JPH03295532A - Shape measuring endoscope device - Google Patents

Shape measuring endoscope device

Info

Publication number
JPH03295532A
JPH03295532A JP2097772A JP9777290A JPH03295532A JP H03295532 A JPH03295532 A JP H03295532A JP 2097772 A JP2097772 A JP 2097772A JP 9777290 A JP9777290 A JP 9777290A JP H03295532 A JPH03295532 A JP H03295532A
Authority
JP
Japan
Prior art keywords
pattern projection
light
shape
pattern
projection member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2097772A
Other languages
Japanese (ja)
Inventor
Satoshi Saito
智 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2097772A priority Critical patent/JPH03295532A/en
Publication of JPH03295532A publication Critical patent/JPH03295532A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0605Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for spatially modulated illumination

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

PURPOSE:To project the linear pattern light and to execute the shape measurement with high accuracy by providing a pattern projection member so that a laser beam after polarization is made incident vertically against the pattern projection member. CONSTITUTION:A laser beam led by an optical fiber 6 is focused and polarized, and thereafter, allowed to pass through a pattern projection member 10 and a pattern projection light is generated, and by projecting the pattern projection light to an object 2 to be photographed and detecting an obtained reflected light by an image pickup element, a shape of the object 2 to be photographed is measured. In this case, the pattern projection member 10 is provided so that a laser beam after polarization is made incident vertically against the pattern projection member 10. In such a way, a pattern light projected to the object 2 to be photographed becomes linear, and the shape measurement can be executed with high accuracy.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、内視鏡スコープ先端部がらパターン投影光を
被写体に投影し、この反射光を撮像素子で検出して被写
体の形状を計測する形状計測内視鏡装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention projects pattern projection light onto a subject from the tip of an endoscope scope, detects this reflected light with an image sensor, and detects the subject. The present invention relates to a shape measuring endoscope device that measures the shape of.

(従来の技術) 近年、盛かんに開発が進められている形状計測内視鏡装
置では、内視鏡スコープの先端部から被写体ヘレーザ光
パターンを出射し、この反射光を撮像素子で検出するこ
とで被写体の形状を計測している。
(Prior art) Shape measuring endoscope devices, which have been actively developed in recent years, emit a laser light pattern onto a subject from the tip of an endoscope scope, and detect this reflected light with an image sensor. The shape of the subject is measured.

第7図は形状計測内視鏡の動作原理を説明するための図
であり、内視鏡スコープ1の先端部には、鉗子チャンネ
ル12内に設けられ被写体2の、紙面に垂直な方向にラ
イン状パターン光3を投影するパターン投影系4と、被
写体2に投影されたパターン光3を観察する観察部5が
搭載されている。
FIG. 7 is a diagram for explaining the operating principle of the shape measuring endoscope, in which a line is provided in the forceps channel 12 at the tip of the endoscope 1 in a direction perpendicular to the paper surface of the subject 2. A pattern projection system 4 for projecting the shaped pattern light 3 and an observation section 5 for observing the pattern light 3 projected onto the subject 2 are mounted.

いま、図示のように内視鏡スコープ1の長手方向をZ座
標1幅方向をX座標、そして紙面に垂直な方向をY座標
と決める。そして、パターン投影系4から照射されるパ
ターン光3の照射角をθα。
Now, as shown in the figure, the longitudinal direction of the endoscope 1 is determined as the Z coordinate, the width direction as the X coordinate, and the direction perpendicular to the plane of the paper as the Y coordinate. Then, the irradiation angle of the pattern light 3 irradiated from the pattern projection system 4 is θα.

観察部5で観察されるパターン光3上の任意の点PのX
軸方向の角度をθ、、、Y軸方向の角度をθPYs視差
(パターン光3の照射位置と観察位置との距離)をPa
で示すと、観察部5の検出位置5aを原点とするパター
ン光3上の点Pの投影点の座標(Xp 、 Yp 、 
 Zp )は、三角測量の原理に基づいて次の(1)〜
(3)式で示される。
X of any point P on the patterned light 3 observed by the observation unit 5
The angle in the axial direction is θ, the angle in the Y-axis direction is θPYs The parallax (distance between the irradiation position of pattern light 3 and the observation position) is Pa
The coordinates (Xp, Yp,
Zp) is based on the principle of triangulation as follows (1) ~
It is shown by equation (3).

ZP −P s / (1*n θα+【■θPり  
−(+)X p = Z p ・1■θpx     
    ’・・(2)Y、WZP 佃xnθPY   
      −(3)コウシテ、パターン光3上の各点
における空間座標を求めることができ、これに基づ0て
被写体の形状を計測することができる。
ZP −P s / (1*n θα+[■θPri
−(+)X p = Z p ・1■θpx
'...(2) Y, WZP Tsukuda xnθPY
-(3) The spatial coordinates of each point on the pattern light 3 can be determined, and the shape of the subject can be measured based on this.

第8図は従来におけるノくターン投影系4先端部の詳細
な構成図を示しており、光ファイノ(6で導かれたレー
ザ光は集束レンズ7で集束された後、絞り8で光量が制
御され、偏角プリズム9で偏向される。そして、回折格
子10を通過することでパターン光が生成され被写体2
に投影される。
Figure 8 shows a detailed configuration diagram of the tip of the conventional Nokuturn projection system 4, in which the laser beam guided by the optical fin (6) is focused by the focusing lens 7, and then the light amount is controlled by the aperture 8. The beam is deflected by the deflection prism 9. Then, by passing through the diffraction grating 10, pattern light is generated and
projected on.

このとき、回折格子10から照射される)くターン光は
直線状に投影されなければならなtl。
At this time, the curved light emitted from the diffraction grating 10 must be projected in a straight line.

しかしながら、第8図から明らかなように、偏角プリズ
ム9で偏光されレーザ光は回折格子10に対して斜め方
向から入射しているので、パターン光3が直線状となら
ず、歪んだ曲線となってしまう。
However, as is clear from FIG. 8, since the laser beam polarized by the deflection prism 9 is incident on the diffraction grating 10 from an oblique direction, the patterned light 3 does not form a straight line but a distorted curve. turn into.

一方、第7図に示すようにこの種の内視鏡スコープ1に
は、被写体2に洗浄水を噴射したり、対象物を切取る等
の操作を行なうための各種部材を挿入する目的で鉗子チ
ャンネル12が設けられている。そして、第8図に示し
たパターン投影系は通常この鉗子チャンネル12内に挿
入して用いられる。
On the other hand, as shown in FIG. 7, this type of endoscope 1 is equipped with forceps for the purpose of inserting various members for performing operations such as spraying cleaning water onto the subject 2 and cutting out the subject. A channel 12 is provided. The pattern projection system shown in FIG. 8 is normally inserted into this forceps channel 12 for use.

このとき、第7図に示したパターン光3の照射角θαを
固定するために、第8図に示したパターン投影系4は、
操作側から加えた回転力を略無損失でスコープ末端側に
伝達することのできるトルクケーブル11に覆設されて
いる。
At this time, in order to fix the irradiation angle θα of the patterned light 3 shown in FIG. 7, the pattern projection system 4 shown in FIG.
It is covered by a torque cable 11 that can transmit the rotational force applied from the operation side to the distal end of the scope with almost no loss.

しかしながら、従来装置ではこのトルクケーブル11を
操作側で固定させるべく手段が講じられていないため、
照射角θαを一定値に保持することが困難であった。
However, in the conventional device, no measures were taken to fix the torque cable 11 on the operating side.
It was difficult to maintain the irradiation angle θα at a constant value.

(発明が解決しようとする課題) このように、従来の形状計測内視鏡装置では、パターン
投影系4の先端部に設けられた回折格子10に対してレ
ーザ光が斜め方向から入射するのでパターン光3が歪ん
でしまうという欠点があった。
(Problems to be Solved by the Invention) As described above, in the conventional shape measuring endoscope device, since the laser beam is incident from an oblique direction on the diffraction grating 10 provided at the tip of the pattern projection system 4, There was a drawback that the light 3 was distorted.

また、パターン投影系4が内設されるトルクケーブル1
1を操作側で容易に固定することができないので形状計
測中にパターン投影系4が回転してしまうことがあり、
その結果パターン光4の照射角度θαが変動してしまう
という問題点があり、高精度な形状計測ができなかった
Furthermore, a torque cable 1 in which a pattern projection system 4 is installed is also provided.
1 cannot be easily fixed on the operating side, the pattern projection system 4 may rotate during shape measurement.
As a result, there was a problem in that the irradiation angle θα of the patterned light 4 fluctuated, making it impossible to measure the shape with high precision.

この発明はこのような従来の課題を解決するためになさ
れたもので、その目的とするところは、歪みのない直線
状のパターン光を照射することができ、かつ、トルクケ
ーブルを操作側で確実に固定することのできる形状計測
内視鏡装置を提供することにある。
This invention was made to solve these conventional problems, and its purpose is to be able to irradiate a linear pattern of light without distortion, and to securely connect the torque cable to the operating side. An object of the present invention is to provide a shape measuring endoscope device that can be fixed to a shape measuring device.

[発明の構成] (課題を解決するための手段) 上記目的を達成するため、本発明は、請求項1では、光
ファイバで導かれたレーザ光を集束。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the present invention, in claim 1, focuses a laser beam guided by an optical fiber.

偏光後パターン投影部材を通過させてパターン投形光を
生成し、該パターン投影光を被写体に投影して得られた
反射光を撮像素子で検出して被写体の形状を計測する形
状計測内視鏡装置において、前記パターン投影部材に対
して、偏光後のレーザ光が直角に入射するように当該パ
ターン投影部材を配設したこと、が特徴である。
A shape measurement endoscope that generates pattern projection light by passing through a pattern projection member after polarization, projects the pattern projection light onto a subject, detects the resulting reflected light with an image sensor, and measures the shape of the subject. The apparatus is characterized in that the pattern projection member is disposed such that the polarized laser light is incident on the pattern projection member at right angles.

また、請求項2では、前記パターン投影部材は、入射し
たレーザ光の光軸を法線とする平面に対して直交する平
面形状を、隣接する一方の辺となす角が鈍角となると共
に隣接する他方の辺となす角が鈍角となる平行四辺形に
形成した柱状体であることが特徴である。
Further, in claim 2, the pattern projection member has a planar shape that is orthogonal to a plane normal to the optical axis of the incident laser light, and an angle formed by one of the adjacent sides is an obtuse angle, and the adjacent side has an obtuse angle. It is characterized by being a columnar body formed in the shape of a parallelogram with an obtuse angle with the other side.

更に、請求項3では、内視鏡スコープ先端部からパター
ン投影光を被写体に投影し、この反射光を撮像素子で検
出して被写体の形状を計測する形状計測内視鏡装置にお
いて、前記内視鏡スコープ内に設けられた鉗子チャンネ
ルの操作側端部にキー溝を形成し、前記パターン投影光
の照射手段を、操作側から加えた回転力を略無損失でス
コープ末端側に伝達し得る管筒内に挿入させ、前記管筒
の操作側端部に前記キー溝に嵌合するキーを形成したこ
と、が特徴である。
Furthermore, according to a third aspect of the present invention, there is provided a shape measuring endoscope apparatus that projects pattern projection light onto a subject from a distal end of an endoscope scope, and detects the reflected light with an image sensor to measure the shape of the subject. A keyway is formed in the operation side end of a forceps channel provided in a mirror scope, and the pattern projection light irradiation means is a tube capable of transmitting rotational force applied from the operation side to the distal end of the scope with almost no loss. A feature of the present invention is that a key is formed at the operation side end of the tube cylinder to be inserted into the cylinder and to fit into the key groove.

(作用ン 上述の如く構成すれば、回折格子等のパターン投影部材
に対してレーザ光が直角に入射するようになる。その結
果、被写体に投影されるパターン光が直線状になるので
、高精度な形状計測が可能となる。
(If configured as described above, the laser light will be incident on the pattern projection member such as the diffraction grating at right angles. As a result, the pattern light projected onto the subject will be linear, resulting in high accuracy. shape measurement becomes possible.

また、パターン投影部材の側面形状が平行四辺形となる
ように形成すれば、パターン投影系への納まりが良くな
り、容易に配設することができるようになる。
Furthermore, if the side surface shape of the pattern projection member is formed to be a parallelogram, it will fit better in the pattern projection system and can be easily disposed.

更に、内視鏡スコープ内に設けられた鉗子チャンネルに
キー溝が形成され、この鉗子チャンネル内に配設する管
筒の操作側端部に前記キー溝と嵌合するキーが形成され
る。したがって、このキーとキー溝とを嵌合させること
で、管筒の回転位置を固定することができ、これによっ
て管筒内に設けられたパターン投影光の照射手段から照
射されるパターン光の照射角を一定に保持することがで
きるようになる。
Further, a keyway is formed in a forceps channel provided within the endoscope, and a key that fits into the keyway is formed at the operation side end of the tube tube disposed within the forceps channel. Therefore, by fitting this key with the keyway, the rotational position of the tube can be fixed, thereby irradiating the pattern light emitted from the pattern projection light irradiation means provided inside the tube. The angle can be kept constant.

(実施例) 以下、本発明の一実施例を図面を参照、しながら説明す
る。第4図は該実施例における形状計測内視鏡装置の外
観図である。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 4 is an external view of the shape measuring endoscope device in this embodiment.

同図に示す形状計測内視鏡装置は、内視鏡スコープ1と
、このスコープ1で撮像された画像データを処理するプ
ロセッサ20を含む本体24と、処理された画像データ
を表示するモニタ21に大別されており、内視鏡スコー
プ1は操作部22゜及びユニバーサルコード23を介し
て本体24に接続されている。
The shape measuring endoscope device shown in the figure includes an endoscope scope 1, a main body 24 including a processor 20 that processes image data captured by the scope 1, and a monitor 21 that displays the processed image data. The endoscope 1 is connected to a main body 24 via an operating section 22° and a universal cord 23.

また、本体24は照明用光源25と、この光源の照光、
遮光を切換える回転フィルタ26を有しており、光源2
5から出射された光は図示しないライトガイドを介して
内視鏡スコープ1の先端部に導かれ、被写体2を撮像可
能な光量下となるように照射する。
The main body 24 also includes an illumination light source 25, illumination from this light source,
It has a rotary filter 26 that switches the light shielding, and the light source 2
The light emitted from the endoscope 1 is guided to the distal end of the endoscope 1 via a light guide (not shown), and irradiates the subject 2 with an amount of light that can be imaged.

レーザ用光源27は、被写体2にパターン光3を投影す
るためのレーザ光を出射するものであり、このレーザ光
は後述するパターン投影系の光ファイバを介して内視鏡
スコープ1の先端部に導かれるようになっている。
The laser light source 27 emits a laser beam for projecting pattern light 3 onto the subject 2, and this laser beam is transmitted to the tip of the endoscope 1 via an optical fiber of a pattern projection system, which will be described later. It is meant to be guided.

第1図は本発明の主要部分であるパターン投影系4の先
端部の構成図である。該パターン投影系4は第4図に示
した内視鏡スコープ1に設けられた鉗子チャンネル(不
図示)内に配設されるものであり、レーザ用光源27か
ら出射されたレーザ光を導く光ファイバ6と、導かれた
レーザ光を集束する集束レンズ7と、レーザ光の光量を
調節する絞り8と、レーザ光を偏光させる偏角プリズム
9と、レーザ光からライン状パターン光を生成して被写
体2に照射する回折格子10を有している。
FIG. 1 is a block diagram of the tip of a pattern projection system 4, which is the main part of the present invention. The pattern projection system 4 is disposed within a forceps channel (not shown) provided in the endoscope 1 shown in FIG. A fiber 6, a focusing lens 7 that focuses the guided laser light, an aperture 8 that adjusts the amount of laser light, a polarization prism 9 that polarizes the laser light, and a line-shaped pattern light that is generated from the laser light. It has a diffraction grating 10 that illuminates the subject 2.

ここで本発明においては、発明者らの鋭意検討の結果、
偏角プリズム9を通過したレーザ光が回折格子10に対
して直角に入射したときに、被写体2に投影されるパタ
ーン光が直線状になることを実験的に確認した。
Here, in the present invention, as a result of intensive study by the inventors,
It has been experimentally confirmed that when the laser light that has passed through the deflection prism 9 is incident on the diffraction grating 10 at right angles, the pattern light projected onto the subject 2 becomes linear.

従って、本実施例では回折格子10をパターン投影系4
の長手方向に対してやや傾斜させて設置し、レーザ光が
直角に入射するように構成している。その結果、被写体
2には直線状のパターン光3が投影されるようになるの
で、高精度な形状計測が可能となる。
Therefore, in this embodiment, the diffraction grating 10 is connected to the pattern projection system 4.
It is installed at a slight incline with respect to the longitudinal direction of the laser beam, so that the laser beam is incident at right angles. As a result, a linear pattern of light 3 is projected onto the subject 2, allowing highly accurate shape measurement.

また、回折格子をパターン投影部材4内に傾斜させて配
置することは非常に納まりが悪く安定性に乏しい。そこ
で、第2図(A)に示すように回折格子10が傾斜した
ときに、その上端面10a1及び下端面10bがパター
ン投影系4の長手方向と平行になるように形成する。つ
まり、側面の断面形状が平行四辺形(長方形を除く)と
なるように回折格子を加工して形成する。その結果、第
3図に示すように、回折格子10がパターン投影系4内
に容易に納まるようになり、安定性が向上する。
Furthermore, arranging the diffraction grating in the pattern projection member 4 in an inclined manner is very difficult to fit and lacks stability. Therefore, when the diffraction grating 10 is tilted as shown in FIG. 2(A), the upper end surface 10a1 and the lower end surface 10b are formed so as to be parallel to the longitudinal direction of the pattern projection system 4. That is, the diffraction grating is processed and formed so that the cross-sectional shape of the side surface is a parallelogram (excluding rectangles). As a result, as shown in FIG. 3, the diffraction grating 10 can be easily accommodated within the pattern projection system 4, improving stability.

また、回折格子10以外のパターン投影部材として、第
2図(B)に示すロッドレンズ30、及び第2図(C)
に示すシリンドリカルレンズ31を使用した場合におい
ても同様に、その側面形状を平行四辺形とすることで容
易にパターン投影系4内に配置することができる。
In addition, as a pattern projection member other than the diffraction grating 10, a rod lens 30 shown in FIG. 2(B) and a rod lens 30 shown in FIG. 2(C) are used.
Similarly, when the cylindrical lens 31 shown in FIG.

第5図はパターン投影系4の全体構成図である。FIG. 5 is an overall configuration diagram of the pattern projection system 4. As shown in FIG.

同図に示すように、トルクケーブル11は調整部41に
接続されており、該調整部41を回転させることで先端
部43から照射されるパターン光3の照射角を調節でき
るようになっている。
As shown in the figure, the torque cable 11 is connected to an adjustment section 41, and by rotating the adjustment section 41, the irradiation angle of the patterned light 3 emitted from the tip section 43 can be adjusted. .

調整部41はレーザ光導光用の光ファイバを内設するチ
ューブ42を介してコネクタ40に接続されており、該
コネクタ40を第4図に示したレーザ用光源27に嵌合
させてレーザ光を光ファイバに導いている。
The adjustment unit 41 is connected to a connector 40 via a tube 42 that has an optical fiber for guiding the laser beam, and the connector 40 is fitted to the laser light source 27 shown in FIG. 4 to transmit the laser beam. It leads to optical fiber.

また、調整部41にはキー44が設けられており、その
断面形状は第6図(A)に示す如く構成されている。
Further, the adjustment section 41 is provided with a key 44, the cross-sectional shape of which is configured as shown in FIG. 6(A).

一方、第6図(B)に示すように、トルクケーブル11
を挿入する鉗子チャンネル12の挿入部には前記キー4
4と嵌合するキー溝45が形成される。そして、キー4
4とキー溝45とが嵌合したときにパターン投影系4か
ら照射されるパターン光3の照射角度が所定値となるよ
うに予め設定しておけば、操作者は容易にパターン投影
系の回転位置を合わせることができる。
On the other hand, as shown in FIG. 6(B), the torque cable 11
The insertion part of the forceps channel 12 into which the forceps are inserted is provided with the key 4.
A keyway 45 is formed to fit into the keyway 4. And key 4
If the irradiation angle of the pattern light 3 emitted from the pattern projection system 4 is set in advance to be a predetermined value when the pattern projection system 4 and the keyway 45 are fitted together, the operator can easily rotate the pattern projection system. You can adjust the position.

このようにして、本実施例では、パターン投影系4に設
けられた回折格子10を、レーザ光が直角に入射するよ
うに配設している。従って、被写体2に投影されるパタ
ーン光が直線状となり高精度な形状計測が可能となる。
In this manner, in this embodiment, the diffraction grating 10 provided in the pattern projection system 4 is arranged so that the laser beam is incident at right angles. Therefore, the pattern light projected onto the subject 2 becomes linear, allowing highly accurate shape measurement.

また、回折格子10を傾斜させて配設したときにその上
端面、及び下端面がパターン投影系4の長手方向に対し
て平行となるように形成すれば、該回折格子10のパタ
ーン投影系4への納まりが良くなり安定性が向上する。
Furthermore, if the diffraction grating 10 is arranged so that its upper end face and lower end face are parallel to the longitudinal direction of the pattern projection system 4, the pattern projection system 4 of the diffraction grating 10 can be It fits better and improves stability.

更に、本実施例ではパターン投影系4の調整部41にキ
ー44が形成され、鉗子チャンネル12の挿入口にはこ
のキー44と嵌合するキー溝45が形成されているので
、このキー44とキー溝45を嵌合させるだけで容易に
トルクケーブル11の回転位置を決めることができ、こ
れによってパターン光3の照射角を一定に保持すること
ができる。
Furthermore, in this embodiment, a key 44 is formed in the adjustment section 41 of the pattern projection system 4, and a key groove 45 that fits this key 44 is formed in the insertion opening of the forceps channel 12. The rotational position of the torque cable 11 can be easily determined simply by fitting the keyway 45, and thereby the irradiation angle of the patterned light 3 can be kept constant.

[発明の効果] 以上説明したように、本発明では、回折格子等のパター
ン投影部材を、レーザ光が直角に入射するように配設し
ている。従って、従来のようにパターン光が歪むことは
なく直線状のパターン光を投影することができ、その結
果、高精度な形状計測が可能となる。
[Effects of the Invention] As explained above, in the present invention, a pattern projection member such as a diffraction grating is arranged so that a laser beam is incident at right angles. Therefore, it is possible to project linear pattern light without distorting the pattern light as in the conventional case, and as a result, highly accurate shape measurement is possible.

また、パターン投影部材の上端面、及び下端面を加工し
、側面形状が平行四辺形となるように形成すれば、パタ
ーン投影部材のパターン投影系への納まりが良くなり安
定性が向上する。
Furthermore, if the upper and lower end surfaces of the pattern projection member are processed to form a side surface shape of a parallelogram, the pattern projection member can be better fitted into the pattern projection system and stability can be improved.

更に、鉗子チャンネルの操作側端部にキー溝を形成し、
パターン投影系を内設した管筒の操作側に前記キー溝と
嵌合するキーを形成しているので、パターン投影光照射
手段の回転位置を容易に決定することができ、パターン
光の照射角を一定値に固定することができるという効果
が得られる。
Furthermore, a keyway is formed at the operation side end of the forceps channel,
Since a key that fits into the key groove is formed on the operation side of the tube tube in which the pattern projection system is installed, the rotational position of the pattern projection light irradiation means can be easily determined, and the irradiation angle of the pattern light can be adjusted. This has the effect of being able to fix the value to a constant value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用された形状計測内視鏡におけるパ
ターン投影系の一実施例を示す構成図。 第2図は各パターン投影部材の形状を示す説明図。 第3図はパターン投影系の変形例を示す構成図。 第4図は形状計測内視鏡の外観図、第5図はパターン投
影系の全体構成図、第6図は調整部、及び鉗子チャンネ
ルの断面形状を示す説明図、第7図は形状計測内視鏡の
測定原理を示す説明図、第8図は従来におけるパターン
投影系の構成図である。 1・・・内視鏡スコープ 3・・・パターン光4・・・
パターン投影系 10・・・回折格子11・・・トルク
ケーブル 12・・・鉗子チャンネル27・・・レーザ
用光源 30・・・ロッドレンズ31・・・シリンドリ
カルレンズ 41・・・調整部 44・・・キー 45・・・キー溝 ■L弁理士三好秀利 第3図 (A) 菓4図 第5図 CB) $1図
FIG. 1 is a configuration diagram showing an embodiment of a pattern projection system in a shape measuring endoscope to which the present invention is applied. FIG. 2 is an explanatory diagram showing the shape of each pattern projection member. FIG. 3 is a configuration diagram showing a modification of the pattern projection system. Figure 4 is an external view of the shape measurement endoscope, Figure 5 is an overall configuration diagram of the pattern projection system, Figure 6 is an explanatory diagram showing the cross-sectional shape of the adjustment section and forceps channel, and Figure 7 is the inside of the shape measurement endoscope. FIG. 8, which is an explanatory diagram showing the measurement principle of the endoscope, is a configuration diagram of a conventional pattern projection system. 1... Endoscope scope 3... Pattern light 4...
Pattern projection system 10... Diffraction grating 11... Torque cable 12... Forceps channel 27... Laser light source 30... Rod lens 31... Cylindrical lens 41... Adjustment section 44... Key 45...Keyway ■L Patent Attorney Hidetoshi Miyoshi Figure 3 (A) Figure 4 Figure 5 CB) Figure $1

Claims (3)

【特許請求の範囲】[Claims] (1)光ファイバで導かれたレーザ光を集束、偏光後パ
ターン投影部材を通過させてパターン投影光を生成し、
該パターン投影光を被写体に投影して得られた反射光を
撮像素子で検出して被写体の形状を計測する形状計測内
視鏡装置において、前記パターン投影部材に対して、偏
光後のレーザ光が直角に入射するように当該パターン投
影部材を配設したこと を特徴とする形状計測内視鏡装置。
(1) Laser light guided by an optical fiber is focused, polarized, and then passed through a pattern projection member to generate pattern projection light;
In a shape measuring endoscope device that measures the shape of a subject by projecting the pattern projection light onto a subject and detecting the reflected light obtained by using an image sensor, polarized laser light is directed to the pattern projection member. A shape measuring endoscope device characterized in that the pattern projection member is arranged so that the pattern projection member is incident at a right angle.
(2)前記パターン投影部材は、入射したレーザ光の光
軸を法線とする平面に対して直交する平面形状を、隣接
する一方の辺となす角が鈍角となると共に隣接する他方
の辺となす角が鈍角となる平行四辺形に形成した柱状体
である請求項1記載の形状計測内視鏡装置。
(2) The pattern projection member has a planar shape that is perpendicular to a plane normal to the optical axis of the incident laser beam, and the angle between the adjacent side and the other side is obtuse. The shape measuring endoscope device according to claim 1, wherein the shape measuring endoscope device is a columnar body formed in the shape of a parallelogram having obtuse angles.
(3)内視鏡スコープ先端部からパターン投影光を被写
体に投影し、この反射光を撮像素子で検出して被写体の
形状を計測する形状計測内視鏡装置において、 前記内視鏡スコープ内に設けられた鉗子チャンネルの操
作側端部にキー溝を形成し、 前記パターン投影光の照射手段を、操作側から加えた回
転力を略無損失でスコープ末端側に伝達し得る管筒内に
挿入させ、 前記管筒の操作側端部に前記キー溝に嵌合するキーを形
成したこと を特徴とする形状計測内視鏡装置。
(3) In a shape measuring endoscope device that projects pattern projection light onto a subject from the tip of an endoscope scope and measures the shape of the subject by detecting this reflected light with an image sensor, A key groove is formed at the operation side end of the provided forceps channel, and the pattern projection light irradiation means is inserted into a tube tube that can transmit the rotational force applied from the operation side to the distal end of the scope with almost no loss. A shape measuring endoscope device, further comprising: a key that fits in the key groove formed at the operation side end of the tube tube.
JP2097772A 1990-04-16 1990-04-16 Shape measuring endoscope device Pending JPH03295532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2097772A JPH03295532A (en) 1990-04-16 1990-04-16 Shape measuring endoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2097772A JPH03295532A (en) 1990-04-16 1990-04-16 Shape measuring endoscope device

Publications (1)

Publication Number Publication Date
JPH03295532A true JPH03295532A (en) 1991-12-26

Family

ID=14201141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2097772A Pending JPH03295532A (en) 1990-04-16 1990-04-16 Shape measuring endoscope device

Country Status (1)

Country Link
JP (1) JPH03295532A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279028A (en) * 2004-03-30 2005-10-13 Hamamatsu Univ School Of Medicine Endoscope
US7764381B2 (en) 2006-12-21 2010-07-27 Seiko Epson Corporation Lighting device and optical apparatus
US8727968B2 (en) 2008-09-02 2014-05-20 Olympus Corporation Medical treatment endoscope with a positioning mechanism
WO2016157994A1 (en) * 2015-03-31 2016-10-06 富士フイルム株式会社 Endoscopic diagnostic device, method for measuring size of lesion site, program, and recording medium
JP2017512100A (en) * 2014-03-07 2017-05-18 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Endoscope with depth determination
WO2018055933A1 (en) * 2016-09-20 2018-03-29 富士フイルム株式会社 Measurement assistance device, endoscope system, endoscope system processor, and measurement assistance method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279028A (en) * 2004-03-30 2005-10-13 Hamamatsu Univ School Of Medicine Endoscope
US7764381B2 (en) 2006-12-21 2010-07-27 Seiko Epson Corporation Lighting device and optical apparatus
US8727968B2 (en) 2008-09-02 2014-05-20 Olympus Corporation Medical treatment endoscope with a positioning mechanism
US9186050B2 (en) 2008-09-02 2015-11-17 Olympus Corporation Medical treatment endoscope with a positioning mechanism
JP2017512100A (en) * 2014-03-07 2017-05-18 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Endoscope with depth determination
WO2016157994A1 (en) * 2015-03-31 2016-10-06 富士フイルム株式会社 Endoscopic diagnostic device, method for measuring size of lesion site, program, and recording medium
JP2016189859A (en) * 2015-03-31 2016-11-10 富士フイルム株式会社 Endoscopic diagnostic device, lesioned part size measurement method, program, and recording medium
US10806336B2 (en) 2015-03-31 2020-10-20 Fujifilm Corporation Endoscopic diagnosis apparatus, lesion portion size measurement method, program, and recording medium
WO2018055933A1 (en) * 2016-09-20 2018-03-29 富士フイルム株式会社 Measurement assistance device, endoscope system, endoscope system processor, and measurement assistance method
JPWO2018055933A1 (en) * 2016-09-20 2019-02-28 富士フイルム株式会社 Measurement support apparatus, endoscope system, processor of endoscope system, and measurement support method

Similar Documents

Publication Publication Date Title
DE102007016444B4 (en) Processing facility
US20120281071A1 (en) Optical Scanning Device
US9844318B2 (en) Devices, systems, and methods for calibrating an OCT imaging system in a laser surgical system
GB2324736A (en) Targetting device for straight-lined introduction of an instrument into the body
JP2004089552A (en) Diagnostic light irradiation apparatus
JPH02287311A (en) Endoscope device with measuring mechanism
JP3283339B2 (en) Ophthalmic equipment
JP3446272B2 (en) Endoscope with measurement function
EP1102087B1 (en) Baseline length variable surface geometry measuring apparatus and range finder
JPH03295532A (en) Shape measuring endoscope device
JP5700540B2 (en) Optical device and optical measuring device
JP3836060B2 (en) Radiation generation apparatus and radiation irradiation direction calibration apparatus
CN112764184B (en) Optical device and optical measuring machine
JPH0417834A (en) Shape measuring endoscope apparatus and measurement of shape using the same
JPH1066707A (en) Periodontal pocket measuring device
JPH0769160B2 (en) measuring device
JPS63108981A (en) Distance measuring instrument
KR102625950B1 (en) Calibration method of optical coherence tomography device
JP2022176857A (en) Optical measurement device and optical measurement method
JP2659320B2 (en) Electron beam exposure equipment
KR20150049815A (en) Improved 3-D measurement using fiber optic devices
JPH05341206A (en) Stereoscopic endoscope device
JPS5855804A (en) Body detecting device
JP7337637B2 (en) Laser probe and optical adjustment method
JP4341467B2 (en) Radiation therapy equipment