JPH0769160B2 - measuring device - Google Patents

measuring device

Info

Publication number
JPH0769160B2
JPH0769160B2 JP1121156A JP12115689A JPH0769160B2 JP H0769160 B2 JPH0769160 B2 JP H0769160B2 JP 1121156 A JP1121156 A JP 1121156A JP 12115689 A JP12115689 A JP 12115689A JP H0769160 B2 JPH0769160 B2 JP H0769160B2
Authority
JP
Japan
Prior art keywords
slit
light
lens
elliptical
forming member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1121156A
Other languages
Japanese (ja)
Other versions
JPH02300613A (en
Inventor
貞和 杉山
暉雄 浅枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1121156A priority Critical patent/JPH0769160B2/en
Publication of JPH02300613A publication Critical patent/JPH02300613A/en
Publication of JPH0769160B2 publication Critical patent/JPH0769160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は測定装置、とりわけ照射手段の構造に関する。FIELD OF THE INVENTION The present invention relates to a measuring device, in particular to the structure of an irradiation means.

従来の技術 プレス成形したパネルのような測定対象の形状を三角測
量の原理で測定する場合において、産業用ロボットのア
ームに計測ユニットを取り付け、産業用ロボットのアー
ムを駆動することにより計測ユニットを測定対象に相対
的に移動しながら、計測ユニットから測定対象の測定面
にスリット光がを照射,投影し、この投影像を計測ユニ
ットの撮像手段で捕らえて測定対象の立体的な全体形状
を計測する所謂光切断法による測定装置が知られている
(特開昭62−299708号公報参照)。
Conventional technology When measuring the shape of a measurement object such as a press-molded panel by the principle of triangulation, the measurement unit is attached to the arm of an industrial robot and the measurement unit is measured by driving the arm of the industrial robot. While moving relative to the object, the measuring unit irradiates and projects the slit light onto the measuring surface of the measuring object, and the projected image is captured by the imaging means of the measuring unit to measure the three-dimensional overall shape of the measuring object. A measuring device using a so-called light-section method is known (see Japanese Patent Laid-Open No. 62-299708).

発明が解決しようとする課題 照射手段においては、一般的には第6図(B)に示すよ
うに、図外の光源から発射した光を図外のコリメータレ
ンズと図外の凸レンズとに透過して円形に形成し、この
円形光L1を図外のシリンドリカル凹レンズと図外の凸レ
ンズとに透過して楕円形に形成し、この楕円形光L2をス
リット形成部材Aのスリットaに通してスリット光L3
形成している。しかし、スリット光L3の長手幅を大きく
して測定範囲の幅を広げようとするには、シリンドリカ
ル凹レンズの後に通す凸レンズの直径と焦点距離とを大
きくする必要がある。このため測定範囲の幅を広げる
と、凸レンズの直径と焦点距離を大きくした分、照射手
段が大型となるばかりでなく、第6図(A)にハッチン
グで示したようにスリット形成部材で遮られる光量が多
くパワーロスが大きいうえ、スリット形成部材を透過す
る際に回折によるハレーションを生じ、スリット光L3
ボケを生じるので、にはかに採用しがたいものである。
In the irradiation means, generally, as shown in FIG. 6 (B), light emitted from a light source (not shown) is transmitted through a collimator lens (not shown) and a convex lens (not shown). The circular light L 1 is transmitted through a cylindrical concave lens (not shown) and a convex lens (not shown) to form an ellipse, and the elliptical light L 2 is passed through the slit a of the slit forming member A. It is formed in a slit light L 3. However, in order to increase the longitudinal width of the slit light L 3 and widen the width of the measurement range, it is necessary to increase the diameter and the focal length of the convex lens that passes after the cylindrical concave lens. Therefore, when the width of the measurement range is widened, the diameter and focal length of the convex lens are increased, so that not only the irradiation means becomes large, but also the slit forming member shields the irradiation means as shown in FIG. 6 (A). Since the amount of light is large and the power loss is large, and halation due to diffraction occurs when transmitting through the slit forming member, and the slit light L 3 becomes blurred, it is difficult to use for any purpose.

課題を解決するための手段 光切断法により測定対象の形状を測定する測定装置にお
いて、測定対象上にスリット光を照射,投影する照射手
段は、楕円形のレーザ光を発射するレーザ光源と、この
レーザ光源から発射した楕円形光を長軸方向に拡大しつ
つ透過するレンズ系と、このレンズ系内に配置され、前
記楕円形光の長軸方向に延びるスリットを有するスリッ
ト形成部材とを備えてなり、前記レンズ系は、レーザ光
源に近い側から順に配置されたコリメータレンズとシリ
ンドリカル凹レンズとおよび凸レンズとから構成されて
いるとともに、前記シリンドリカル凹レンズと凸レンズ
との間に前記スリット形成部材が配置されている。
Means for Solving the Problem In a measuring device for measuring the shape of a measuring object by a light section method, an irradiating means for irradiating and projecting slit light on the measuring object is a laser light source for emitting an elliptical laser beam, and A lens system that transmits the elliptical light emitted from the laser light source while expanding it in the long axis direction, and a slit forming member that is disposed in the lens system and has a slit that extends in the long axis direction of the elliptical light are provided. The lens system is composed of a collimator lens, a cylindrical concave lens, and a convex lens, which are sequentially arranged from the side closer to the laser light source, and the slit forming member is arranged between the cylindrical concave lens and the convex lens. There is.

作用 レーサ光源から発射された楕円形光の長軸方向をスリッ
ト形成部材で遮ることなく、楕円形光の短軸方向のみを
スリット形成部材で遮ることにより、スリット光を形成
する。
The slit light is formed by blocking only the minor axis direction of the elliptical light emitted from the laser light source by the slit forming member without blocking the major axis direction of the elliptical light.

実施例 第4図に示すように、1は測定対象であって、例えば所
要の形状にプレス成形されたパネルである。2は計測ユ
ニットであって、照射手段3と撮像手段4とを備えてい
る。照射手段3は光源からの光をスリット光L3に形成
し、このスリット光L3を測定対象1の測定面に照射,投
影する構造になっている。撮像手段4は測定対象1の測
定面にスリット光L3により描かれた投影像を撮像して電
気量に変換して出力する構造になっている。また計測ユ
ニット2は産業用ロボットのアーム5が駆動することに
より、測定対象1と一定の離間距離を保ちながらスリッ
ト光L3の長手方向と直交する方向に移動して、測定対象
1の全体形状を測定するようになっている。
Example As shown in FIG. 4, reference numeral 1 is a measurement target, for example, a panel press-molded into a desired shape. Reference numeral 2 is a measurement unit, which includes an irradiation unit 3 and an imaging unit 4. The irradiation means 3 has a structure that forms light from a light source into slit light L 3 and irradiates and projects this slit light L 3 onto the measurement surface of the measurement target 1. The image pickup means 4 has a structure for picking up a projection image drawn by the slit light L 3 on the measurement surface of the measurement target 1, converting it into an electric quantity, and outputting it. Further, the measuring unit 2 is moved in a direction orthogonal to the longitudinal direction of the slit light L 3 while maintaining a constant distance from the measurement target 1 by driving the arm 5 of the industrial robot, and the entire shape of the measurement target 1 is measured. Is designed to measure.

ここで照射手段3は第1,2図に示すように、レーザ光源1
0とレンズ系20とスリット形成部材30とで構成されてい
る。
Here, the irradiation means 3 is a laser light source 1 as shown in FIGS.
0, the lens system 20, and the slit forming member 30.

レーザ光源10は第3図に示すように半導体レーザで構成
されており、楕円形光L2を発射するものである。
The laser light source 10 is composed of a semiconductor laser as shown in FIG. 3, and emits elliptical light L 2 .

レンズ系20はレーザ光源10側から順に配置したコリメー
タレンズ21とシリンドリカル凹レンズ22と凸レンズ23と
で構成されている。シリンドリカル凹レンズ22の凹面軸
は楕円形光L2の長軸に沿って配置されている。
The lens system 20 is composed of a collimator lens 21, a cylindrical concave lens 22 and a convex lens 23 which are sequentially arranged from the laser light source 10 side. The concave surface axis of the cylindrical concave lens 22 is arranged along the long axis of the elliptical light L 2 .

スリット形成部材30はレンズ系20内に配置されており、
そのスリット31の長手幅が楕円形光L2の長軸に沿って配
置され、スリット30aの短手幅が楕円形光L2の短軸に沿
って配置されている。
The slit forming member 30 is arranged in the lens system 20,
The longitudinal width of the slit 31 is arranged along the major axis of the elliptical light L 2 , and the lateral width of the slit 30a is arranged along the minor axis of the elliptical light L 2 .

以上の実施例構造によれば、照射手段3から発射するス
リット光L3の長手幅を産業用ロボットのY軸方向と平行
にセットし、スリット光L3が産業用ロボットのX軸方向
と平行に移動するように、産業用ロボットのアーム5を
駆動しながら、スリット光L3を測定対象1に照射,投影
し、この投影像を撮像手段4で捕らえて測定対象1の全
体形状を測定する。
According to the above embodiment structure, the longitudinal width of the slit light L 3 emitted from the irradiation means 3 is set parallel to the Y-axis direction of the industrial robot, and the slit light L 3 is parallel to the X-axis direction of the industrial robot. While moving the arm 5 of the industrial robot so as to move to, the slit light L 3 is projected onto the measuring object 1 and projected, and the projected image is captured by the imaging means 4 to measure the entire shape of the measuring object 1. .

ここで、レーザ光源10から発射された楕円形光L2はコリ
メータレンズ21で平行光L4に形成され、この平行光L4
シリンドリカル凹レンズ22とスリット形成部材30のスリ
ット31を経由して凸レンズ23を透過する際に、シリンド
リカル凹レンズ22の凹面軸とスリット形成部材30のスリ
ット31の長手幅とが楕円形光L2の長軸に沿って配置され
ているので、第1図に示すように楕円形光L2の短軸方向
から見ると、スリット31で遮光されることなく、シリン
ドリカル凹レンズ22で発散作用を受けながら凸レンズ23
に到達し、凸レンズ23で集束作用を受けて平行光L4とな
って測定対象1上に照射,投影する。一方第2図に示す
ように楕円形光L2の長軸方向から見ると、シリンドリカ
ル凹レンズ22で発散作用を受けることなく、平行光L4
ままスリット形成部材30に到達して遮光され、スリット
31による所要の幅で凸レンズ23に到達し、凸レンズ23で
集束作用を受けてスリット光L3として測定対象1上に照
射,投影する。つまり、シリンドリカル凹レンズ22の凹
面軸が楕円形光L2の長軸に沿って配置されているので、
シリンドリカル凹レンズ22による発散作用でスリット光
L3の長手幅が大きくなり、もって測定範囲の幅が広が
る。しかもスリット31の長手幅が楕円形光L2の長軸に沿
って配置されているので、第5図(B)に示すようにス
リット形成部材30で遮られる光量が少なくなってパワー
ロスが小さいうえ、第5図(A)に示すようにスリット
形成部材30を透過する際に回折によるハレーションを生
じることもないので、ボケのないシャープな像を結ぶこ
とができる。
Here, elliptical light L2 emitted from the laser light source 10 is formed into parallel light L 4 by the collimator lens 21, the convex lens 23 the parallel light L 4 is via the slit 31 of the cylindrical concave lens 22 and the slit-forming member 30 When passing through, the concave surface axis of the cylindrical concave lens 22 and the longitudinal width of the slit 31 of the slit forming member 30 are arranged along the long axis of the elliptical light L 2 , so that the elliptical shape as shown in FIG. When viewed from the short axis direction of the shaped light L 2, the convex lens 23 is not shielded by the slit 31 but is divergent by the cylindrical concave lens 22.
When the convex lens 23 receives the focusing effect, the parallel light L 4 is irradiated and projected onto the measurement target 1. On the other hand, when viewed from the second major axis of the elliptical beam L 2 as shown in FIG, without receiving a diverging action in cylindrical concave lens 22, it is shielded and reaches the left slit forming member 30 of the parallel light L 4, the slits
The light reaches the convex lens 23 with a required width by 31 and is subjected to the focusing action by the convex lens 23 to be irradiated and projected as slit light L 3 onto the measurement target 1. That is, since the concave surface axis of the cylindrical concave lens 22 is arranged along the long axis of the elliptical light L 2 ,
Slit light due to the divergent action of the cylindrical concave lens 22
The longitudinal width of L 3 is increased, and the width of the measurement range is expanded accordingly. Moreover, since the longitudinal width of the slit 31 is arranged along the major axis of the elliptical light L 2 , as shown in FIG. 5 (B), the amount of light blocked by the slit forming member 30 is small and the power loss is small. As shown in FIG. 5A, since halation due to diffraction does not occur when passing through the slit forming member 30, a sharp image without blurring can be formed.

発明の効果 以上のように本発明によれば、レーザ光源から発射され
た楕円形光の長軸方向をスリット形成部材で遮ることな
く、楕円形光の短軸方向のみをスリット形成部材で遮る
ことにより、スリット光を形成することができるので、
凸レンズの直径と焦点距離とを大きくする必要もなく、
照射手段をコンパクトに構成でき、しかも測定範囲の幅
を大きくでき、ボケのない投影像を形成できる。
EFFECTS OF THE INVENTION As described above, according to the present invention, the slit forming member does not block the major axis direction of the elliptical light emitted from the laser light source, and the slit forming member blocks only the minor axis direction of the elliptical light. Since it is possible to form slit light,
There is no need to increase the diameter and focal length of the convex lens,
The irradiation means can be configured compactly, the width of the measurement range can be increased, and a projected image without blur can be formed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の要部を楕円形光の短軸方向
より見た構成図、第2図は同実施例の要部を楕円形光の
長軸方向より見た構成図、第3図は同実施例のレーザ光
源の斜視図、第4図は同実施例の全体を示す構成図、第
5図は同実施例の作用説明図、第6図は従来の作用説明
図である。 1……測定対象、2……照射手段、10……レーザ光源、
20……レンズ系、21……コリメータレンズ、22……シリ
ンドリカル凹レンズ、23……凸レンズ、30……スリット
形成部材。
FIG. 1 is a configuration diagram of an essential part of an embodiment of the present invention viewed from the minor axis direction of elliptical light, and FIG. 2 is a configuration diagram of the essential part of the same embodiment viewed from the major axis direction of an elliptical light. FIG. 3 is a perspective view of the laser light source of the same embodiment, FIG. 4 is a configuration diagram showing the whole of the same embodiment, FIG. 5 is an operation explanatory view of the same embodiment, and FIG. Is. 1 ... object to be measured, 2 ... irradiation means, 10 ... laser light source,
20 …… Lens system, 21 …… Collimator lens, 22 …… Cylindrical concave lens, 23 …… Convex lens, 30 …… Slit forming member.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光切断法により測定対象の形状を測定する
測定装置において、 測定対象上にスリット光を照射,投影する照射手段は、
楕円形のレーザ光を発射するレーザ光源と、このレーザ
光源から発射した楕円形光を長軸方向に拡大しつつ透過
するレンズ系と、このレンズ系内に配置され、前記楕円
形光の長軸方向に延びるスリットを有するスリット形成
部材とを備えてなり、 前記レンズ系は、レーザ光源に近い側から順に配置され
たコリメータレンズとシリンドリカル凹レンズとおよび
凸レンズとから構成されているとともに、 前記シリンドリカル凹レンズと凸レンズとの間に前記ス
リット形成部材が配置されていることを特徴とする測定
装置。
1. A measuring device for measuring a shape of a measuring object by a light section method, wherein an irradiating means for irradiating and projecting slit light onto the measuring object is
A laser light source that emits an elliptical laser light, a lens system that transmits the elliptical light emitted from the laser light source while enlarging in the long axis direction, and a long axis of the elliptical light that is arranged in the lens system. And a slit forming member having a slit extending in a direction, wherein the lens system is composed of a collimator lens, a cylindrical concave lens, and a convex lens sequentially arranged from a side closer to a laser light source, and the cylindrical concave lens. The measuring device, wherein the slit forming member is arranged between the convex lens and the convex lens.
JP1121156A 1989-05-15 1989-05-15 measuring device Expired - Fee Related JPH0769160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1121156A JPH0769160B2 (en) 1989-05-15 1989-05-15 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1121156A JPH0769160B2 (en) 1989-05-15 1989-05-15 measuring device

Publications (2)

Publication Number Publication Date
JPH02300613A JPH02300613A (en) 1990-12-12
JPH0769160B2 true JPH0769160B2 (en) 1995-07-26

Family

ID=14804240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1121156A Expired - Fee Related JPH0769160B2 (en) 1989-05-15 1989-05-15 measuring device

Country Status (1)

Country Link
JP (1) JPH0769160B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2839784B2 (en) * 1992-04-03 1998-12-16 株式会社東海理化電機製作所 Light source device for shape measurement
US5612785A (en) * 1996-01-03 1997-03-18 Servo Robot Inc. Twin sensor laser probe
WO2001098760A1 (en) * 2000-06-19 2001-12-27 Ccs Inc. Illumination device for inspection
US7292329B2 (en) * 2005-01-13 2007-11-06 Komag, Inc. Test head for optically inspecting workpieces comprising a lens for elongating a laser spot on the workpieces
JP2012122844A (en) * 2010-12-08 2012-06-28 Aisin Seiki Co Ltd Surface inspection device
JP2017079173A (en) * 2015-10-21 2017-04-27 スタンレー電気株式会社 Vehicular lighting fixture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149919A (en) * 1984-12-25 1986-07-08 Fujitsu Ltd Slit light source
JPH0629716B2 (en) * 1986-12-09 1994-04-20 富士通株式会社 Slit light irradiation device

Also Published As

Publication number Publication date
JPH02300613A (en) 1990-12-12

Similar Documents

Publication Publication Date Title
US10720300B2 (en) X-ray source for 2D scanning beam imaging
JP2002139304A (en) Distance measuring device and distance measuring method
US20180128918A1 (en) Distance measuring device and distance measuring method
JP2006145487A (en) Optical system for shape measuring device
US20020126257A1 (en) Ocular optical characteristic measuring apparatus
JPH0769160B2 (en) measuring device
DE102017200691B4 (en) Projection apparatus and method for scanning a solid angle area with a laser beam
JP2004321803A (en) Device for projecting beam of light
TW201510474A (en) Gap measurement device
KR100964646B1 (en) A x-ray photographing apparatus comprising x-ray detecting sensors
US20210247175A1 (en) System and Method for Optical Object Coordinate Determination
JPS60117102A (en) Welding-seam profile-detecting apparatus
JPH03295532A (en) Shape measuring endoscope device
EP0022506A1 (en) Optical measuring apparatus
JPH0642993B2 (en) Distance measuring device
JPH0643893B2 (en) Distance measuring device
JP2830915B2 (en) Particle size distribution measuring device
KR101924888B1 (en) Michelson interferometer and method for obtaining interference pattern using the same
JP7432989B2 (en) Light projecting device, projecting/receiving device, and distance measuring device
JPH0417834A (en) Shape measuring endoscope apparatus and measurement of shape using the same
JP2725207B2 (en) Position measuring device
JP2003050111A (en) Three-dimensional shape input device and projector
JPH0789057B2 (en) Distance measuring device
JP2005003624A (en) X-ray apparatus and scatter prevention cap thereof
JP2005241381A (en) X-ray collimator and x-ray image pick-up camera

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees