
酸化鉛が80mol%を越えると、繊維成形性が却って
低下するようになる。When lead oxide exceeds 80 mol %, fiber formability is rather reduced.
酸化ケイ素が15mol%を下回わったり、A′群酸化
物が40mo42%を越えたり、B′群酸化物が55m
ol%を越えたり、あるいは、酸化セリウムが1On+
of%を越えたりすると、繊維成形性が低下するように
なる。Silicon oxide is less than 15mol%, A' group oxide is more than 40mol%, B' group oxide is more than 55mol%.
ol% or cerium oxide exceeds 1On+
If it exceeds % of, the fiber formability will deteriorate.
ガラスが鉛系ガラスである場合、さらに、請求項5のよ
うに、酸化ケイ素の含有量が25mo/%以上40mo
l%以下、酸化マグネシウム、酸化カルシウム、酸化ス
トロンチウムおよび酸化バリウムのうちの少なくともひ
とつの酸化物(A’群酸酸化物の含有量が10mol%
以上40IlloI1%以下、酸化チタン、酸化ジルコ
ニウムおよび酸化スズのうちの少なくともひとつの酸化
物(B’群酸酸化物の含有量が10moi!%以上40
IIIO1%以下、酸化鉛の含有量が5 mo 1%以
上55IIIoI!%以下の範囲であることがより好ま
しい。これは、14以上のガラス比誘電率や良好な繊維
成形性や450℃以上の高いガラス転移点温度が容易に
確保されるからである。When the glass is lead-based glass, further, as in claim 5, the content of silicon oxide is 25 mo/% or more and 40 mo/%.
1% or less, at least one oxide of magnesium oxide, calcium oxide, strontium oxide, and barium oxide (the content of A' group acid oxide is 10 mol%)
40 IlloI 1% or less, at least one oxide of titanium oxide, zirconium oxide, and tin oxide (content of B' group acid oxide is 10 moi!% or more) 40
IIIO1% or less, lead oxide content 5 mo 1% or more 55IIIoI! % or less is more preferable. This is because a glass dielectric constant of 14 or more, good fiber formability, and a high glass transition temperature of 450° C. or more can be easily ensured.
酸化ケイ素が4(1+oj!%を越えると、14以上の
比誘電率の確保が難しく、251Io1%より少ないと
良好な繊維成形性や450℃以上のガラス転移点温度の
確保が難しくなってくる。If the silicon oxide content exceeds 4(1+oj!%), it is difficult to ensure a dielectric constant of 14 or more, and if it is less than 1% 251Io, it becomes difficult to ensure good fiber formability and a glass transition temperature of 450° C. or higher.
A′群酸化物、あるいは、B′群酸化物の含有量が10
mol%より少ないと良好な繊維成形性、14以上の比
誘電率や450℃以上のガラス転移点温度のどれかの確
保が難しくなってくる。The content of A' group oxide or B' group oxide is 10
If the amount is less than mol %, it becomes difficult to ensure good fiber formability, a dielectric constant of 14 or more, or a glass transition temperature of 450° C. or more.
A′群酸化物、あるいは、B′群酸化物が40mol%
の範囲を越えると良好な繊維成形性の確保が難しい。40 mol% of A' group oxide or B' group oxide
If it exceeds this range, it is difficult to ensure good fiber formability.
酸化鉛が5 so 11%より少ないと良好な繊維成形
性や14以上の比誘電率の確保が難しくなり、5110
J%以上になると450を以上のガラス転移点温度とす
ることが難しくなる。If the lead oxide content is less than 5 so 11%, it will be difficult to ensure good fiber formability and a dielectric constant of 14 or more, and 5110
If it exceeds J%, it becomes difficult to achieve a glass transition temperature of 450 or higher.
なお、鉛系ガラスの場合、ガラス転移点が低(なりがち
であるが、ガラス繊維には普通繊維成形の際に温情用油
が塗布されており、補強材製造後の段階も含めた適宜の
段階で潤滑用油除去のクリーニングを行うが、このとき
の処理温度で軟化しないようにする必要があり、そのた
めには、ガラス転移点が450℃以上であることが好ま
しいのである。In addition, in the case of lead-based glass, the glass transition point is low (although it tends to be low, glass fibers are usually coated with warming oil during fiber molding, and appropriate treatment is required, including at the stage after reinforcing material manufacturing. At this stage, cleaning is performed to remove lubricating oil, but it is necessary to prevent softening at the processing temperature at this time, and for this purpose, it is preferable that the glass transition point is 450° C. or higher.
請求項4.5に示す組成の鉛系ガラスは、15mol%
を越えない範囲で、例えば、下記の他の酸化物(以下、
適宜「C′群酸酸化物と言う)、Lis OSNag
O,Kg 01ZnO,MnO,Fe0− Bx Os
5Allx Os 、Big Os 、Fexos、
Geo*、Te0z、、PxOs、VxOs 、Nbz
Oa 、Tax Os 、Lag Osのうちの少な
くともひとつを含んでいてもよい。The lead-based glass having the composition shown in claim 4.5 has a content of 15 mol%.
For example, the following other oxides (hereinafter referred to as
Lis OSNag (sometimes referred to as "C' group acid oxide")
O, Kg 01ZnO, MnO, Fe0- Bx Os
5Allx Os, Big Os, Fexos,
Geo*, Te0z, , PxOs, VxOs, Nbz
It may contain at least one of Oa, TaxOs, and LagOs.
なお、C′群酸酸化物15s+oJ%を越えるようにな
ると高比誘電率の確保が難しくなったり、あるいは、繊
維成形性が低下したりする。It should be noted that if the C' group acid oxide exceeds 15s+oJ%, it becomes difficult to ensure a high specific dielectric constant, or fiber formability deteriorates.
この発明の複合誘電体の樹脂中には、請求項6のように
、無機誘電体粉末が分散されていることが好ましい。具
体的な無機誘電体粉末としては、例えば、f3 a T
i Ox系、5rTiOy系、pbT i+/2 Z
r l/20s系、P b (M g xis N
b +/、)0.系、Ba (Snx Mgy Taz
)Os系、Ba (Zrx Zny Taz)Ox系
などのペロブスカイト型結晶構造(あるいは複合ペロブ
スカイト型結晶構造)を有するもの、その他、TiO□
、Zr0z、SnO□の単独およびその複合酸化物など
の無機化合物等が具体的に挙げられる。普通、O,OS
〜1001程度の粒径の無機誘電体粉末が用いられる。Preferably, inorganic dielectric powder is dispersed in the resin of the composite dielectric of the present invention. As a specific inorganic dielectric powder, for example, f3 a T
i Ox system, 5rTiOy system, pbT i+/2 Z
r l/20s system, P b (M g xis N
b +/, )0. System, Ba (Snx Mgy Taz
)Os system, those with perovskite crystal structure (or composite perovskite crystal structure) such as Ba (Zrx Zny Taz) Ox system, others, TiO□
, Zr0z, SnO□ alone and their composite oxides, and other inorganic compounds are specifically mentioned. Normal, O, OS
An inorganic dielectric powder having a particle size of about 1001 to 1001 is used.
樹脂中への分散方法には、無機誘電体粉末を予め分散さ
せた樹脂を補強材に含浸等する方法が普通であるが、無
機誘電体粉末だけを先に付着させた補強材に樹脂を含浸
させ結果的に無機誘電体粉末を樹脂中に分散させた伏態
とする方法などもある。The usual method for dispersing into resin is to impregnate reinforcing material with resin in which inorganic dielectric powder has been previously dispersed. There is also a method in which the inorganic dielectric powder is dispersed in the resin to form a dormant state.
この発明の複合誘電体(100vo&%)におけるマト
リックス用樹脂、ガラスからなる補強材、無機誘電体粉
末の配合割合は、樹脂10〜95v。In the composite dielectric material (100vo&%) of the present invention, the blending ratio of the matrix resin, reinforcing material made of glass, and inorganic dielectric powder is 10 to 95v of the resin.
1%、補強材5〜70voj!%、無機誘電体粉末0〜
7ovo1%(通常、0〜40vo7!%)程度である
。1%, reinforcing material 5-70 voj! %, inorganic dielectric powder 0~
It is about 7ovo1% (usually 0 to 40vo7!%).
この発明の複合誘電体の用途には、プリント回路板用基
板が例示されるが、これに限らない。Applications of the composite dielectric of the present invention include, but are not limited to, substrates for printed circuit boards.
請求項1〜6記載の複合誘電体では、ガラス製補強材の
比誘電率が高いために、複合誘電体自体の高比誘電率確
保が容易であり、しかも、酸化セリウムの添加によりガ
ラス製補強材のtanδが低いため、低損失特性である
。ガラスが非鉛系ガラスである場合は、鉛毒の心配がな
く安全でもある。ガラスが鉛系ガラスである場合は、高
比誘電率補強材を得やすく複合誘電体を製造する上で都
合がよい。なお、酸化セリウムの含有量が10顕o/%
を越えると繊維成形性が低下し製造が難しくなり、実用
性が失われる。In the composite dielectric material according to claims 1 to 6, since the glass reinforcing material has a high relative permittivity, it is easy to ensure a high relative permittivity of the composite dielectric material itself, and furthermore, by adding cerium oxide, the glass reinforcing material has a high relative permittivity. Since the material has a low tan δ, it has low loss characteristics. If the glass is lead-free glass, there is no fear of lead poisoning and it is safe. When the glass is lead-based glass, it is convenient for producing a composite dielectric because it is easy to obtain a high dielectric constant reinforcing material. In addition, the content of cerium oxide is 10 μι/%
If it exceeds this value, the fiber formability decreases, manufacturing becomes difficult, and practicality is lost.
請求項2記載の複合誘電体のように、補強材用のガラス
が非鉛系ガラスであり、酸化ケイ素を15 mo 1%
以上60!1lo1%以下、A群酸化物をOm。In the composite dielectric according to claim 2, the reinforcing glass is lead-free glass, and silicon oxide is contained at 15 mo 1%.
60!1lo1% or less, group A oxide Om.
!%以上40mol%以下、B群酸化物をOmo 1%
以上55+wo1%以下の割合で含み、これら酸化物(
酸化ケイ素、AI¥酸化物およびB1¥酸化物)の総合
計量が85mol%以上であって、かつ、10mo(1
%以下の酸化セリウムを含む場合には、9以上の比誘電
率や低tanδの確保、繊維成形が可能であるため、高
比誘電率・低tanδの補強材を得る上で好都合である
。! % or more and 40 mol% or less, Omo 1% of group B oxides
These oxides (
The total amount of silicon oxide, AI\oxide, and B1\oxide) is 85 mol% or more, and 10 mo (1
% or less of cerium oxide, it is possible to secure a dielectric constant of 9 or more and a low tan δ, and to form fibers, which is advantageous in obtaining a reinforcing material with a high dielectric constant and low tan δ.
請求項3記載の複合誘電体のように、上記非鉛系ガラス
において、酸化ケイ素を35III01%以上50++
mol%以下、A群酸化物を20n+oJ%以上40m
ol%以下、B群酸化物を2011I01%以上401
101%以下の範囲で含む場合には、12以上の比誘電
率や良好な繊維成形性の確保が容易であるため、より高
比誘電率の補強材を得る上で好都合である。In the composite dielectric according to claim 3, in the lead-free glass, silicon oxide is contained in an amount of 35III01% or more and 50++.
mol% or less, group A oxide 20n+oJ% or more 40m
ol% or less, group B oxide 2011I01% or more 401
When it is contained in a range of 101% or less, it is easy to ensure a dielectric constant of 12 or more and good fiber formability, which is convenient for obtaining a reinforcing material with a higher dielectric constant.
請求項4記載の複合誘電体のように、補強材用のガラス
が鉛系ガラスであり、酸化ケイ素を15Imol%以上
60mol%以下、A′群酸化物をOs。In the composite dielectric according to claim 4, the reinforcing glass is lead-based glass, silicon oxide is 15 Imol% or more and 60 mol% or less, and the A' group oxide is Os.
1%以上4011O1%以下、B′群酸化物をOtao
1%以上55IllOI1%以下、酸化鉛を80so
1%以下の割合で含み、これら酸化物(酸化ケイ素、A
′群酸化物、B′群酸化物および酸化鉛)の総合計量が
85mol%以上であって、かつ、10mol%以下の
酸化セリウムを含む場合には、9以上の比誘電率や低t
anδの確保、繊維成形が可能であるため、高比誘電率
・低tanδの補強材を得る上で好都合である。1% to 1% of 4011O, group B' oxide
1% or more 55IllOI 1% or less, lead oxide 80so
These oxides (silicon oxide, A
' group oxide, B' group oxide, and lead oxide) is 85 mol % or more and contains 10 mol % or less cerium oxide, the dielectric constant is 9 or more or low t.
Since it is possible to secure an δ and to form fibers, it is convenient for obtaining a reinforcing material with a high dielectric constant and a low tan δ.
請求項5記載の複合誘電体のように、上記鉛系ガラスに
おいて、酸化ケイ素を25mol%以上40+oI1%
以下、酸化鉛を5−01%以上55++of%以下、A
′群酸化物を10amol%以上40曙o1%以下、B
′群酸化物を10++o#%以上40■01%以下の範
囲で含む場合には、14以上の比誘電率や良好な繊維成
形性の確保が容易であるため、より高圧誘電率の補強材
を得る上で好都合である。In the composite dielectric according to claim 5, in the lead-based glass, silicon oxide is contained in an amount of 25 mol% or more and 40+oI1%.
Below, lead oxide is 5-01% or more and 55++of% or less, A
B
When the ' group oxide is contained in the range of 10++o#% or more and 40% or less, it is easy to ensure a dielectric constant of 14 or more and good fiber formability, so reinforcing materials with a higher voltage dielectric constant are used. It is convenient for obtaining.
請求項6の複合誘電体のように、無機誘電体粉末を併用
した場合には、無機誘電体粉末の高比誘電率特性が十分
に生かされ、複合誘電体自体の比誘電率が容易に10以
上となる。When an inorganic dielectric powder is used in combination as in the composite dielectric of claim 6, the high relative dielectric constant property of the inorganic dielectric powder is fully utilized, and the relative permittivity of the composite dielectric itself can be easily increased to 10. That's all.
続いて、この発明の詳細な説明する。もちろん、この発
明は下記実施例に限らない。Next, the present invention will be explained in detail. Of course, the present invention is not limited to the following embodiments.
まず、補強材用の比誘電率9以上で10+l1oj!%
以下の酸化セリウムを含むガラス繊維の製造について説
明する。First, the dielectric constant for reinforcing materials is 9 or more, which is 10+l1oj! %
The production of glass fiber containing cerium oxide will be described below.
酸化物、炭酸塩あるいは水酸化物等の原材料を含有酸化
物が所定割合で含まれるガラスが得られるように配合し
、白金るつぼに入れて電気炉で加熱(条件:1450℃
、2時間)し溶融する。Raw materials such as oxides, carbonates, or hydroxides are blended to obtain a glass containing a predetermined proportion of oxides, placed in a platinum crucible, and heated in an electric furnace (conditions: 1450°C).
, 2 hours) and melt.
つぎに、得られた融液を融液粘度が約10”ポイズにな
る温度に熱しておいた別のノズル付白金るつぼに移し、
るつぼ裏のノズルから引き出して5〜30n程度の径の
ガラス繊維を得る。このあと、得られたガラス繊維を織
ったり裁断したりしてガラスクロスやファイバー等の補
強材に仕上げることは言うまでもない。Next, the obtained melt was transferred to another platinum crucible with a nozzle that had been heated to a temperature where the melt viscosity was about 10" poise,
The glass fibers are pulled out from the nozzle on the back of the crucible to obtain glass fibers with a diameter of about 5 to 30 nm. Needless to say, the obtained glass fibers are then woven or cut into reinforcing materials such as glass cloth or fibers.
ガラス組成を色々換えて、比誘電率、tanδおよび繊
維成形性の難易を調べた。The dielectric constant, tan δ, and difficulty in forming fibers were investigated by changing the glass composition.
比誘電率、tanδはバルク状のガラス体を作り、イン
ピーダンスアナライザで測定(測定周波数IGHz)し
た。結果を第1〜4表に示す。第1.2表は非鉛系のガ
ラス組成の場合、第3.4表は鉛系のガラス組成の場合
である。The relative dielectric constant, tan δ, was measured using an impedance analyzer (measuring frequency IGHz) after making a bulk glass body. The results are shown in Tables 1-4. Table 1.2 shows the case of lead-free glass composition, and Table 3.4 shows the case of lead-based glass composition.
繊維成形の難易については、得られた融液が約10”ポ
イズになる温度の白金るつぼ中に24時間保持した後、
糸が引けるかどうかで調べた。ガラス繊維を量産する場
合、普通、融液が白金等のるつぼ中に長時間(例えば、
20時間前後)保持される。融液を得たあと速やかに繊
維成形を行うようにするなど繊維化方法が限られてくる
。ガラスサンプル番号14〜18.32〜36のものは
24時間るつぼに保持した後ではうまく繊維成形できな
かった。Regarding the difficulty of fiber molding, after holding the obtained melt in a platinum crucible at a temperature of about 10" poise for 24 hours,
I checked to see if the string could be pulled. When mass producing glass fiber, the melt is usually kept in a platinum crucible for a long time (for example,
(approximately 20 hours). There are limitations to the fiber forming methods, such as forming the fibers immediately after obtaining the melt. Glass samples numbers 14-18 and 32-36 did not form fibers successfully after being held in the crucible for 24 hours.
比較のために、酸化セリウムを他の酸化物で置換したガ
ラス(ガラスサンプル番号1′〜36′)を作製し、上
記と同様に調べた。結果を第5〜8表に示す。第5.6
表は非鉛系のガラス組成の場合、第7.8表は鉛系のガ
ラス組成の場合である。For comparison, glasses in which cerium oxide was replaced with other oxides (glass sample numbers 1' to 36') were prepared and examined in the same manner as above. The results are shown in Tables 5-8. Section 5.6
Table 7.8 shows the case of lead-free glass composition, and Table 7.8 shows the case of lead-based glass composition.
上で得た非鉛系のガラス繊維を用いて、実施例1〜5の
複合誘電体を得た。Composite dielectrics of Examples 1 to 5 were obtained using the lead-free glass fibers obtained above.
実施例1
補強材として、第1表のガラスサンプル番号2の組成の
ガラス繊維<aa維径径9JINで作った厚み100n
のガラスクロスを準備した。一方、PPO樹脂45gを
80℃のトルエン215gに溶かした後、平均粒径2n
のTi0−粉末120gを添加し分散させたワニスを準
備した。Example 1 As a reinforcing material, a glass fiber having the composition of glass sample number 2 in Table 1 <aa fiber diameter 9JIN and having a thickness of 100n was used.
A glass cloth was prepared. On the other hand, after dissolving 45 g of PPO resin in 215 g of toluene at 80°C, the average particle size was 2n.
A varnish was prepared in which 120 g of Ti0- powder was added and dispersed.
ワニス中に前記ガラスクロスを入れてワニスを含浸させ
乾燥(115℃、90秒)した後、4枚重ねて、温度1
80℃、圧力50kg/J、120分間の成形条件で熱
プレス成形して厚み約0.8鶴の複合誘電体を得た。The glass cloth was placed in the varnish, impregnated with the varnish, dried (115°C, 90 seconds), then stacked 4 times and heated to a temperature of 1.
A composite dielectric material having a thickness of approximately 0.8 mm was obtained by hot press molding at 80° C., pressure of 50 kg/J, and 120 minutes.
なお、複合誘電体におけるPPO樹脂、無機誘電体粉末
、補強材の割合は、それぞれ42voJ%、28voJ
%、30vo1%であった。The proportions of PPO resin, inorganic dielectric powder, and reinforcing material in the composite dielectric were 42 voJ% and 28 voJ%, respectively.
%, 30vo1%.
実施例2−
補強材として、第1表のガラスサンプル番号3の組成の
ガラス繊維(繊維径9m)で作った厚み100nのガラ
スクロスを用いた他は、実施例1と同様にして複合誘電
体を得た。Example 2 - A composite dielectric material was prepared in the same manner as in Example 1, except that a glass cloth with a thickness of 100 nm made of glass fibers (fiber diameter 9 m) having the composition of glass sample number 3 in Table 1 was used as a reinforcing material. I got it.
実施例3
補強材として、第1表のガラスサンプル番号5の組成の
ガラス繊維(繊維径9n)で作った厚み100nのガラ
スクロスを用いた他は、実施例1と同様にして複合誘電
体を得た。Example 3 A composite dielectric material was prepared in the same manner as in Example 1, except that a glass cloth with a thickness of 100 nm made of glass fibers (fiber diameter 9 nm) having the composition of glass sample number 5 in Table 1 was used as a reinforcing material. Obtained.
実施例4
補強材として、第2表のガラスサンプル番号11の組成
のガラス繊維(繊維径9n)で作った厚み100μのガ
ラスクロスを用いた他は、実施例1と同様にして複合誘
電体を得た。Example 4 A composite dielectric material was prepared in the same manner as in Example 1, except that a glass cloth with a thickness of 100 μm made of glass fibers (fiber diameter 9n) having the composition of glass sample number 11 in Table 2 was used as a reinforcing material. Obtained.
実施例5−
補強材として、第2表のガラスサンプル番号14の組成
のガラス繊維(繊維径9n)で作った厚み100nのガ
ラスクロスを用いた他は、実施例1と同様にして複合誘
電体を得た。Example 5 - A composite dielectric material was prepared in the same manner as in Example 1, except that a glass cloth with a thickness of 100 nm made of glass fibers (fiber diameter 9 nm) having the composition of glass sample number 14 in Table 2 was used as a reinforcing material. I got it.
上で得た鉛系のガラス繊維を用いて、実施例6〜10の
複合誘電体を得た。Composite dielectrics of Examples 6 to 10 were obtained using the lead-based glass fibers obtained above.
一実施例6
補強材として、第3表のガラスサンプル番号20の組成
のガラス繊維(繊維径9n)で作った厚み100nのガ
ラスクロスを用いた他は、実施例1と同様にして複合誘
電体を得た。Example 6 A composite dielectric material was prepared in the same manner as in Example 1, except that a glass cloth with a thickness of 100 nm made of glass fibers (fiber diameter 9 nm) having the composition of glass sample number 20 in Table 3 was used as a reinforcing material. I got it.
実施例7
補強材として、第3表のガラスサンプル番号21の組成
のガラス繊維(繊維径9μ)で作った厚み100μのガ
ラスクロスを用いた他は、実施例1と同様にして複合誘
電体を得た。Example 7 A composite dielectric material was prepared in the same manner as in Example 1, except that a 100 μm thick glass cloth made of glass fibers (fiber diameter 9 μm) having the composition of glass sample number 21 in Table 3 was used as a reinforcing material. Obtained.
実施例8
補強材として、第3表のガラスサンプル番号25の組成
のガラス繊維(繊維径9n)で作った厚み100μのガ
ラスクロスを用いた他は、実施例1と同様にして複合誘
電体を得た。Example 8 A composite dielectric material was prepared in the same manner as in Example 1, except that a 100μ thick glass cloth made of glass fibers (fiber diameter 9n) having the composition of glass sample number 25 in Table 3 was used as a reinforcing material. Obtained.
一実施例9−
補強材として、第4表のガラスサンプル番号30の組成
のガラス繊維(m径径9n)で作った厚み100μのガ
ラスクロスを用いた他は、実施例1と同様にして複合誘
電体を得た。Example 9 - A composite was prepared in the same manner as in Example 1, except that a glass cloth with a thickness of 100μ made of glass fiber (m diameter 9n) having the composition of glass sample number 30 in Table 4 was used as a reinforcing material. A dielectric was obtained.
実施例10−
補強材として、第4表のガラスサンプル番号35の組成
のガラス繊維(繊維径9n)で作った厚み100nのガ
ラスクロスを用いた他は、実施例1と同様にして複合誘
電体を得た。Example 10 - A composite dielectric material was prepared in the same manner as in Example 1, except that a glass cloth with a thickness of 100 nm made of glass fibers (fiber diameter 9 nm) having the composition of glass sample number 35 in Table 4 was used as a reinforcing material. I got it.
上で得た非鉛系のガラス繊維を用いて、比較例1〜5の
複合誘電体を得た。Composite dielectrics of Comparative Examples 1 to 5 were obtained using the lead-free glass fibers obtained above.
比較例1
補強材として、第5表のガラスサンプル番号2′の組成
のガラス繊維(繊維径9n)で作った厚み100μのガ
ラスクロスを用いた他は、実施例1と同様にして複合誘
電体を得た。Comparative Example 1 A composite dielectric material was prepared in the same manner as in Example 1, except that a 100μ thick glass cloth made of glass fibers (fiber diameter 9n) having the composition of glass sample number 2' in Table 5 was used as a reinforcing material. I got it.
比較例2−
補強材として、第5表のガラスサンプル番号3′の組成
のガラス繊維(繊維径9n)で作った厚み100nのガ
ラスクロスを用いた他は、実施例1と同様にして複合誘
電体を得た。Comparative Example 2 - Composite dielectric was fabricated in the same manner as in Example 1, except that a glass cloth with a thickness of 100 nm made of glass fibers (fiber diameter 9 nm) having the composition of glass sample number 3' in Table 5 was used as a reinforcing material. I got a body.
比較例3
補強材として、第5表のガラスサンプル番号5′の組成
のガラス繊維<tta維径径径)で作った厚み1100
Irのガラスクロスを用いた他は、実施例1と同様にし
て複合誘電体を得た。Comparative Example 3 As a reinforcing material, a glass fiber having a composition of glass sample number 5' in Table 5 <tta fiber diameter diameter) was made with a thickness of 1100 mm.
A composite dielectric was obtained in the same manner as in Example 1, except that Ir glass cloth was used.
比較例4−
補強材として、第6表のガラスサンプル番号11′の組
成のガラス繊維(繊維径9n)で作った厚み100μの
ガラスクロスを用いた他は、実施例1と同様にして複合
誘電体を得た。Comparative Example 4 - Composite dielectric was fabricated in the same manner as in Example 1, except that a 100μ thick glass cloth made of glass fibers (fiber diameter 9n) having the composition of glass sample number 11' in Table 6 was used as a reinforcing material. I got a body.
−比較例5
補強材として、第6表のガラスサンプル番号14′の組
成のガラス繊維(vh維径径9nで作った厚み100m
のガラスクロスを用いた他は、実施例1と同様にして複
合誘電体を得た。- Comparative Example 5 As a reinforcing material, glass fiber having the composition of glass sample number 14' in Table 6 (vh fiber diameter 9n, thickness 100 m) was used.
A composite dielectric material was obtained in the same manner as in Example 1, except that the glass cloth was used.
上で得た鉛系のガラス繊維を用いて、比較例6〜10の
複合誘電体を得た。Composite dielectrics of Comparative Examples 6 to 10 were obtained using the lead-based glass fibers obtained above.
一比較例6−
補強材として、第7表のガラスサンプル番号20′の組
成のガラス繊維(繊維径9.w)で作った厚み100n
のガラスクロスを用いた他は、実施例1と同様にして複
合誘電体を得た。Comparative Example 6 - As a reinforcing material, a glass fiber with a thickness of 100 nm made of glass fiber (fiber diameter 9.W) having the composition of glass sample number 20' in Table 7
A composite dielectric material was obtained in the same manner as in Example 1, except that the glass cloth was used.
−比較例7−
補強材として、第7表のガラスサンプル番号21′の組
成のガラス繊維(繊維径9n)で作った厚み100nの
ガラスクロスを用いた他は、実施例1と同様にして複合
誘電体を得た。- Comparative Example 7 - A composite was prepared in the same manner as in Example 1, except that a glass cloth with a thickness of 100 nm made of glass fibers (fiber diameter 9 nm) having the composition of glass sample number 21' in Table 7 was used as a reinforcing material. A dielectric was obtained.
比較例8
補強材として、第7表のガラスサンプル番号25′の組
成のガラス繊維<uh維径径9xで作った厚み100μ
のガラスクロスを用いた他は、実施例1と同様にして複
合誘電体を得た。Comparative Example 8 As a reinforcing material, a glass fiber having the composition of glass sample number 25' in Table 7 <uh fiber diameter 9x and having a thickness of 100μ
A composite dielectric material was obtained in the same manner as in Example 1, except that the glass cloth was used.
−比較例9
補強材として、第8表のガラスサンプル番号30′の組
成のガラス繊維(ta維径径9μで作った厚み100n
のガラスクロスを用いた他は、実施例1と同様にして複
合誘電体を得た。- Comparative Example 9 As a reinforcing material, glass fiber having the composition of glass sample number 30' in Table 8 (100 nm thick made with a ta fiber diameter of 9 μm) was used as a reinforcing material.
A composite dielectric material was obtained in the same manner as in Example 1, except that the glass cloth was used.
比較例10−
補強材として、第8表のガラスサンプル番号35′の組
成のガラス繊維(&&維径径9xで作った厚み100n
のガラスクロスを用いた他は、実施例1と同様にして複
合誘電体を得た。Comparative Example 10 - As a reinforcing material, glass fiber with the composition of glass sample number 35' in Table 8 (&& fiber diameter 9x, thickness 100n
A composite dielectric material was obtained in the same manner as in Example 1, except that the glass cloth was used.
−従来例−
ガラスクロスを構成するガラスが比誘電率6.7のEガ
ラスである他は、実施例1と同様にして複合誘電体を得
た。- Conventional Example - A composite dielectric was obtained in the same manner as in Example 1, except that the glass constituting the glass cloth was E glass with a dielectric constant of 6.7.
実施例、比較例および従来例の各複合誘電体の表面・裏
面に電極を設け、インピーダンスアナライザを使って、
比誘電率とtanδを測定(測定周波数IMHz)した
。測定結果を第9.10表に示す。Electrodes were provided on the front and back surfaces of each composite dielectric of the example, comparative example, and conventional example, and using an impedance analyzer,
The relative dielectric constant and tan δ were measured (measurement frequency IMHz). The measurement results are shown in Table 9.10.
実施例1〜10の複合誘電体は、第1表にみるように、
いずれも10を越える比誘電率がある。As shown in Table 1, the composite dielectrics of Examples 1 to 10 were as follows:
All have dielectric constants exceeding 10.
実施例1〜10と従来例の比誘電率を比べれば、補強材
の比誘電率の高いことが高比誘電率の確保に非常に有効
であることがよく分かる。なお、PPO樹脂とTiO7
粉末からなる部分の比誘電率を別途に調べたところ11
.0であり、この発明の複合誘電体では補強材が高圧誘
電率確保を阻害していないことが明確に裏付けられた。Comparing the dielectric constants of Examples 1 to 10 and the conventional example, it is clear that the high dielectric constant of the reinforcing material is very effective in securing a high dielectric constant. In addition, PPO resin and TiO7
A separate study of the dielectric constant of the part made of powder revealed that 11
.. 0, which clearly proves that in the composite dielectric of the present invention, the reinforcing material does not impede securing a high voltage dielectric constant.
また、実施例1〜10と比較例1〜IOのtanδを比
較すれば、酸化セリウムの含有が誘電損失を小さくする
ことに大変に有効であることもよく分かる。Further, by comparing the tan δ of Examples 1 to 10 and Comparative Examples 1 to IO, it can be clearly seen that the inclusion of cerium oxide is very effective in reducing dielectric loss.
以上に述べたように、請求項1〜6の複合誘電体は、
請求項1〜6記載の複合誘電体では、ガラス製の補強材
は、比誘電率が高くて、かつ酸化セリウムの添加により
tanδが低いため、高比誘電率・低損失特性の非常
に有用な誘電体である。As described above, the composite dielectric material according to claims 1 to 6 is characterized in that the glass reinforcing material has a high dielectric constant and is added with cerium oxide. Due to its low tan δ, it is a very useful dielectric material with high dielectric constant and low loss characteristics.
請求項2記載の複合誘電体では、加えて、高比誘電率の
補強材が作り易いため、複合誘電体の製造が易しいとう
利点がある。In addition, the composite dielectric according to the second aspect has the advantage that the reinforcing material having a high dielectric constant can be easily produced, so that the composite dielectric can be easily manufactured.
請求項3記載の複合誘電体では、加えて、より高比誘電
率の補強材が得やすいため、優れた複合誘電体の製造が
易しいという利点がある。In addition, the composite dielectric material according to the third aspect has the advantage that it is easy to obtain a reinforcing material with a higher relative dielectric constant, so that it is easy to manufacture an excellent composite dielectric material.
請求項4記載の複合誘電体では、加えて、高比誘電率の
補強材が作り易いため、複合誘電体の製造が易しいとい
う利点がある。In addition, the composite dielectric according to the fourth aspect has the advantage that the reinforcing material having a high dielectric constant can be easily produced, so that the composite dielectric can be easily manufactured.
請求項5記載の複合誘電体では、加えて、より高比誘電
率の補強材が得やすいため、優れた複合誘電体の製造が
易しいという利点がある。In addition, the composite dielectric according to claim 5 has the advantage that it is easy to obtain a reinforcing material with a higher relative dielectric constant, so that it is easy to manufacture an excellent composite dielectric.
請求項6記載の複合誘電体では、加えて、10以上の高
比誘電率とすることが容易であるため、非常に実用性が
高い。In addition, the composite dielectric material according to the sixth aspect of the present invention can easily have a high dielectric constant of 10 or more, and therefore has very high practicality.
代理人 弁理士 松 本 武 彦Agent: Patent Attorney Takehiko Matsumoto
Claims (1)
誘電体において、前記補強材を構成するガラスのうちの
少なくとも一部のガラスが比誘電率9以上で10mol
%以下の酸化セリウムを含むことを特徴とする複合誘電
体。 2 ガラスが非鉛系ガラスであり、酸化ケイ素を15m
ol%以上60mol%以下、酸化マグネシウム、酸化
カルシウム、酸化ストロンチウムおよび酸化バリウムの
うちの少なくともひとつの酸化物を0mol%以上40
mol%以下、酸化チタン、酸化ジルコニウムおよび酸
化スズのうちの少なくともひとつの酸化物を0mol%
以上55mol%以下の割合で含み、これら酸化物の総
合計量が85mol%以上である請求項1記載の複合誘
電体。 3 酸化ケイ素の含有量が35mol%以上50mol
%以下、酸化マグネシウム、酸化カルシウム、酸化スト
ロンチウムおよび酸化バリウムのうちの少なくともひと
つの酸化物の含有量が20mol%以上40mol%以
下、酸化チタン、酸化ジルコニウムおよび酸化スズのう
ちの少なくともひとつの酸化物の含有量が20mol%
以上40mol%以下の範囲にある請求項2記載の複合
誘電体。 4 ガラスが鉛系ガラスであり、酸化ケイ素を15mo
l%以上60mol%以下、酸化マグネシウム、酸化カ
ルシウム、酸化ストロンチウムおよび酸化バリウムのう
ちの少なくともひとつの酸化物を0mol%以上40m
ol%以下、酸化チタン、酸化ジルコニウムおよび酸化
スズのうちの少なくともひとつの酸化物を0mol%以
上55mol%以下、酸化鉛を80mol%以下の割合
で含み、これら酸化物の総合計量が85mol%以上で
ある請求項1記載の複合誘電体。 5 酸化ケイ素の含有量が25mol%以上40mol
%以下、酸化マグネシウム、酸化カルシウム、酸化スト
ロンチウムおよび酸化バリウムのうちの少なくともひと
つの酸化物の含有量が10mol%以上40mol%以
下、酸化チタン、酸化ジルコニウムおよび酸化スズのう
ちの少なくともひとつの酸化物の含有量が10mol%
以上40mol%以下、酸化鉛の含有量が5mol%以
上55mol%以下の範囲にある請求項4記載の複合誘
電体。 6 樹脂中に無機誘電体粉末が分散されている請求項1
から5までのいずれかに記載の複合誘電体。[Scope of Claims] 1. In a composite dielectric material in which a resin is reinforced with a reinforcing material made of glass, at least a part of the glass constituting the reinforcing material has a dielectric constant of 9 or more and a volume of 10 mol.
% or less of cerium oxide. 2 The glass is lead-free glass, and 15m of silicon oxide is used.
0 mol% or more and at least one oxide of magnesium oxide, calcium oxide, strontium oxide, and barium oxide, 0 mol% or more and 40 mol% or more and 60 mol% or less
mol% or less, 0 mol% of at least one oxide of titanium oxide, zirconium oxide, and tin oxide
The composite dielectric material according to claim 1, wherein the composite dielectric material contains at least 55 mol% of these oxides, and the total amount of these oxides is 85 mol% or more. 3 Silicon oxide content is 35 mol% or more and 50 mol
% or less, the content of at least one oxide of magnesium oxide, calcium oxide, strontium oxide, and barium oxide is 20 mol% or more and 40 mol% or less, the content of at least one oxide of titanium oxide, zirconium oxide, and tin oxide is Content is 20mol%
3. The composite dielectric material according to claim 2, wherein the amount is in the range of 40 mol% or more. 4 The glass is lead-based glass and contains 15 mo of silicon oxide.
1% or more and 60 mol% or less, and at least one oxide of magnesium oxide, calcium oxide, strontium oxide, and barium oxide at 0 mol% or more and 40 m
contains at least one oxide of titanium oxide, zirconium oxide, and tin oxide in a proportion of 0 mol% to 55 mol%, and contains lead oxide in a proportion of 80 mol% or less, and the total amount of these oxides is 85 mol% or more. The composite dielectric material according to claim 1. 5 Silicon oxide content is 25 mol% or more and 40 mol
% or less, the content of at least one oxide of magnesium oxide, calcium oxide, strontium oxide, and barium oxide is 10 mol% or more and 40 mol% or less, the content of at least one oxide of titanium oxide, zirconium oxide, and tin oxide is Content is 10mol%
5. The composite dielectric material according to claim 4, wherein the content of lead oxide is in the range of 5 mol% to 55 mol%. 6 Claim 1, wherein inorganic dielectric powder is dispersed in the resin.
5. The composite dielectric material according to any one of 5 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2225863A JPH04106806A (en) | 1990-08-27 | 1990-08-27 | Complex dielectric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2225863A JPH04106806A (en) | 1990-08-27 | 1990-08-27 | Complex dielectric |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04106806A true JPH04106806A (en) | 1992-04-08 |
Family
ID=16836031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2225863A Pending JPH04106806A (en) | 1990-08-27 | 1990-08-27 | Complex dielectric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04106806A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04367537A (en) * | 1991-06-14 | 1992-12-18 | Matsushita Electric Works Ltd | Glass composition and substrate for circuit |
EP0635855A1 (en) * | 1993-07-20 | 1995-01-25 | Murata Manufacturing Co., Ltd. | Magnetic material for high frequencies |
DE19816380C1 (en) * | 1998-04-11 | 1999-10-07 | Schott Glas | Cadmium-free red glass-ceramic based starting glass for use as a red traffic light glass |
JP2002121047A (en) * | 2000-10-13 | 2002-04-23 | Shinetsu Quartz Prod Co Ltd | Plasma corrosion resistant glass members |
DE10245233B3 (en) * | 2002-09-27 | 2004-02-12 | Schott Glas | Crystallizable glass, used in the production of glass ceramics, magnetic storage plates, magneto-optical storage devices and mirror supports, contains oxides of silicon, aluminum, magnesium and boron |
DE10245234A1 (en) * | 2002-09-27 | 2004-04-08 | Schott Glas | Crystallizable glass and its use for the production of a highly rigid, break-resistant glass ceramic with a surface that can be easily polished |
US7670973B2 (en) | 2005-10-28 | 2010-03-02 | Schott Ag | Lead and arsenic free optical glass with high refractive index |
DE102005052090B4 (en) * | 2005-10-28 | 2014-06-26 | Schott Ag | Lead- and arsenic-free refractive optical glass, its use and method of making an optical element |
JP2021017393A (en) * | 2019-07-17 | 2021-02-15 | 日本電気硝子株式会社 | Glass article |
-
1990
- 1990-08-27 JP JP2225863A patent/JPH04106806A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04367537A (en) * | 1991-06-14 | 1992-12-18 | Matsushita Electric Works Ltd | Glass composition and substrate for circuit |
EP0635855A1 (en) * | 1993-07-20 | 1995-01-25 | Murata Manufacturing Co., Ltd. | Magnetic material for high frequencies |
US5589096A (en) * | 1993-07-20 | 1996-12-31 | Murata Manufacturing Co., Ltd. | Magnetic material for high frequencies |
DE19816380C1 (en) * | 1998-04-11 | 1999-10-07 | Schott Glas | Cadmium-free red glass-ceramic based starting glass for use as a red traffic light glass |
JP4614403B2 (en) * | 2000-10-13 | 2011-01-19 | 信越石英株式会社 | Plasma corrosion resistant glass member |
JP2002121047A (en) * | 2000-10-13 | 2002-04-23 | Shinetsu Quartz Prod Co Ltd | Plasma corrosion resistant glass members |
DE10245233B3 (en) * | 2002-09-27 | 2004-02-12 | Schott Glas | Crystallizable glass, used in the production of glass ceramics, magnetic storage plates, magneto-optical storage devices and mirror supports, contains oxides of silicon, aluminum, magnesium and boron |
DE10245234A1 (en) * | 2002-09-27 | 2004-04-08 | Schott Glas | Crystallizable glass and its use for the production of a highly rigid, break-resistant glass ceramic with a surface that can be easily polished |
US7291571B2 (en) | 2002-09-27 | 2007-11-06 | Schott Ag | Crystallizable glass and the use thereof for producing extremely solid and break resistant glass-ceramics having an easily polished surface |
DE10245234B4 (en) * | 2002-09-27 | 2011-11-10 | Schott Ag | Crystallisable glass, its use for producing a highly rigid, break-resistant glass ceramic with a good polishable surface and use of the glass ceramic |
US7670973B2 (en) | 2005-10-28 | 2010-03-02 | Schott Ag | Lead and arsenic free optical glass with high refractive index |
DE102005052090B4 (en) * | 2005-10-28 | 2014-06-26 | Schott Ag | Lead- and arsenic-free refractive optical glass, its use and method of making an optical element |
JP2021017393A (en) * | 2019-07-17 | 2021-02-15 | 日本電気硝子株式会社 | Glass article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3381332B2 (en) | High dielectric constant glass ceramic | |
Zhou et al. | Microwave dielectric ceramics in Li2O–Bi2O3–MoO3 system with ultra‐low sintering temperatures | |
Li et al. | Ultralow-temperature synthesis and densification of Ag2CaV4O12 with improved microwave dielectric performances | |
Chen et al. | Low sintering temperature microwave dielectric ceramics and composites based on Bi 2 O 3–B 2 O 3 | |
WO2004094338A1 (en) | Lead-free glass for forming dielectric, glass ceramics composition for forming dielectric, dielectric and method for producing laminated dielectric | |
US4220547A (en) | Dielectric paste for thick film capacitor | |
JPH04106806A (en) | Complex dielectric | |
JP2005015652A (en) | Resin composition having high dielectric constant and electronic component | |
US9087624B2 (en) | Dielectric composition | |
CN107382078B (en) | High-dielectric-constant low-loss glass fiber | |
JP3624405B2 (en) | Glass ceramic dielectric material | |
CN105777077A (en) | High-quality-factor low-dielectric constant microwave dielectric ceramic Ca3MgTiGe3O12 and preparing method thereof | |
JP2520970B2 (en) | Composite dielectric | |
WO2013057987A1 (en) | Dielectric resin composition for film capacitors, and film capacitor | |
JPH07240117A (en) | Composite dielectric and its manufacture | |
JP3624406B2 (en) | Glass ceramic dielectric material | |
JP2733160B2 (en) | Circuit board | |
JPH03297008A (en) | Compound dielectrics | |
JP2000086337A (en) | Dielectric porcelain composition for low-temperature firing | |
JPH04367537A (en) | Glass composition and substrate for circuit | |
WO2006126375A1 (en) | Ferroelectric glass ceramic material, method for producing same, and glass composition | |
CN107010952A (en) | A kind of gallate ultralow dielectric microwave dielectric ceramic | |
JP2617632B2 (en) | Glass composition and circuit board | |
JP2740357B2 (en) | Printed circuit board | |
US5296424A (en) | System of dielectric ceramic compositions suitable for microwave applications |