JPH0329574B2 - - Google Patents

Info

Publication number
JPH0329574B2
JPH0329574B2 JP14842886A JP14842886A JPH0329574B2 JP H0329574 B2 JPH0329574 B2 JP H0329574B2 JP 14842886 A JP14842886 A JP 14842886A JP 14842886 A JP14842886 A JP 14842886A JP H0329574 B2 JPH0329574 B2 JP H0329574B2
Authority
JP
Japan
Prior art keywords
prepreg
holes
resin
laminate
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14842886A
Other languages
Japanese (ja)
Other versions
JPS634917A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14842886A priority Critical patent/JPS634917A/en
Publication of JPS634917A publication Critical patent/JPS634917A/en
Publication of JPH0329574B2 publication Critical patent/JPH0329574B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[技術分野] 本発明は、孔明きの積層板を製造するための方
法に関するものである。 [背景技術] 近年、電子機器の軽薄短小化はめざましく、特
にICカードなどにみられるように非常に薄いも
のが要求されるようになり、そのために第2図に
示すようにプリント配線板5の中にICチツプな
どの電子部品6を埋め込むことが必要になつてき
ている。プリント配線板5は絶縁層となる積層板
7の表面に回路8を設けて形成されるものであ
り、第2図のものにあつては積層板7に凹部9を
設けてこの凹部9内に電子部品6を埋め込み、電
子部品6と回路8とをリード線10で接続するこ
とで電子部品6の実装がなされる。 そして上記のような凹部9を設けたプリント配
線板5を得るために従来は、プリント配線板5の
積層板7に機械的ざぐりで凹部9の加工をおこな
うようにしていた。しかしこの方法は高度な精度
が要求されるために非常に非能率的であり、歩留
まりも悪いという問題があつた。 そこで、複数枚のプリプレグ及び金属箔を積層
成形して積層板を製造するにあたつて、プリプレ
グに予め孔をあけておいて積層板の製造と同時に
上記のような凹部9が形成されるようにすること
が検討されている。すなわち、複数枚の各プリプ
レグに所定の位置で所定の大きさ形状に孔を明け
ておき、孔が合致する状態でプリプレグを重ねる
と共にさらに銅箔などの金属箔を重ね、これを加
熱加圧成形することによつて、プリプレグに設け
られた孔で電子部品6を埋め込むための凹部9を
形成した金属箔張の積層板を得るのである。しか
しこの方法においてはプリプレグの樹脂の溶融粘
度が低いと加熱加圧成形の際にプリプレグの樹脂
が孔内に流入して所望の凹部9を形成させること
が困難であるという問題があつた。そこで溶融粘
度の高い樹脂を含浸乾燥したプリプレグを用いる
ことがなされるのであるが、このようにプリプレ
グの樹脂の溶融粘度が高いと加熱加圧成形の際の
樹脂の流れが悪くてプリプレグに含まれる気体成
分を十分に抜くことができず、これが積層板中に
ボイドとして残つて十分な性能の積層板を得るこ
とができないという問題が生じるものであつた。 [発明の目的] 本発明は、上記の点に鑑みて為されたものであ
り、孔を設けたプリプレグを用いて孔明きの積層
板を製造するにあたつて、孔に樹脂が流れ込むこ
とを防止できると共にボイドの発生を防止するこ
とができる積層板の製造方法を提供することを目
的とするものである。 [発明の開示] しかして本発明に係る積層板の製造方法は、プ
リプレグ1に孔2を設けると共にこの孔2内に離
型性充填物3を充填した状態でプリプレグ1を減
圧雰囲気下で加熱加圧成形することを特徴とする
ものであり、以下本発明を詳細に説明する。 プリプレグ1は基材に熱硬化性樹脂のワニスを
含浸して加熱乾燥することによつて形成されるも
のであり、基材としてはガラス繊維布、ガラス不
織布等の無機繊維物、テトロン布、紙基材等の有
機繊維物及び無機繊維と有機繊維との任意の割合
の混抄基材などを用いることができ、また熱硬化
性樹脂としてはエポキシ樹脂、ポリイミド樹脂、
ポリエステル樹脂、フエノール樹脂及びこれらの
樹脂の変性樹脂などを用いることができる。ここ
で、プリプレグ1に含浸され乾燥されてBステー
ジ状態にある樹脂は、プリプレグ1に設ける孔2
への成形時の流れ込みを低減させると共に積層板
の板厚精度を確保するために、その溶融粘度が
300〜5000ポイズ(測定温度120℃)の範囲に設定
されるのが好ましく、特に溶融粘度の下限は1000
ポイズに設定されるのが望ましい。上記のように
して形成されるプリプレグ1に所定の位置におい
て所定の形状大きさに孔2を設ける。孔2はパン
チングその他の適当な手段で打ち抜きや切り抜き
で形成することができる。 そして上記プリプレグ1を1枚乃至複数枚重
ね、孔2に離型性充填材3を充填した状態でさら
に第1図a,bのように銅箔などの金属箔4を重
ね、これを加熱加圧することで積層成形に供す
る。ここでプリプレグ1を複数枚重ねる場合は各
プリプレグ1の孔2が合致するようにプリプレグ
1を重ねるようにする。また、離型性充填材3と
してはプリプレグ1の樹脂に対して離型性のある
もの、例えばテフロン(四フツ化エチレン樹脂)
やシリコンによつて形成することができ、シート
状の他に粉末状や粒状の形態で用いることができ
る。離型性充填材3をシート状に形成した場合、
その大きさはプリプレグ1に設ける孔2の大きさ
の+0mm〜−2.0mm、好ましくは+0mm〜−1.0mm
に、厚みは孔2の深さ(プリプレグ1を複数枚重
ねて成形をおこなう場合は孔2の合計深さ)の+
0.5mm〜−0mm、好ましくは+0.1mm〜−0mmに設
定するのがよく、また離型性充填材3を粉末状ま
たは粒状にした場合は、孔2の容積の+10%〜−
0%、好ましくは+5%〜−0%の体積で使用す
るのがよい。また、積層成形は減圧雰囲気条件下
でおこなわれるものであり、例えば積層成形装置
を減圧室内に設置することで減圧雰囲気条件下で
の積層成形をおこなうことができる。減圧条件は
150Torr以下、好ましくは100Torr以下の真空状
態に設定するのがよい。 上記のようにプリプレグ1と金属箔4との積層
物を加熱加圧して成形することによつて、電子部
品6を埋め込むための凹部9が孔2で形成された
金属箔張積層板を得ることができ、この金属箔を
エツチング等で加工して回路8を形成することに
よつて、第2図のようなプリント配線板5に仕上
げることできる。ここで、加熱加圧成形は減圧雰
囲気下でおこなわれるためにプリプレグ1の樹脂
の溶融粘度が高くてもプリプレグ1中の気体成分
は脱気され、積層板にボイドが生じるおそれはな
い。従つて樹脂の溶融粘度が高いプリプレグ1を
用いてプリプレグ1に設けた孔2に樹脂が流れ込
むことなく成形をおこなうことができることにな
る。また孔2に充填した離型性充填材3によつて
孔2は埋められているために、プリプレグ1の溶
融樹脂が孔2に流れ込むことを離型性充填材3に
よつても防止することができる。離型性充填材3
はもちろん成形の後に除去される。そして、上記
のように成形は減圧雰囲気下でおこなわれるため
に、プリプレグ1に重ねた金属箔4は孔2の部分
で孔2の内方へ吸引される作用を受けてへこみ変
形し易いが、孔2に離型性充填材3を充填してお
くことによつてこのようなおそれはない。尚、孔
2はプリプレグ1に設ける他、必要に応じて金属
箔4や、三層以上の多層積層板の場合には内層材
にも設け、これらの孔2に離型性充填材3を充填
して成形をおこなうことができる。 次ぎに本発明を実施例によつてさらに説明す
る。 実施例 1 硬化剤含有エポキシ樹脂ワニスを200g/m2
ガラス布に含浸させ、乾燥することによつて400
g/m2のプリプレグを作成した。このプリプレグ
は樹脂の溶融粘度が1200ポイズであつた(プリプ
レグA)。このプリプレグに第3図に示すように
9箇所で直径10mmの孔をパンチングによつて設け
た。 このプリプレグを2枚重ね、直径10mmで厚み
0.3mmのテフロンシート(第1図における離型性
充填材3)を第1図a,bに示すようにプリプレ
グの孔に挿入し、さらに片面に厚み0.070mmの銅
箔を重ねると共に他の片面に離型紙を配設し、こ
の積層板を金属プレート間に挟み、50Torrの減
圧雰囲気下で成形圧力50Kg/cm2、成形温度170℃、
成形時間100分間の条件で加熱加圧成形し、厚み
0.4mmの銅張積層板を得た。 実施例 2 硬化剤含有エポキシ樹脂ワニスを200g/m2
ガラス布に含浸させ、乾燥することによつて400
g/m2のプリプレグを作成した。このプリプレグ
は樹脂の溶融粘度が800ポイズであつた(プリプ
レグB)。このプリプレグを用い、その他は実施
例1と同様にして厚み0.4mmの銅張積層板を得た。 実施例 3 硬化剤含有エポキシ樹脂ワニスを200g/m2
ガラス布に含浸させ、乾燥することによつて400
g/m2のプリプレグを作成した。このプリプレグ
は樹脂の溶融粘度が500ポイズであつた(プリプ
レグC)。このプリプレグを用い、その他は実施
例1と同様にして厚み0.4mmの銅張積層板を得た。 比較例 1 プリプレグAを用い、加熱加圧成形を常圧雰囲
気でおこなつた他は実施例1と同様にして厚み
0.4mmの銅張積層板を得た。 比較例 2 プリプレグBを用い、加熱加圧成形を常圧雰囲
気でおこなつた他は実施例1と同様にして厚み
0.4mmの銅張積層板を得た。 比較例 3 プリプレグCを用い、加熱加圧成形を常圧雰囲
気でおこなつた他は実施例1と同様にして厚み
0.4mmの銅張積層板を得た。 比較例 4 プリプレグAを用い、プリプレグの孔にテフロ
ンシートを挿入しない状態で加熱加圧成形をおこ
なつた他は実施例1と同様にして厚み0.4mmの銅
張積層板を得た。 比較例 5 プリプレグBを用い、プリプレグの孔にテフロ
ンシートを挿入しない状態で加熱加圧成形をおこ
なつた他は実施例1と同様にして厚み0.4mmの銅
張積層板を得た。 比較例 6 プリプレグCを用い、プリプレグの孔にテフロ
ンシートを挿入しない状態で加熱加圧成形をおこ
なつた他は実施例1と同様にして厚み0.4mmの銅
張積層板を得た。 上記実施例1乃至3及び比較例1乃至6の条件
をまとめて第1表に示す。また実施例1乃至3及
び比較例1乃至6で得た銅張積層板について、成
形性、板厚のバラツキ(R)、孔への樹脂の流れ、
孔部分の銅箔の外観をそれぞれ測定した。結果を
第2表に示す。第2表において「成形性」は積層
板中にボイドが発生しているか否かで評価をおこ
ない、ボイドが発生していないものを「〇」、ボ
イドがやや発生したものを「△」、ボイドが多数
発生したものを「×」で示した。また「板厚バラ
ツキ」はマイクロメーターで板厚を測定してその
最大厚み寸法と最小厚み寸法との差の寸法で示し
た。「孔への樹脂流れ」及び「孔部分の銅箔外観」
は目視観察でおこない、それを第4図及び第5図
に図示して示した。第4図において孔2内に流れ
込んだ樹脂を符号11で示す。また「孔部分の銅
箔外観」において「OK」は孔部分で銅箔にへこ
み変形が生じなかつたことを意味する。
[Technical Field] The present invention relates to a method for manufacturing perforated laminates. [Background Art] In recent years, electronic devices have become lighter, thinner, shorter, and smaller.In particular, extremely thin devices such as IC cards are now required. It has become necessary to embed electronic components 6 such as IC chips inside. The printed wiring board 5 is formed by providing a circuit 8 on the surface of a laminate 7 serving as an insulating layer, and in the case of the one shown in FIG. The electronic component 6 is mounted by embedding the electronic component 6 and connecting the electronic component 6 and the circuit 8 with a lead wire 10. In order to obtain the printed wiring board 5 provided with the recesses 9 as described above, conventionally, the recesses 9 are formed in the laminated board 7 of the printed wiring board 5 by mechanical counterboring. However, this method requires a high degree of precision and is extremely inefficient, resulting in poor yield. Therefore, when manufacturing a laminate by laminating and molding multiple sheets of prepreg and metal foil, holes are made in the prepreg in advance so that the recesses 9 as described above are formed at the same time as the laminate is manufactured. It is being considered to make it In other words, holes are made in a predetermined size and shape in a predetermined position in each of multiple sheets of prepreg, and with the holes matching, the prepregs are stacked, and then a metal foil such as copper foil is layered, and this is heated and pressed. By doing so, a metal foil-clad laminate in which a recess 9 for embedding the electronic component 6 is formed using a hole provided in the prepreg is obtained. However, this method has a problem in that if the melt viscosity of the resin of the prepreg is low, the resin of the prepreg flows into the holes during hot-press molding, making it difficult to form the desired recesses 9. Therefore, prepreg that has been impregnated and dried with a resin with a high melt viscosity is used. However, if the melt viscosity of the resin in the prepreg is high, the flow of the resin during heating and pressure molding will be poor, and the resin will be contained in the prepreg. This has caused a problem in that the gas components cannot be sufficiently removed and remain as voids in the laminate, making it impossible to obtain a laminate with sufficient performance. [Object of the Invention] The present invention has been made in view of the above points, and is aimed at preventing resin from flowing into the holes when manufacturing a perforated laminate using prepreg with holes. It is an object of the present invention to provide a method for manufacturing a laminate that can prevent the occurrence of voids. [Disclosure of the Invention] According to the method for manufacturing a laminate according to the present invention, holes 2 are provided in the prepreg 1, and the holes 2 are filled with a releasable filler 3, and the prepreg 1 is heated in a reduced pressure atmosphere. The present invention is characterized by pressure molding, and the present invention will be explained in detail below. The prepreg 1 is formed by impregnating a base material with a thermosetting resin varnish and heating and drying it, and the base material may include inorganic fibers such as glass fiber cloth, glass nonwoven fabric, Tetron cloth, and paper. Organic fibers such as base materials and mixed base materials of inorganic fibers and organic fibers in any ratio can be used, and as thermosetting resins, epoxy resins, polyimide resins,
Polyester resins, phenolic resins, modified resins of these resins, etc. can be used. Here, the resin in the B stage state after being impregnated into the prepreg 1 and dried is transferred to the holes provided in the prepreg 1.
In order to reduce the flow during forming into the laminate and ensure the thickness accuracy of the laminate, the melt viscosity is
It is preferable to set it in the range of 300 to 5000 poise (measurement temperature 120℃), especially the lower limit of melt viscosity is 1000 poise.
It is preferable to set it to poise. Holes 2 of a predetermined shape and size are provided at predetermined positions in the prepreg 1 formed as described above. The holes 2 can be punched or cut out by punching or other suitable means. Then, one or more sheets of the prepreg 1 are stacked, the holes 2 are filled with the releasable filler 3, and then a metal foil 4 such as copper foil is stacked as shown in FIGS. 1a and 1b, and then heated. By pressing, it is used for lamination molding. When a plurality of prepregs 1 are stacked here, the prepregs 1 are stacked so that the holes 2 of each prepreg 1 match. The releasable filler 3 is one that has releasability with respect to the resin of the prepreg 1, such as Teflon (tetrafluoroethylene resin).
It can be formed from silicone or silicone, and can be used in the form of powder or granules in addition to sheet form. When the releasable filler 3 is formed into a sheet shape,
Its size is +0 mm to -2.0 mm, preferably +0 mm to -1.0 mm of the size of hole 2 provided in prepreg 1.
, the thickness is the depth of hole 2 (total depth of hole 2 when molding multiple sheets of prepreg 1) +
It is best to set it to 0.5 mm to -0 mm, preferably +0.1 mm to -0 mm, and when the releasable filler 3 is in the form of powder or granules, it is set to +10% to -0 of the volume of the hole 2.
It is advisable to use a volume of 0%, preferably +5% to -0%. Further, lamination molding is performed under reduced pressure atmosphere conditions, and for example, by installing a lamination molding apparatus in a reduced pressure chamber, lamination molding can be performed under reduced pressure atmosphere conditions. The decompression conditions are
It is preferable to set the vacuum state to 150 Torr or less, preferably 100 Torr or less. By heating and pressing a laminate of prepreg 1 and metal foil 4 to form it as described above, a metal foil-clad laminate in which recesses 9 for embedding electronic components 6 are formed with holes 2 is obtained. By processing this metal foil by etching or the like to form a circuit 8, a printed wiring board 5 as shown in FIG. 2 can be completed. Here, since the hot-press molding is performed under a reduced pressure atmosphere, even if the melt viscosity of the resin of the prepreg 1 is high, the gas components in the prepreg 1 are degassed, and there is no fear that voids will occur in the laminate. Therefore, it is possible to perform molding using the prepreg 1 whose resin has a high melt viscosity without the resin flowing into the holes 2 provided in the prepreg 1. Furthermore, since the holes 2 are filled with the releasable filler 3 filled in the holes 2, the molten resin of the prepreg 1 is also prevented from flowing into the holes 2. Can be done. Mold releasable filler 3
Of course, it is removed after molding. As described above, since the forming is carried out under a reduced pressure atmosphere, the metal foil 4 overlaid on the prepreg 1 is likely to be dented and deformed by being sucked inward at the hole 2. By filling the holes 2 with the releasable filler 3, this fear is eliminated. In addition to providing the holes 2 in the prepreg 1, the holes 2 are also provided in the metal foil 4 or in the inner layer material in the case of a multilayer laminate with three or more layers, and these holes 2 are filled with a releasable filler 3. Molding can be performed by Next, the present invention will be further explained by examples. Example 1 By impregnating 200 g/m 2 of glass cloth with a hardening agent-containing epoxy resin varnish and drying it,
A prepreg of g/m 2 was prepared. This prepreg had a resin melt viscosity of 1200 poise (prepreg A). As shown in FIG. 3, holes each having a diameter of 10 mm were formed in nine locations in this prepreg by punching. Two sheets of this prepreg are stacked to a thickness of 10 mm in diameter.
A 0.3 mm Teflon sheet (mold releasable filler 3 in Figure 1) is inserted into the hole of the prepreg as shown in Figure 1 a and b, and a copper foil with a thickness of 0.070 mm is layered on one side, and the other side is The laminate was sandwiched between metal plates and molded at a pressure of 50 Kg/cm 2 and a temperature of 170°C under a reduced pressure atmosphere of 50 Torr.
Heat and pressure molding is performed for 100 minutes, and the thickness
A 0.4 mm copper clad laminate was obtained. Example 2 By impregnating 200 g/m 2 of glass cloth with a curing agent-containing epoxy resin varnish and drying it,
A prepreg of g/m 2 was prepared. This prepreg had a resin melt viscosity of 800 poise (prepreg B). Using this prepreg, a copper-clad laminate having a thickness of 0.4 mm was obtained in the same manner as in Example 1 except for the above. Example 3 By impregnating 200 g/m 2 of glass cloth with a curing agent-containing epoxy resin varnish and drying it,
A prepreg of g/m 2 was prepared. This prepreg had a resin melt viscosity of 500 poise (prepreg C). Using this prepreg, a copper-clad laminate having a thickness of 0.4 mm was obtained in the same manner as in Example 1 except for the above. Comparative Example 1 Prepreg A was used and the thickness was changed in the same manner as in Example 1 except that the heating and pressure molding was performed in a normal pressure atmosphere.
A 0.4 mm copper clad laminate was obtained. Comparative Example 2 Prepreg B was used, and the thickness was
A 0.4 mm copper clad laminate was obtained. Comparative Example 3 Prepreg C was used, and the thickness was
A 0.4 mm copper clad laminate was obtained. Comparative Example 4 A copper-clad laminate with a thickness of 0.4 mm was obtained in the same manner as in Example 1, except that prepreg A was used and hot pressure molding was performed without inserting a Teflon sheet into the holes of the prepreg. Comparative Example 5 A copper-clad laminate with a thickness of 0.4 mm was obtained in the same manner as in Example 1, except that prepreg B was used and hot-pressure molding was performed without inserting a Teflon sheet into the holes of the prepreg. Comparative Example 6 A copper-clad laminate with a thickness of 0.4 mm was obtained in the same manner as in Example 1, except that prepreg C was used and hot-pressure molding was performed without inserting a Teflon sheet into the holes of the prepreg. The conditions of Examples 1 to 3 and Comparative Examples 1 to 6 are summarized in Table 1. In addition, regarding the copper-clad laminates obtained in Examples 1 to 3 and Comparative Examples 1 to 6, moldability, variation in plate thickness (R), flow of resin into holes,
The appearance of the copper foil in each hole was measured. The results are shown in Table 2. In Table 2, "formability" is evaluated based on whether or not voids are generated in the laminate, with "○" indicating no voids and "△" indicating some voids. Cases in which a large number of occurrences occurred are marked with an "x". In addition, "plate thickness variation" was expressed as the difference between the maximum thickness and the minimum thickness measured by measuring the plate thickness with a micrometer. “Resin flow into the hole” and “Copper foil appearance at the hole”
This was done by visual observation and is illustrated in FIGS. 4 and 5. In FIG. 4, the resin that has flowed into the hole 2 is indicated by the reference numeral 11. Furthermore, in "Appearance of copper foil at hole area", "OK" means that no dent deformation occurred in the copper foil at the hole area.

【表】【table】

【表】【table】

【表】【table】

【表】 第2表の結果、減圧雰囲気下で成形をおこなう
ようにした各実施例のものは、プリプレグの樹脂
の溶融粘度が高くてもボイドの発生を低減するこ
とができることが確認され(比較例1乃至3を比
較参照)、またプリプレグの孔にテフロンシート
を挿入した状態で成形をおこなうようにした各実
施例のものは、孔への樹脂の流れを低減できると
共に孔部分で銅箔にへこみ変形が発生することを
防止できることが確認される(比較例4乃至6を
比較参照)。また、孔への樹脂の流れ込みを完全
に防止するためにはプリプレグとして樹脂の熔融
粘度が1000ポイズ以上のものを用いるのが望まし
いことが確認される。 [発明の効果] 上述のように本発明にあつては、プリプレグに
孔を設けると共にこの孔内に離型性充填物を充填
した状態でプリプレグを減圧雰囲気下で加熱加圧
成形するようにしたので、プリプレグの樹脂の溶
融粘度が高くても減圧雰囲気下においてプリプレ
グ中の気体成分は脱気され、積層板にボイドが生
じるおそれはないものであつて、樹脂の溶融粘度
が高いプリプレグを用いて孔に樹脂が流れ込むこ
となく成形をおこなうことができるものであり、
しかも孔に充填した離型性充填材によつて孔は埋
められており、孔への樹脂の流れ込みをこの離型
性充填材3によつても防止することができるもの
であり、この結果、孔を設けたプリプレグを用い
て孔明きの積層板を製造するにあたつて、孔に樹
脂が流れ込んだりボイドが発生したりするおそれ
なく成形をおこなうことができるものである。
[Table] As shown in Table 2, it was confirmed that each example in which molding was performed under a reduced pressure atmosphere was able to reduce the occurrence of voids even if the melt viscosity of the prepreg resin was high (comparison). (See Examples 1 to 3 for comparison), and each example in which molding was performed with a Teflon sheet inserted into the hole of the prepreg, can reduce the flow of resin into the hole and prevent the copper foil from forming in the hole. It is confirmed that the occurrence of dent deformation can be prevented (see Comparative Examples 4 to 6 for comparison). Furthermore, in order to completely prevent the resin from flowing into the holes, it is confirmed that it is desirable to use a resin with a melt viscosity of 1000 poise or more as the prepreg. [Effects of the Invention] As described above, in the present invention, holes are provided in the prepreg, and the holes are filled with a releasable filler, and then the prepreg is heated and pressure molded in a reduced pressure atmosphere. Therefore, even if the prepreg resin has a high melt viscosity, the gas components in the prepreg will be degassed in a reduced pressure atmosphere, and there is no risk of voids forming in the laminate. It is possible to perform molding without resin flowing into the holes.
Moreover, the pores are filled with the releasable filler 3, and the resin can be prevented from flowing into the pores by the releasable filler 3. As a result, When producing a perforated laminate using a prepreg with holes, molding can be carried out without fear of resin flowing into the holes or generation of voids.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは本発明の一実施例の一部切欠斜
視図と一部切欠断面図、第2図は電子部品を埋め
込んだプリント配線板を示す一部切欠断面図、第
3図は孔を設けたプリプレグの縮小平面図、第4
図a乃至iは第2表の「孔への樹脂流れ」の状態
を示す一部の平面図、第5図a,b,cは第2表
の「孔部分の銅箔外観」の状態を示す一部の断面
図である。 1はプリプレグ、2は孔、3は離型性充填材で
ある。
1A and 1B are a partially cutaway perspective view and a partially cutaway sectional view of an embodiment of the present invention, FIG. 2 is a partially cutaway sectional view showing a printed wiring board in which electronic components are embedded, and FIG. Reduced plan view of prepreg with holes, 4th
Figures a to i are partial plan views showing the state of "resin flow into the hole" in Table 2, and Figures a, b, and c show the state of "copper foil appearance at the hole" in Table 2. FIG. 1 is a prepreg, 2 is a hole, and 3 is a releasable filler.

Claims (1)

【特許請求の範囲】 1 プリプレグに孔を設けると共にこの孔内に離
型性充填物を充填した状態でプリプレグを減圧雰
囲気下で加熱加圧成形することを特徴とする積層
板の製造方法。 2 プリプレグはその樹脂の溶融粘度が1000ポイ
ズ以上であることを特徴とする特許請求の範囲第
1項記載の積層板の製造方法。
[Scope of Claims] 1. A method for manufacturing a laminate, which comprises providing holes in the prepreg and heating and press-molding the prepreg in a reduced pressure atmosphere with the holes filled with a releasable filler. 2. The method for manufacturing a laminate according to claim 1, wherein the prepreg has a resin having a melt viscosity of 1000 poise or more.
JP14842886A 1986-06-25 1986-06-25 Manufacture of laminated sheet Granted JPS634917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14842886A JPS634917A (en) 1986-06-25 1986-06-25 Manufacture of laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14842886A JPS634917A (en) 1986-06-25 1986-06-25 Manufacture of laminated sheet

Publications (2)

Publication Number Publication Date
JPS634917A JPS634917A (en) 1988-01-09
JPH0329574B2 true JPH0329574B2 (en) 1991-04-24

Family

ID=15452575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14842886A Granted JPS634917A (en) 1986-06-25 1986-06-25 Manufacture of laminated sheet

Country Status (1)

Country Link
JP (1) JPS634917A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2826742B2 (en) * 1989-02-28 1998-11-18 東燃株式会社 Reinforcement method of building using fiber reinforced plastic plate
US8303751B2 (en) * 2010-08-30 2012-11-06 GM Global Technology Operations LLC Method for integral vent screen in molded panels

Also Published As

Publication number Publication date
JPS634917A (en) 1988-01-09

Similar Documents

Publication Publication Date Title
KR101116079B1 (en) Method for manufacturing multilayer printed circuit board and multilayer printed circuit board
TW201815247A (en) Multilayer printed wiring board and method for producing multilayer printed wiring board
US4302501A (en) Porous, heat resistant insulating substrates for use in printed circuit boards, printed circuit boards utilizing the same and method of manufacturing insulating substrates and printed circuit boards
WO2017164300A1 (en) Printed wiring board and method for manufacturing same
JPH0329574B2 (en)
JP5749235B2 (en) Manufacturing method of circuit component built-in substrate
US5336353A (en) Process for the production of a multilayer printed circuit board
JPS6192849A (en) Manufacture of laminated board for metallic base printed wiring board
JPS6210190B2 (en)
JPH11274720A (en) Manufacture of multilayer-laminated board
JPH11214844A (en) Production of multilayer board
JP3810841B2 (en) Method for manufacturing printed wiring board
JPH06244555A (en) Manufacture of multilayered laminate board
JP3605917B2 (en) Manufacturing method of laminated board with inner layer circuit
JP2001212823A (en) Multi-layer printed wiring board, its production method, and method for producing laminated sheet
JP2007165436A (en) Process for manufacturing circuit board
JP5032870B2 (en) Manufacturing method of uneven circuit board
JP2000244118A (en) Manufacture of build-up multilayer wiring board
JP3227969B2 (en) Manufacturing method of multilayer laminate
JPH0758429A (en) Method of manufacturing printed wiring board
JP2950969B2 (en) Manufacturing method of laminated board
JPS60241294A (en) Method of producing multilayer printed circuit board
KR20240033849A (en) Manufacturing method of multilayered printed circuit board
JPH0240228B2 (en)
JPH0466180B2 (en)