JPH03296498A - Method for simultaneously removing BOD, nitrogen compounds, and phosphorus compounds from wastewater - Google Patents
Method for simultaneously removing BOD, nitrogen compounds, and phosphorus compounds from wastewaterInfo
- Publication number
- JPH03296498A JPH03296498A JP2099206A JP9920690A JPH03296498A JP H03296498 A JPH03296498 A JP H03296498A JP 2099206 A JP2099206 A JP 2099206A JP 9920690 A JP9920690 A JP 9920690A JP H03296498 A JPH03296498 A JP H03296498A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- phosphorus
- aerobic
- compounds
- wastewater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000003018 phosphorus compounds Chemical class 0.000 title claims description 54
- 238000000034 method Methods 0.000 title claims description 43
- VTEIFHQUZWABDE-UHFFFAOYSA-N 2-(2,5-dimethoxy-4-methylphenyl)-2-methoxyethanamine Chemical compound COC(CN)C1=CC(OC)=C(C)C=C1OC VTEIFHQUZWABDE-UHFFFAOYSA-N 0.000 title claims description 25
- 229910017464 nitrogen compound Inorganic materials 0.000 title claims description 25
- 150000002830 nitrogen compounds Chemical class 0.000 title claims description 25
- 239000002351 wastewater Substances 0.000 title claims description 23
- 239000010802 sludge Substances 0.000 claims description 76
- 229910052698 phosphorus Inorganic materials 0.000 claims description 63
- 239000011574 phosphorus Substances 0.000 claims description 63
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 57
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 239000000126 substance Substances 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 238000005273 aeration Methods 0.000 claims description 9
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 9
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 6
- 239000000852 hydrogen donor Substances 0.000 claims description 6
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 6
- PQTCMBYFWMFIGM-UHFFFAOYSA-N gold silver Chemical compound [Ag].[Au] PQTCMBYFWMFIGM-UHFFFAOYSA-N 0.000 claims description 5
- 230000002411 adverse Effects 0.000 claims description 4
- 238000010170 biological method Methods 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 4
- 238000010907 mechanical stirring Methods 0.000 claims description 4
- 238000006864 oxidative decomposition reaction Methods 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims 1
- 239000006228 supernatant Substances 0.000 claims 1
- 239000010865 sewage Substances 0.000 description 32
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 239000003344 environmental pollutant Substances 0.000 description 12
- 231100000719 pollutant Toxicity 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 12
- -1 nitrate ions Chemical class 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 238000002306 biochemical method Methods 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical class N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 6
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 150000002903 organophosphorus compounds Chemical class 0.000 description 5
- 229910002651 NO3 Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical class ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- YQNRVGJCPCNMKT-JLPGSUDCSA-N 2-(4-benzylpiperazin-1-yl)-n-[(2-hydroxy-3-prop-2-enyl-phenyl)methylideneamino]acetamide Chemical compound OC1=C(CC=C)C=CC=C1\C=N/NC(=O)CN1CCN(CC=2C=CC=CC=2)CC1 YQNRVGJCPCNMKT-JLPGSUDCSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101001139126 Homo sapiens Krueppel-like factor 6 Proteins 0.000 description 1
- 101001133600 Homo sapiens Pituitary adenylate cyclase-activating polypeptide type I receptor Proteins 0.000 description 1
- 101001080401 Homo sapiens Proteasome assembly chaperone 1 Proteins 0.000 description 1
- 102100020679 Krueppel-like factor 6 Human genes 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- 229960005552 PAC-1 Drugs 0.000 description 1
- 101150006573 PAN1 gene Proteins 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical class [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
- Removal Of Specific Substances (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、廃水より生物化学的酸素要求量によって標
示される汚濁物質(BOD)、アンモニア化合物、リン
化合物など海域、河川、湖沼の富栄養化原因となってい
る物質を連続式活性汚泥処理により除去する方法に関す
るものである。Detailed Description of the Invention (Industrial Application Field) This invention is a method for removing eutrophic substances such as pollutants (BOD), ammonia compounds, and phosphorus compounds from wastewater, which are indicated by biochemical oxygen demand, in sea areas, rivers, and lakes. This article relates to a method for removing substances that cause carbonation by continuous activated sludge treatment.
(従来の技術)
従来、活性汚泥処理により、前述の冨栄豊化物質を除去
する方法として、バーデン7t−(Bardenpho
)法(J 、L 、 B arnard、 W ate
r W astesEngg、、3’a (1974)
)、あるいは特開昭54−24774号公報記載のA1
0法、A210法がある。(Prior art) Conventionally, Bardenpho 7t-(Bardenpho
) method (J, L, Barnard, Wate
r W astes Engg, 3'a (1974)
), or A1 described in JP-A No. 54-24774
There are 0 method and A210 method.
さらに、特公昭61−17558号公報記載のA710
法の変法として、硬化槽の生物を固定化するため回転円
板を組込んだ方法などが知られている。Furthermore, A710 described in Japanese Patent Publication No. 61-17558
A known modification of this method includes incorporating a rotating disk to immobilize organisms in the curing tank.
これらの方法において、BODは主に好気性酸化分解に
より、窒素化合物は硝化脱窒法により、またリン化合物
は嫌気的環境において活性汚泥からリンを放出させ、好
気的環境において活性汚泥にリンを過剰摂取させること
により除去されている。In these methods, BOD is mainly processed by aerobic oxidative decomposition, nitrogen compounds are released by nitrification-denitrification method, phosphorus compounds are released from activated sludge in an anaerobic environment, and activated sludge is released with excess phosphorus in an aerobic environment. It is removed by ingestion.
また、時開@63−126599号公報には活性汚泥が
存在するリアクターを嫌気1槽、好気1槽、嫌気2WI
および好気2′I/gと4分刺し、各種の好気度、嫌気
度を酸化還元電位(ORP )を指標にして制御し、ま
た活性汚泥の固定化担体として商炉水砕、カーボンの微
粉等を用いて廃水のBOD、アンモニア化合物、リン化
合物の除去をイテう方法が記載されている。ORPはそ
れまで指標とされていた溶存酸素濃度や窒素酸化物濃度
に比較すると、特に完全嫌気度の尺度として優れており
、リン化合物の除去を適切に管埋することができる。In addition, Jikai @ 63-126599 publication describes reactors in which activated sludge exists: 1 anaerobic tank, 1 aerobic tank, 2 anaerobic tanks.
and aerobic 2'I/g for 4 minutes to control various aerobic degrees and anaerobic degrees using the oxidation-reduction potential (ORP) as an index. A method for removing BOD, ammonia compounds, and phosphorus compounds from wastewater using fine powder and the like is described. ORP is particularly excellent as a measure of complete anaerobic degree when compared to dissolved oxygen concentration and nitrogen oxide concentration, which were used as indicators until then, and can appropriately control the removal of phosphorus compounds.
リン化合物は、一般に嫌気性状態において活性汚泥から
リンを放出させ、しかる後に好気性状態にお(と活性汚
泥がリンを過剰に摂取し、リンを過剰摂取した活性汚泥
を余剰汚泥として抜き取ることにより、処理水のリン濃
度を低減することができる。このように、ORPを指標
に各種の好気度、嫌気度を管埋して生物学的にリンを除
去する場合、処理水のリン濃度またはリンの除去率には
嫌気状fi(嫌気1槽に相当)における活性汚泥からの
リンの放出量が着しく影響する。すなわち、嫌気状態に
おける活性汚泥からのリンの放出量が多い程、次の好気
状態(好気IWIに相当)における活性汚泥のリンの摂
取量が多くなり、この結果リンの除去率が^くなり、処
理水のリン濃度を低減することがで勝る。Generally, phosphorus compounds release phosphorus from activated sludge in an anaerobic state, and then in an aerobic state (when the activated sludge takes in too much phosphorus, the activated sludge that has taken in too much phosphorus is extracted as surplus sludge). , it is possible to reduce the phosphorus concentration of treated water.In this way, when phosphorus is removed biologically by burying various aerobic degrees and anaerobic degrees using ORP as an index, the phosphorus concentration of treated water or The phosphorus removal rate is strongly influenced by the amount of phosphorus released from activated sludge in anaerobic conditions (equivalent to one anaerobic tank).In other words, the greater the amount of phosphorus released from activated sludge in anaerobic conditions, the more The amount of phosphorus taken up by the activated sludge in aerobic conditions (corresponding to aerobic IWI) increases, resulting in a higher phosphorus removal rate and a reduction in the phosphorus concentration of the treated water.
(発明が解決しようとする課題)
しかし、この場合、嫌気1槽の嫌気度すなわち嫌気1槽
における活性汚泥のリンの放出性は、下水の汚濁物の濃
度、流入量等の影響を着しく受ける。たとえば、降雨時
に雨水が大量に流入するとド水処理においてリン化合物
の除去効率が悪化することが「r水道協会誌J 198
9年6月、第26巻第306号、第43〜53頁に指摘
されている。これは前記4分割式の場合にも同様であり
、廃水の流入量が増加し、汚濁物の濃度が薄(なると嫌
気1槽における嫌気度が弱くなり、ORPで一150m
V以上に上昇すると活性汚泥がらのリン化合物の放出が
起こりにくくなり、このため好気1槽におけるリン化合
物の過剰摂取が十分に起こらず、結局最終処理水のリン
化合物濃度が高くなる、すなわちリン化合物の除去率が
低下する問題があることが分かった。(Problem to be solved by the invention) However, in this case, the anaerobic degree of one anaerobic tank, that is, the release of phosphorus from activated sludge in one anaerobic tank, is significantly affected by the concentration of sewage pollutants, the amount of inflow, etc. . For example, when a large amount of rainwater flows in during rainfall, the removal efficiency of phosphorus compounds in water treatment deteriorates, as reported in ``Water Works Association Journal J 198.''
It is pointed out in June 1999, Vol. 26, No. 306, pp. 43-53. This is the same in the case of the 4-part type, as the amount of wastewater flowing in increases and the concentration of pollutants becomes low (as a result, the degree of anaerobic treatment in the anaerobic tank becomes weaker, and the ORP is 1150m2).
When the temperature rises above V, release of phosphorus compounds from the activated sludge becomes difficult to occur, and as a result, excessive intake of phosphorus compounds in one aerobic tank does not occur sufficiently, resulting in a high concentration of phosphorus compounds in the final treated water. It was found that there was a problem that the removal rate of the compound decreased.
また、嫌気1摺における活性汚泥のリンの放出性は、O
RPの他に返送汚泥に含まれている硝酸イオン (NO
ff−) 、亜硝酸イ* 7 (N O2−+ 17
)影響を受ける。すなわち、嫌気1槽にNO,−1NO
。In addition, the phosphorus release property of activated sludge in anaerobic 1-slide is O
In addition to RP, nitrate ions (NO
ff-), nitrous acid *7 (N O2-+ 17
)to be influenced. In other words, NO, -1NO in one anaerobic tank
.
が存在するとリンの放出性が抑制され、その結果第1図
に示すように処理水のリン濃度が高くなる。The presence of phosphorus suppresses the release of phosphorus, and as a result, the phosphorus concentration of the treated water increases as shown in FIG.
返送汚泥のN0l−1NO2−は、アンモニア化合物を
硝化脱窒法により除去する場合、嫌気2槽での不適正な
ORP、水素供与体および脱窒反応時間の不足警に起因
するものである。しかし、下水処理の場合、流入する下
水の水質、水量等の変動が着しいため、嫌気1槽におけ
るリンの放出性に悪影響しない程度に嫌気2槽でN0f
f−1N Ox−を脱窒反応により常時除去するのは困
難である。N0l-1NO2- in the returned sludge is caused by improper ORP in the two anaerobic tanks, insufficient hydrogen donor and denitrification reaction time when ammonia compounds are removed by nitrification-denitrification. However, in the case of sewage treatment, because the quality and amount of inflowing sewage fluctuates frequently, N0F is required in two anaerobic tanks to the extent that it does not adversely affect the release of phosphorus in one anaerobic tank.
It is difficult to constantly remove f-1N Ox- by denitrification reaction.
このように下水のアンモニア化合物とリン化合物とを生
物化学的方法により同時に除去する場合、問題点が存在
している。しかし、アンモニア化合物は生物化学的方法
すなわち硝化脱窒法に代わる適切な除去方法が存在しな
い。There are problems when simultaneously removing ammonia compounds and phosphorus compounds from sewage using biochemical methods. However, there is no suitable removal method for ammonia compounds that can replace biochemical methods, ie, nitrification and denitrification methods.
また、バイオリアクターを嫌気1槽、好気1槽、嫌気2
槽および好気2mに4分割して、各種の好気度、嫌気度
をORPを指標にして管理する場合、次のような問題点
が存在していることが明らかになった。すなわち、下水
の流入量、水質は天候、季節等によって、また1日の時
間帯によっても着しく変動する。このような下水を4分
割したリアクターで処理した場合、まず晴天が続いたり
、あるいは1日の内でも朝の6時から10時頃にかけて
汚濁物濃度が商い下水が大量に流入すると嫌気1槽のO
RPは着しく低下し、場合によりでは−450〜−50
0mV程度まで低下し、活性汚泥からのリンの放出が十
分に起り、次の好気1槽において活性汚泥によるリンの
過剰摂取が起り、その結果処理水のリン濃度が1−g/
l以下に達する。しかし、嫌気1槽のORPがあまりに
も低下し過ぎて次の好気1槽に嫌気度の高い活性汚泥が
流入するため、この好気1槽のORP fJt設定値に
達せず、硝化反応が十分に起らない場合があり、アンモ
ニア化合物の除去性が低下することがある。また逆に、
降雨が続き汚濁物濃度が低い下水が嫌気1槽に流入する
と嫌気1¥gのORPが十分に低下せず、このため活性
汚泥からのリンの放出が十分に起らず、リン化合物の除
去性が低下することがある。In addition, the bioreactors are 1 anaerobic tank, 1 aerobic tank, and 2 anaerobic tanks.
It has become clear that the following problems exist when dividing the tank into four 2m aerobic tanks and managing various aerobic degrees and anaerobic degrees using ORP as an index. In other words, the amount of sewage flowing in and the quality of water fluctuate depending on the weather, season, etc., and also depending on the time of the day. If such sewage is treated in a reactor divided into four parts, if the weather is sunny for a long time, or if the concentration of pollutants is low from 6 a.m. to 10 a.m. during the day, and a large amount of sewage flows in, the anaerobic tank will be O
RP drops steadily, in some cases -450 to -50
The voltage drops to about 0 mV, enough phosphorus is released from the activated sludge, and in the next aerobic tank, activated sludge takes in too much phosphorus, and as a result, the phosphorus concentration in the treated water drops to 1-g/g.
Reach less than l. However, the ORP of one anaerobic tank drops too much and highly anaerobic activated sludge flows into the next aerobic tank, so the ORP fJt of this aerobic tank is not reached and the nitrification reaction is not sufficient. In some cases, this may not occur, and the ability to remove ammonia compounds may decrease. And vice versa,
When sewage with low pollutant concentration flows into the anaerobic tank due to continuous rainfall, the ORP of 1 yen of anaerobic water does not decrease sufficiently, and as a result, the release of phosphorus from activated sludge does not occur sufficiently, and the removability of phosphorus compounds decreases. may decrease.
なお、BODについては、下水の流入量、水質等の変動
があっても、はとんど影響を受けずに良好な処理が行な
われる。As for BOD, even if there are fluctuations in the amount of sewage inflow, water quality, etc., good treatment is performed without being affected.
(課題を解決するための手段)
本発明は、生物学的方法と化学的方法とを組合せたこと
を特徴とする廃水のBOD、窒素化合物、リン化合物の
同時除去方法である。生物学的方法は、活性汚泥が存在
するリアクターを廃水が流入する入口側から嫌気1槽、
好気1槽、嫌気2槽および好気2槽に4分割し、嫌気1
槽には処理する廃水と汚泥沈降槽からの返送汚泥を機械
的攪拌を甘いながら連続的に注入し、ORPを活性汚泥
からリンの放出が起り、また次の好気1槽のORPの管
理、制御に悪影響しない範囲に管理、制御し、次に嫌気
1槽の活性汚泥混合液を連続的に好気1槽に注入し、好
気1槽のORPを廃水のBODの酸化分解、硝化反応お
よび活性汚泥によるリンの過剰摂取が十分に起り、しか
む次の嫌気24WのORPの管理、制御に悪影響しない
範囲に管理、制御し、次に好気1槽の活性汚泥混合液を
嫌気2槽に連続的に供給し、廃水の一部を水素供与体に
用いてこれを分注しながら機械的攪拌または機械的攪拌
に加えで曝気によりORPを−50〜−150mV (
金−銀/塩化銀電極基準)の範囲に制御して所定時間維
持し、窒素酸化物を窒素ガスに還元させ、嫌気2MMで
処理した混合液を好気2槽に供給して曝篤を行い、水素
供与体のBODの酸化分解を行わせるとともに窒素ガス
を気泡にして除去し、好気2槽で処理した活性汚泥混合
液を汚泥沈降槽に供給して汚泥を沈降させ、沈降汚泥と
上澄液の処理水に分離する生物学的処理とすること、そ
の際、嫌気IWIのOF’(Pを−200〜−300m
V(金−銀/塩化銀電極基準)、好気1槽のORPを+
100−+ 1251■(會−銀/塩化銀電極基準)に
それぞれ管理、制御すること、化学的方法は、廃水のリ
ン化合物と水に対して不溶性の化合物を形成する水溶性
の薬剤を好気2槽と汚泥沈降槽との中間に添加し、廃水
のリン化合物を不溶性にして汚泥沈降槽において余剰汚
泥として除去する方法とすることが可能である。(Means for Solving the Problems) The present invention is a method for simultaneously removing BOD, nitrogen compounds, and phosphorus compounds from wastewater, which is characterized by combining a biological method and a chemical method. In the biological method, a reactor containing activated sludge is separated from the inlet side where wastewater flows into one anaerobic tank,
Divided into 4 tanks: 1 aerobic tank, 2 anaerobic tanks, and 2 aerobic tanks;
Wastewater to be treated and sludge returned from the sludge settling tank are continuously injected into the tank with slight mechanical agitation, and phosphorus is released from the activated sludge, and the ORP of the next aerobic tank is controlled. The activated sludge mixture in the anaerobic tank is continuously injected into the aerobic tank, and the ORP in the aerobic tank is controlled to a level that does not adversely affect the control. If excessive phosphorus intake by activated sludge occurs, the next anaerobic 24W ORP is managed and controlled within a range that does not adversely affect the management and control, and then the activated sludge mixture from the aerobic 1 tank is transferred to the anaerobic 2 tank. Continuously supplying the wastewater, using a part of the wastewater as a hydrogen donor, and dispensing it with mechanical stirring or aeration in addition to mechanical stirring to raise the ORP to -50 to -150 mV (
The mixture was controlled and maintained for a predetermined time (gold-silver/silver chloride electrode standard) to reduce nitrogen oxides to nitrogen gas, and the mixed solution treated with anaerobic 2MM was supplied to two aerobic tanks for aeration. , the hydrogen donor BOD is oxidized and decomposed, nitrogen gas is removed in the form of bubbles, and the activated sludge mixture treated in the two aerobic tanks is supplied to the sludge settling tank to settle the sludge, and the settled sludge and upper Biological treatment that separates the treated water into clear liquid should be used, in which case OF' (P of -200 to -300 m
V (gold-silver/silver chloride electrode standard), ORP of 1 aerobic tank +
100-+1251■ (according to the standard of silver/silver chloride electrodes), chemical methods are used to aerobically remove phosphorus compounds from wastewater and water-soluble agents that form water-insoluble compounds. It is possible to add the phosphorus compound between the two tanks and the sludge settling tank to make the phosphorus compounds in the wastewater insoluble and remove them as excess sludge in the sludge settling tank.
(作用)
本発明においては、下水のBODおよび窒素化合物は生
物化学的方法により、リン化合物は生物化学的方法と化
学的方法との併用により除去する。(Operation) In the present invention, BOD and nitrogen compounds in sewage are removed by a biochemical method, and phosphorus compounds are removed by a combination of a biochemical method and a chemical method.
まず、窒素化合物、主にケルブール性窒素化合物、アン
モニア性化合物等の還元性窒素化合物は、好気1槽にお
いて硝化反応により硝酸性および/または亜硝酸性窒素
化合螢に酸化し、次の嫌気2槽において脱窒反応により
除去する。したがりて、好気1槽は下水の還元性窒素化
合物の硝化反応が十分に起る条件に優先的に設定する必
要があり、ORPは+100mV以上、またこの槽にお
ける滞留時間は少なくとも2時間必要である。しかし、
ORPが高すぎると、40RPの状態を常に維持するた
めにかなり強い曝気が必要になり、このため活性汚泥の
細分化が起り、汚泥沈降槽で十分に沈降しないで処理水
に流出するため処理水質の悪化を招く、また、好気1槽
のORPが^すぎると、次の嫌気2?!IのORPを脱
窒反応が起るための適切なORP、すなわも−50〜−
150醜■の範囲に維持するのが困難になる。このため
、好気1槽ノORPハ+ 100−125mV+7)範
囲カ適切rある。First, nitrogen compounds, mainly reducing nitrogen compounds such as Kerburg nitrogen compounds and ammonia compounds, are oxidized to nitrate and/or nitrite nitrogen compounds by a nitrification reaction in an aerobic tank, and then oxidized into nitrate and/or nitrite nitrogen compounds in an anaerobic tank. It is removed by denitrification reaction in a tank. Therefore, it is necessary to preferentially set the aerobic tank 1 to conditions where the nitrification reaction of reducing nitrogen compounds in sewage occurs sufficiently, and the ORP must be +100 mV or more, and the residence time in this tank must be at least 2 hours. It is. but,
If the ORP is too high, a fairly strong aeration will be required to maintain the 40RP condition, which will cause the activated sludge to fragment and flow into the treated water without settling sufficiently in the sludge settling tank, resulting in poor treated water quality. Also, if the ORP of aerobic 1 tank is too high, the next anaerobic 2 tank will deteriorate. ! The ORP of I is the appropriate ORP for the denitrification reaction to occur, i.e. -50~-
It becomes difficult to maintain within the range of 150 Ugly ■. For this reason, the ORP range for one aerobic tank is appropriate.
好気1槽のORPを+100〜+125mVの範囲に維
持すると、硝化反応の他にBODの酸化分解、活性汚泥
によるリンの摂取が十分に起るのでBODおよびリンの
除去に特に問題がない、また、下水のリン化合物の内で
20〜60%を占めている有機性リン化合物が、好気1
槽のORPをこの範囲に維持していると酸化分解されて
大部分が無慢性リン酸化合物に変換されるので、化学的
方法でリーンを除去するためには好都合である。If the ORP of one aerobic tank is maintained in the range of +100 to +125 mV, in addition to the nitrification reaction, oxidative decomposition of BOD and phosphorus uptake by activated sludge will occur sufficiently, so there will be no particular problem in removing BOD and phosphorus. , organic phosphorus compounds, which account for 20 to 60% of the phosphorus compounds in sewage, are
If the ORP of the tank is maintained within this range, most of the lean will be oxidized and decomposed into non-chronic phosphate compounds, which is convenient for removing lean by chemical methods.
好気1槽のORPを+100〜+125曽■に維持する
ためには、嫌気lWIから好気1槽に連続的に供給され
る活性汚泥の嫌気度が影響する。すなわち、好気1槽に
供給される活性汚泥の嫌気度が余り強い場合、具体的に
はORPで一300mV以下の活性汚泥を好気1槽に供
給すると好気1槽のORPを適正な範囲に維持するのが
困難になる。In order to maintain the ORP of the aerobic 1 tank at +100 to +125 so, the anaerobic degree of the activated sludge continuously supplied from the anaerobic IWI to the aerobic 1 tank is affected. In other words, if the anaerobic degree of activated sludge supplied to aerobic tank 1 is too strong, specifically, if activated sludge with an ORP of -300 mV or less is supplied to aerobic tank 1, the ORP of aerobic tank 1 will be within the appropriate range. becomes difficult to maintain.
一方、嫌気1槽のORPを高(すると活性汚泥のリンの
放出が十分に起らないので、リンの放出が起るORP、
すなわち−150@V以下に維持する必要がある。これ
らのことから、嫌気1槽のORPは一200〜300+
sVの範囲が適切である。On the other hand, if the ORP of the anaerobic tank 1 is set to high (then the release of phosphorus from the activated sludge will not occur sufficiently, the ORP at which phosphorus will be released will be increased).
That is, it is necessary to maintain it below -150@V. From these facts, the ORP of one anaerobic tank is -200 to 300+
A range of sV is suitable.
嫌気1槽、好気1槽および嫌気21!FをこのようなO
RPy>17@囲に維持した場合、好気2槽出口の活性
汚泥混合液を採取し、濾紙で濾過し、その濾液について
水質分析を行うと、BODが10mg/l以下、全窒素
化合物が5s+g/I(窒素として)以下で、これらは
十分に除去されている。しかし、リン化合物は除去率と
して80〜90%程度でほぼ一定である。したがって、
最終処理水のリンの排出規制値がIB/I以下、あるい
は0 、5 B/l以下と施灯された場合、この除去率
では不十分なことがある。たとえば、晴天が続き、異常
にリン濃度が高い下水が流入し、これを上記条件の生物
化学的方法により処理すると、処理水のリン濃度が1輪
g/l、あるいは0 、5 mg/lを越える場合があ
る。あるいは、好気1槽で生成したNO,−1NO,−
が嫌気24wで十分に脱窒されずに返送汚泥に残存して
嫌気1槽における活性汚泥からのリンの放出を抑制する
と、処理水のリン濃度が鳥くなり、処理水のリン濃度が
これらの値以下にならないことがある。1 anaerobic tank, 1 aerobic tank and 21 anaerobic tanks! F like this O
When RPy>17@ is maintained, the activated sludge mixture at the outlet of the two aerobic tanks is collected, filtered with filter paper, and the water quality of the filtrate is analyzed.The BOD is 10 mg/l or less and the total nitrogen compound is 5s+g. /I (as nitrogen), these are sufficiently removed. However, the removal rate of phosphorus compounds is approximately constant at about 80 to 90%. therefore,
This removal rate may not be sufficient if the phosphorus emission regulation value of the final treated water is less than IB/I or less than 0.5 B/l. For example, if sewage with an abnormally high phosphorus concentration flows in due to continuous sunny weather and is treated using a biochemical method under the above conditions, the phosphorus concentration in the treated water will drop to 1 g/l, or 0.5 mg/l. It may be exceeded. Alternatively, NO, -1NO, - generated in one aerobic tank
If the phosphorus is not sufficiently denitrified in the anaerobic 24w and remains in the returned sludge, suppressing the release of phosphorus from the activated sludge in the anaerobic 1 tank, the phosphorus concentration of the treated water will become low. It may not be lower than the value.
このように、下水の窒素化合物の生物化学的除去に重点
を置くと、汚濁物濃度が異常に高い下水が流入したり、
脱窒反応で残存したN0j−1NO。Thus, placing emphasis on the biochemical removal of nitrogen compounds in sewage may result in the inflow of sewage with abnormally high pollutant concentrations,
N0j-1NO remaining in the denitrification reaction.
が存在するとりど除去性が不満足な場合がある。removability may be unsatisfactory.
そこで、本発明ではリン化合物の除去性を高めるために
生物化学的リン除去法と化学的リン除去法とを併用した
。すなわち、廃水の無機性リン化合物、たとえば正リン
酸塩は、鉄、アルミ等の金属と反応して不溶性のリン化
合物を形成することから、廃水のリン化合物の除去法と
して塩化鉄、PAC1硫酸パン上等を添加し、不溶性の
リン、金属化合物に変換して沈澱除去する方法が知られ
ているが、本発明においては、生物化学的に十分除去さ
れなかったリン化合物を化学的に除去することとした。Therefore, in the present invention, a biochemical phosphorus removal method and a chemical phosphorus removal method are used in combination to improve the removability of phosphorus compounds. In other words, inorganic phosphorus compounds in wastewater, such as orthophosphate, react with metals such as iron and aluminum to form insoluble phosphorus compounds. A method is known in which the phosphorus compound is added to insoluble phosphorus and metal compounds to be precipitated and removed, but in the present invention, the phosphorus compound that has not been sufficiently removed biochemically is chemically removed. And so.
前述の通り、下水のリン化合物の80〜90%は生物化
学的処理によって除去できるので、残りのリン化合物を
化学的方法により除去すれば良いのである。As mentioned above, since 80 to 90% of phosphorus compounds in sewage can be removed by biochemical treatment, the remaining phosphorus compounds can be removed by chemical methods.
たとえば、晴天が続き汚濁物濃度が商く、リン濃度が5
〜7論g/l(全リンとして)の下水が流入した場合、
生物化学的方法により80〜90%が除去できるので、
好気2槽のリン濃度は0.5〜1.4−g/lになるこ
とが推定される。つまり、リンの排出規制値を0.5m
g、/lとした場合、化学的方法によるリンの除去は約
1細g/lで良い、したがって、好気2槽と汚泥沈降槽
との間に、リン化合物と不溶性のリン化合物を形成する
塩化鉄、PAC1硫酸パン土等を添加すれば、残存リン
化合物はこれらの水溶性金属塩と反応して不溶性のリン
−金属化合物を形成し、汚泥沈降槽に沈降して余剰汚泥
と共に除くことができる。For example, if the sky continues to be sunny and the pollutant concentration is low, the phosphorus concentration is 5.
~7 g/l (as total phosphorus) of sewage flows in,
Since 80-90% can be removed by biochemical methods,
The phosphorus concentration in the two aerobic tanks is estimated to be 0.5-1.4-g/l. In other words, the phosphorus emission regulation value is 0.5 m
g,/l, the removal of phosphorus by chemical method is only about 1 g/l. Therefore, phosphorus compounds and insoluble phosphorus compounds are formed between the two aerobic tanks and the sludge settling tank. If iron chloride, PAC1 sulfate clay, etc. are added, residual phosphorus compounds react with these water-soluble metal salts to form insoluble phosphorus-metal compounds, which settle in a sludge settling tank and can be removed together with excess sludge. can.
このような化学的反応によりリンを除去する場合、リン
化合物の形態は無機性リン化合物、たとえば正リン酸塩
等を形成している方がリンの除去性が優れている。しか
し、下水のリン化合物の20〜50%は有機性リン化合
物であるので、単に水溶性金属化合物を添加するだけで
は無機性リン化合物は除去できるが、有機性リン化合物
の除去は困難である。それに対して、本発明は、好気1
槽においてこの有機性リン化合物の大部分を酸化分解し
て無機性リン化合物に変換し、この無機性リン化合物を
好気1槽で活性汚泥が摂取するので、摂取されずに残っ
たわずかなリン化合物を化学的方法で除去すれば良いだ
けでなく、残存したリン化合物の大部分が無機性リン化
合物なので、化学的方法に上り官易に除去することがで
きる。したがって、下水のリン化合物を最初から水溶性
金属塩を用いて除去する場合に比べて、金属塩の使用量
を大幅に低減できると共に、金属塩と効率良く反応が行
われるのでリンの除去率が優れており、また安定してい
る。When removing phosphorus by such a chemical reaction, the phosphorus compound in the form of an inorganic phosphorus compound, such as orthophosphate, has better phosphorus removal performance. However, since 20 to 50% of phosphorus compounds in sewage are organic phosphorus compounds, simply adding a water-soluble metal compound can remove inorganic phosphorus compounds, but it is difficult to remove organic phosphorus compounds. In contrast, the present invention provides aerobic 1
In the tank, most of this organic phosphorus compound is oxidized and decomposed into inorganic phosphorus compounds, and this inorganic phosphorus compound is ingested by the activated sludge in one aerobic tank, so the small amount of phosphorus that remains uningested is absorbed by the activated sludge. Not only can the compounds be removed by chemical methods, but since most of the remaining phosphorus compounds are inorganic phosphorus compounds, they can be easily removed by chemical methods. Therefore, compared to the case where sewage phosphorus compounds are removed using water-soluble metal salts from the beginning, the amount of metal salts used can be significantly reduced, and the reaction with the metal salts is carried out efficiently, resulting in a higher phosphorus removal rate. Excellent and stable.
本発明に用いる水溶性の金属塩は、塩化第2鉄、PAC
1硫酸パン上等の廃水処理に用いられる凝固剤で良い。The water-soluble metal salt used in the present invention is ferric chloride, PAC
A coagulant used for wastewater treatment such as pan 1 sulfate may be used.
これらの水溶性の金属塩の添加場所は、好気2槽と汚泥
沈降槽の中間が最適である。The optimum location for adding these water-soluble metal salts is between the two aerobic tanks and the sludge settling tank.
また、水溶性金属塩の代わりに、たとえば鉄板と銅板と
を導線で接続した鉄−銅セル、あるいは鉄板のみを好気
2槽に設置して鉄イオンを溶出させても良い。Furthermore, instead of using a water-soluble metal salt, an iron-copper cell in which an iron plate and a copper plate are connected by a conductive wire, or only the iron plate may be installed in two aerobic tanks to elute iron ions.
以上のことから、本発明は次のような利点を有している
。From the above, the present invention has the following advantages.
■窒素化合物は硝化、脱窒法に適した条件で除去処理す
るので、除去性能が優れている。■Nitrogen compounds are removed under conditions suitable for nitrification and denitrification, so removal performance is excellent.
■BODは、窒素化合物の場合と同様に酸化分解に適し
た条件で酸化分解を行うので、除去性能が優れている。(2) As with nitrogen compounds, BOD is oxidatively decomposed under conditions suitable for oxidative decomposition, so it has excellent removal performance.
■ド水のリン化合物の大部分が好気1槽で無機性リン化
合物に変換されるので、水溶性金属塩と効率良く反応す
る。■Since most of the phosphorus compounds in the water are converted into inorganic phosphorus compounds in one aerobic tank, they react efficiently with water-soluble metal salts.
■リン化合物の大部分が生物化学的方法によって除去さ
れるので、化学的除去に用いる水溶性金属塩の使用量が
わずかである。■Most of the phosphorus compounds are removed by biochemical methods, so only a small amount of water-soluble metal salts are used for chemical removal.
このように、BOD、窒素化合物は生物化学的方法によ
り、リン化合物は生物化学的方法と化学的方法とを組み
合せて、それぞれ除去すると、これらの汚濁物は効率良
く除去でき、しかも処理水のこれらの汚濁物濃度はBO
Dが10mg/l以下、窒素化合物が5mg/l(窒素
として)以下に、リン化合物が0.5ng/l(リンと
して)以下になる。In this way, if BOD and nitrogen compounds are removed by biochemical methods, and phosphorous compounds are removed by a combination of biochemical and chemical methods, these pollutants can be removed efficiently, and moreover, these pollutants can be removed from treated water. The pollutant concentration is BO
D is 10 mg/l or less, nitrogen compounds are 5 mg/l (as nitrogen) or less, and phosphorus compounds are 0.5 ng/l (as phosphorus) or less.
この方法は、先に説明した生物化学的処理法以外の生物
化学的処理法、たとえばA!0法、AO法等によって代
表される嫌気処理と好気処理とを組み合せた方法により
下水のBOD、窒素化合物、リン化合物を同時に除去す
る方法にも適用可能である6また、回分式活性汚泥処理
法において、1サイクルに嫌気処理工程と好気処理工程
とを岨み合せてBOD、窒素化合物、リン化合物を除去
する際iこ、水溶性金属塩化合物を添加する方法を組み
合せるとリンの除去性が著しく向上する。This method is applicable to biochemical treatment methods other than those described above, such as A! It can also be applied to a method that simultaneously removes BOD, nitrogen compounds, and phosphorus compounds from sewage by a method that combines anaerobic treatment and aerobic treatment, such as the 0 method and AO method.6 In addition, batch activated sludge treatment In the method, when an anaerobic treatment step and an aerobic treatment step are combined in one cycle to remove BOD, nitrogen compounds, and phosphorus compounds, phosphorus can be removed by combining the method of adding a water-soluble metal salt compound. performance is significantly improved.
次に本発明の詳細な説明する。Next, the present invention will be explained in detail.
(実施例)
活性汚泥が存在するバイオリアクターと汚泥沈降槽から
なる下水処理装置により下水のBOD、窒素化合物、リ
ン化合物を同時に除去するために、バイオリアクターが
下水および返送汚泥が供給される入口側がら嫌気1槽、
好気1槽、嫌気2槽および好気2槽に4分割され、好気
2WIから汚泥沈降槽に連結しているパイプに塩化12
鉄水溶液が定量的に供給できるパイロットブフント実験
装置を用いて実験を行った。なお、パイロットプラント
実験装置の規横は、バイオリアクターが有効容積的3.
5−コ(輻0.7SX長3×深さ1.75m)、汚泥沈
降槽が有効容積的2−コ (直径1.5×深さ1.5曽
)である。(Example) In order to simultaneously remove BOD, nitrogen compounds, and phosphorus compounds from sewage using a sewage treatment device consisting of a bioreactor containing activated sludge and a sludge settling tank, the inlet side of the bioreactor to which sewage and return sludge are supplied is 1 anaerobic tank,
It is divided into 4 tanks: 1 aerobic tank, 2 anaerobic tanks, and 2 aerobic tanks.
Experiments were conducted using a pilot Buchund experimental device that can supply a quantitative amount of iron aqueous solution. In addition, the main feature of the pilot plant experimental equipment is that the bioreactor has an effective volume of 3.
The effective volume of the sludge settling tank is 2 (diameter 1.5 x depth 1.5 m).
各種の嫌気度、好気度はORPを指標にして嫌気1槽を
一250醜■、好気IWIを+120請■、嫌気2槽を
一100@IV、好気2槽を+150請■にそれぞれ次
のように管理、制御した。すなわち、嫌気槽は活性汚泥
が沈降しないように攪拌慨で攪拌を行い、ORPが設定
値より低下したらり7クタ一底部より曝気を行い、設定
値に回復したら曝気を停止する方法により、また好気槽
は活性汚泥が沈降しないように常時曝気を行い、ORP
が設定値より低下したらORP制御装置によりルーツプ
ロアの回転数を上げて曝気量を増やし、設定値に回復し
たら回転数を下げて曝気量を減少させる方法により制御
した。Various anaerobic degrees and aerobic degrees are determined using ORP as an index: anaerobic 1 tank is 1250 ug, aerobic IWI is +120 ug, anaerobic 2 tanks is 1100@IV, and aerobic 2 tanks is +150 ug. It was managed and controlled as follows. In other words, the anaerobic tank is stirred to prevent the activated sludge from settling, and when the ORP drops below the set value, aeration is performed from the bottom of the tank, and when the set value is recovered, the aeration is stopped. The air tank is constantly aerated to prevent activated sludge from settling, and ORP
Control was performed by increasing the rotation speed of the Roots Proer using the ORP control device to increase the amount of aeration when the value decreased below the set value, and by lowering the rotation speed and reducing the amount of aeration when the value was restored to the set value.
下水は、第1表に平均的性状を示す沈砂池越流下水を嫌
気1槽に41/分、脱窒反応の水素供与体として嫌気2
槽に31/分の割合でそれぞれ供給した。また、汚泥返
送率は25%とした。For sewage, sewage overflow from a sand settling basin, whose average properties are shown in Table 1, is poured into an anaerobic 1 tank at 41/min, and anaerobic 2 sewage is used as a hydrogen donor for the denitrification reaction.
Each was fed to the tank at a rate of 31/min. Furthermore, the sludge return rate was set at 25%.
塩化#112鉄水溶液(38%水溶液、比重= 1.4
44)は、好気2′!fIの活性汚泥混合液の水溶性リ
ン濃度が1〜2艙g/l(平均1.5蹟g/l)で、最
終処理水のリン濃度を0.5−g/l以下にする前提で
、また塩化第2鉄と好気2槽のリン化合物との反応を次
のように仮定した。Iron chloride #112 aqueous solution (38% aqueous solution, specific gravity = 1.4
44) is aerobic 2′! On the premise that the water-soluble phosphorus concentration of the fI activated sludge mixture is 1 to 2 g/l (average 1.5 g/l) and the phosphorus concentration of the final treated water is 0.5-g/l or less. , and the reaction between ferric chloride and phosphorus compounds in two aerobic tanks was assumed as follows.
FeCl、+A、Pot→FePO5+3AC但し、A
は1価の陽イオンである。FeCl, +A, Pot→FePO5+3AC However, A
is a monovalent cation.
これらの前提に基づいて塩化第2鉄の水溶液の添加量を
計算すると、好気2′WIの活性汚泥混合液1−コ当り
約5曽1になる。このパイロットプラントの下水処理量
は約10m’/日なので、塩化第2鉄水溶液50III
l/日を連続的に供給して処理を行った。If the amount of the aqueous solution of ferric chloride to be added is calculated based on these assumptions, it will be approximately 5 so 1 per 1 aerobic 2'WI activated sludge mixed solution. Since the sewage treatment amount of this pilot plant is approximately 10 m'/day, 50 m'/day of ferric chloride aqueous solution
The treatment was carried out by continuously supplying 1/day.
その結果を第1表に示す。なお、この実験期間は約11
11月で、その期間中およびその前後は降雨がほとんど
なく、通常と比べて汚濁物濃度がかなり高い下水が流入
していた。また、好気2槽出口の活性汚泥混合液を5A
濾紙で濾過した濾過水の分析値も比較のため第1表に示
す。The results are shown in Table 1. The experimental period was approximately 11
It was November, and there was almost no rainfall during or before that period, so sewage was flowing in with considerably higher pollutant concentrations than normal. In addition, the activated sludge mixture at the outlet of the two aerobic tanks was
The analytical values of the filtered water filtered through the filter paper are also shown in Table 1 for comparison.
第1表 下水、好気2!fI濾過水および最終処理水
の汚濁物の平均濃度
第1表の結果より、最終処理水はBODが5B71以下
、CODが10,1mg/I、SSが7 、8 +++
g/M、全窒素が4 、3 +B/I、全リンが0.1
2論g/lと良好でありな。Table 1 Sewage, aerobic 2! From the results in Table 1, the average concentration of pollutants in the fI-filtered water and the final treated water shows that the final treated water has a BOD of 5B71 or less, a COD of 10.1 mg/I, and an SS of 7.8 +++
g/M, total nitrogen 4, 3 +B/I, total phosphorus 0.1
2. The g/l ratio is good.
この実験結果より、処理条件をBODおよび窒素化合物
を効率的に除去する条件に設定すれば、生物化学的処理
のみである好気2槽出口の濾過水のBOD、窒素化合物
は良好に除去されているが、シン化合物の除去が不十分
であるが、生物化学的な処理により下水のリン化合物の
約78%が除去されており、しかも残存したリン化合物
の大部分が塩化第2鉄との反応が容易な無機リン酸塩に
変換しているので、生物化学的処理の後、化学的処理に
よりリンを除去すると、リン化合物の除去を効率的に行
うことができることが明らかである。This experimental result shows that if the treatment conditions are set to efficiently remove BOD and nitrogen compounds, BOD and nitrogen compounds can be successfully removed from the filtrate water at the outlet of the two aerobic tanks, which is only biochemical treatment. However, biochemical treatment has removed approximately 78% of the phosphorus compounds in sewage, and most of the remaining phosphorus compounds have been removed by reaction with ferric chloride. It is clear that the removal of phosphorus by chemical treatment after biochemical treatment can efficiently remove phosphorus compounds, since it is easily converted into inorganic phosphates.
しかも、最初から化学的方法によりリン化合物を除去す
る方法に比べて、水溶性の金属塩、たとえば塩化第2鉄
の使用量が少なくて良いことが明らかになった。Furthermore, it has been found that the amount of water-soluble metal salts, such as ferric chloride, can be used in a smaller amount than in a method in which phosphorus compounds are removed by chemical methods from the beginning.
(発明の効果) 本発明は、次のような効果がある。(Effect of the invention) The present invention has the following effects.
■BODおよび窒素化合物が効率良く除去できる。(2) BOD and nitrogen compounds can be removed efficiently.
■下水の有機性リン化合物が生物化学的処理により無機
性リン化合物に変換するので、化学的方法によりリン化
合物が容易に除去できる。■Since organic phosphorus compounds in sewage are converted into inorganic phosphorus compounds through biochemical treatment, phosphorus compounds can be easily removed by chemical methods.
■下水のリン化合物の大部分が生物化学的方法により除
去されるので、化学的リン除去に用いられる水溶性金属
塩の使用量が大幅に低減で終る。■ Since most of the phosphorus compounds in sewage are removed by biochemical methods, the amount of water-soluble metal salts used in chemical phosphorus removal can be significantly reduced.
■生物化学的方法と化学的方法とを組み合せることによ
りBOD、窒素化合物、リン化合物が十分に除去された
処理水が得られ、また従来の方法に比べて水溶性金属塩
の使用量が少ないので処理コストが大幅に低減でさ、ま
た余剰汚泥の発生量も少ない。■By combining biochemical and chemical methods, treated water with sufficient removal of BOD, nitrogen compounds, and phosphorus compounds can be obtained, and the amount of water-soluble metal salts used is lower than with conventional methods. Therefore, processing costs are significantly reduced, and the amount of surplus sludge generated is also small.
【図面の簡単な説明】
第1図は嫌気1槽、好気1槽、嫌気2′W!および好気
2槽の活性汚泥混合液を濾過し、濾過水の全リン濃度を
硝酸性および亜硝酸性窒素の濃度との関係で示した図で
ある。[Brief explanation of the drawing] Figure 1 shows 1 anaerobic tank, 1 aerobic tank, and 2' anaerobic tank! and filtration of the activated sludge mixture in two aerobic tanks, and is a diagram showing the total phosphorus concentration of the filtrate in relation to the nitrate and nitrite nitrogen concentrations.
Claims (4)
徴とする廃水のBOD、窒素化合物、リン化合物の同時
除去方法。(1) A method for simultaneously removing BOD, nitrogen compounds, and phosphorus compounds from wastewater, which is characterized by combining a biological method and a chemical method.
を廃水が流入する入口側から嫌気1槽、好気1槽、嫌気
2槽および好気2槽に4分割し、嫌気1槽には処理する
廃水と汚泥沈降槽からの返送汚泥を機械的攪拌を行いな
がら連続的に注入し、ORPを活性汚泥からリンの放出
が起り、また次の好気1槽のORPの管理、制御に悪影
響しない範囲に管理、制御し、次に嫌気1槽の活性汚泥
混合液を連続的に好気1槽に注入し、好気1槽のORP
を廃水のBODの酸化分解、硝化反応および活性汚泥に
よるリンの過剰摂取が十分に起り、しかも次の嫌気2槽
のORPの管理、制御に悪影響しない範囲に管理、制御
し、次に好気1槽の活性汚泥混合液を嫌気2槽に連続的
に供給し、廃水の一部を水素供与体に用いてこれを分注
しながら機械的攪拌または機械的撹拌に加えで曝気によ
りORPを−50〜−150mV(金−銀/塩化銀電極
基準)の範囲に制御して所定時間維持し、窒素酸化物を
窒素ガスに還元させ、嫌気2槽で処理した混合液を好気
2槽に供給して曝気を行い、水素供与体のBODの酸化
分解を行わせるとともに窒素ガスを気泡にして除去し、
好気2槽で処理した活性汚泥混合液を汚泥沈降槽に供給
して汚泥を沈降させ、沈降汚泥と上澄液の処理水に分離
する生物学的処理であることを特徴とする請求項1記載
の廃水のBOD、窒素化合物、リン化合物の同時除去方
法。(2) In the biological method, the reactor containing activated sludge is divided into four from the inlet side where wastewater flows into one anaerobic tank, one aerobic tank, two anaerobic tanks, and two aerobic tanks; The wastewater to be treated and the sludge returned from the sludge settling tank are continuously injected while mechanically stirring, and phosphorus is released from the activated sludge, which also has a negative impact on the management and control of ORP in the next aerobic tank. Next, the activated sludge mixture from one anaerobic tank is continuously injected into one aerobic tank, and the ORP of one aerobic tank is maintained.
The oxidative decomposition of wastewater BOD, the nitrification reaction, and the excessive uptake of phosphorus by activated sludge are managed and controlled within a range that does not adversely affect the ORP management and control of the next two anaerobic tanks, and then the aerobic one. The activated sludge mixture in the tank is continuously supplied to two anaerobic tanks, and a part of the wastewater is used as a hydrogen donor, and while it is dispensed, the ORP is reduced to -50 by mechanical stirring or aeration in addition to mechanical stirring. The mixture was controlled in the range of ~-150 mV (gold-silver/silver chloride electrode standard) and maintained for a predetermined time to reduce nitrogen oxides to nitrogen gas, and the mixed solution treated in two anaerobic tanks was supplied to two aerobic tanks. Aeration is performed to oxidize and decompose the hydrogen donor BOD, and nitrogen gas is removed in the form of bubbles.
Claim 1 characterized in that it is a biological treatment in which the activated sludge mixture treated in two aerobic tanks is supplied to a sludge settling tank, the sludge is allowed to settle, and the treated water is separated into settled sludge and supernatant liquid. A method for simultaneously removing BOD, nitrogen compounds, and phosphorus compounds from wastewater as described.
金−銀/塩化銀電極基準)、好気1槽のORPを+10
0〜+125mV(金−銀/塩化銀電極基準)にそれぞ
れ管理、制御することを特徴とする請求項2記載の廃水
のBOD、窒素化合物、リン化合物の同時除去方法。(3) ORP of one anaerobic tank -200 to -300-mV (
gold-silver/silver chloride electrode standard), +10 ORP for one aerobic tank
3. The method for simultaneously removing BOD, nitrogen compounds, and phosphorus compounds from wastewater according to claim 2, characterized in that they are controlled and controlled at 0 to +125 mV (gold-silver/silver chloride electrode reference).
溶性の化合物を形成する水溶性の薬剤を好気2槽と汚泥
沈降槽との中間に添加し、廃水のリン化合物を不溶性に
して汚泥沈降槽において余剰汚泥として除去する方法で
あることを特徴とする請求項1〜3のいずれか記載の廃
水のBOD、窒素化合物、リン化合物の同時除去方法。(4) A chemical method involves adding water-soluble agents that form water-insoluble compounds with wastewater phosphorus compounds between the two aerobic tanks and the sludge settling tank, making the wastewater phosphorus compounds insoluble. 4. The method for simultaneously removing BOD, nitrogen compounds, and phosphorus compounds from wastewater according to any one of claims 1 to 3, wherein the wastewater is removed as surplus sludge in a sludge settling tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9920690A JP2720096B2 (en) | 1990-04-17 | 1990-04-17 | Method for simultaneous removal of BOD, nitrogen compounds and phosphorus compounds in wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9920690A JP2720096B2 (en) | 1990-04-17 | 1990-04-17 | Method for simultaneous removal of BOD, nitrogen compounds and phosphorus compounds in wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03296498A true JPH03296498A (en) | 1991-12-27 |
JP2720096B2 JP2720096B2 (en) | 1998-02-25 |
Family
ID=14241179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9920690A Expired - Fee Related JP2720096B2 (en) | 1990-04-17 | 1990-04-17 | Method for simultaneous removal of BOD, nitrogen compounds and phosphorus compounds in wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2720096B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995033755A1 (en) * | 1994-06-06 | 1995-12-14 | Merck & Co., Inc. | PROCESS FOR REMOVING WASTE POx, ALENDRONATE AND ITS BY-PRODUCTS |
WO1995033756A1 (en) * | 1994-06-06 | 1995-12-14 | Merck & Co., Inc. | Process for recovery and recycle of methanesulfonic acid and phosphorous acid |
US7252765B2 (en) * | 2004-03-01 | 2007-08-07 | Black & Veatch Holding Co. | Process for improving phosphorous removal in waste water treatment without chemical addition |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63126599A (en) * | 1986-11-17 | 1988-05-30 | Nippon Steel Corp | Biochemical treatment method for wastewater |
-
1990
- 1990-04-17 JP JP9920690A patent/JP2720096B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63126599A (en) * | 1986-11-17 | 1988-05-30 | Nippon Steel Corp | Biochemical treatment method for wastewater |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995033755A1 (en) * | 1994-06-06 | 1995-12-14 | Merck & Co., Inc. | PROCESS FOR REMOVING WASTE POx, ALENDRONATE AND ITS BY-PRODUCTS |
WO1995033756A1 (en) * | 1994-06-06 | 1995-12-14 | Merck & Co., Inc. | Process for recovery and recycle of methanesulfonic acid and phosphorous acid |
US5589691A (en) * | 1994-06-06 | 1996-12-31 | Merck & Co., Inc. | Process for recovery and recycle of methanesulfonic acid and phosphorous acid |
US7252765B2 (en) * | 2004-03-01 | 2007-08-07 | Black & Veatch Holding Co. | Process for improving phosphorous removal in waste water treatment without chemical addition |
US7285215B2 (en) | 2004-03-01 | 2007-10-23 | Black & Veatch Corp. | Process for improving phosphorus removal in waste water treatment without chemical addition |
Also Published As
Publication number | Publication date |
---|---|
JP2720096B2 (en) | 1998-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5932639B2 (en) | Biological nitrogen removal method using anaerobic ammonia oxidation reaction | |
CN101723554B (en) | Chemical fertilizer waste water treatment method | |
JPH0655190A (en) | Control method of intermittent aeration type activated sludge method | |
US5811009A (en) | Method and system for improved biological nitrification of wastewater at low temperature | |
JP2007136298A (en) | Method and apparatus for removing nitrogen and phosphorus from sewage | |
EP0891951A1 (en) | Method and apparatus for treating selenium-containing waste water | |
CN109111051A (en) | A kind of MSW landfill leachate regulating processing method and system | |
JP2006136820A (en) | Method for removing phosphorus and / or nitrogen from sewage | |
JPH09290299A (en) | Thermal power plant wastewater treatment method | |
JPH03296498A (en) | Method for simultaneously removing BOD, nitrogen compounds, and phosphorus compounds from wastewater | |
KR100705541B1 (en) | Sewage and Wastewater Treatment Method and Apparatus for Removing Nutrients from Sewage and Wastewater | |
JPH08318292A (en) | Waste water treatment method and apparatus | |
JP2003071490A (en) | How to remove nitrogen from wastewater | |
KR100470350B1 (en) | Method for disposing of livestock waste water | |
JP4382167B2 (en) | Thermal power plant wastewater treatment method | |
JPH0575478B2 (en) | ||
JP2678803B2 (en) | Method for simultaneous removal of BOD, nitrogen compounds and phosphorus compounds in wastewater | |
Lilley et al. | Operating manual for biological nutrient removal wastewater treatment works | |
JP2722271B2 (en) | Method for simultaneous removal of BOD, nitrogen compounds and phosphorus compounds in wastewater | |
JPH0148834B2 (en) | ||
JPH03278896A (en) | Simultaneous removal of bod, nitrogen compound and phosphorus compound in waste water | |
JPS60139396A (en) | Removal of phosphorous and nitrogen from bod- containing water | |
Frose et al. | Effective treatment of wastewater from rendering plants | |
JP2750773B2 (en) | Batch activated sludge treatment method | |
JPH09141294A (en) | Biological nitrogen removal method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313122 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313121 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081121 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081121 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091121 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |