JP3446272B2 - Endoscope with measurement function - Google Patents

Endoscope with measurement function

Info

Publication number
JP3446272B2
JP3446272B2 JP31119493A JP31119493A JP3446272B2 JP 3446272 B2 JP3446272 B2 JP 3446272B2 JP 31119493 A JP31119493 A JP 31119493A JP 31119493 A JP31119493 A JP 31119493A JP 3446272 B2 JP3446272 B2 JP 3446272B2
Authority
JP
Japan
Prior art keywords
light
endoscope
measuring
measurement
measurement light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31119493A
Other languages
Japanese (ja)
Other versions
JPH07136101A (en
Inventor
融 元日田
昌夫 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP31119493A priority Critical patent/JP3446272B2/en
Publication of JPH07136101A publication Critical patent/JPH07136101A/en
Application granted granted Critical
Publication of JP3446272B2 publication Critical patent/JP3446272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00097Sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0623Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for off-axis illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/586Depth or shape recovery from multiple images from multiple light sources, e.g. photometric stereo
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)
  • Theoretical Computer Science (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Computer Vision & Pattern Recognition (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体患部の観察、レー
ザの出力調整およびスペクトル分析診断等に用いられ、
観察部までの距離および観察部の大きさを測定できる機
能を有する計測機能付き内視鏡に関する。
BACKGROUND OF THE INVENTION The present invention is used for observing an affected area of a living body, adjusting laser output, and performing spectrum analysis diagnosis,
The present invention relates to an endoscope with a measuring function, which has a function of measuring a distance to an observation section and a size of the observation section.

【0002】[0002]

【従来の技術】内視鏡を用いた生体患部の観察、レーザ
の出力調整およびスペクトル分析診断等では、内視鏡挿
入部の先端から観察部までの距離および観察部の大きさ
を測定できることが重要であり、従来は次のような方法
により行われている。 内視鏡挿入部よりスケールや実寸をマークできるもの
を、内視鏡の鉗子孔等を通して内視鏡観察下に挿入し、
これにより距離を測定する。 観察部を観察しながら、内視鏡を移動し、2つのスケ
ールに患部を合せ、合せた内視鏡挿入部の位置関係から
距離を算出する(例えば特開平1−250225号公
報)。 内視鏡挿入部より1本のレーザ光を、内視鏡挿入部の
長軸方向と平行に患部に照射して距離を測定する(例え
ば特開昭63−68127号公報)。
2. Description of the Related Art In observing an affected area of a living body using an endoscope, adjusting laser output, and performing spectrum analysis diagnosis, it is possible to measure the distance from the distal end of the endoscope insertion portion to the observation portion and the size of the observation portion. This is important and is conventionally performed by the following method. What can be marked on the scale or actual size from the endoscope insertion part is inserted under endoscopic observation through the forceps hole of the endoscope,
This measures the distance. While observing the observation part, the endoscope is moved, the affected part is aligned with two scales, and the distance is calculated from the positional relationship of the combined endoscope insertion parts (for example, Japanese Patent Laid-Open No. 1-250225). One laser beam is radiated from the endoscope insertion portion to the affected area in parallel with the long axis direction of the endoscope insertion portion to measure the distance (for example, JP-A-63-68127).

【0003】[0003]

【発明が解決しようとする課題】ところで、上述した従
来の内視鏡にあっては次のような問題点があった。の
方法による内視鏡にあっては操作が煩雑である。の方
法による内視鏡にあっては装置が大形化すると共に操作
が煩雑である。の方法による内視鏡にあっては距離お
よび位置の分解能が低い(言い換えれば精度を高くでき
ない)。
However, the above-mentioned conventional endoscope has the following problems. The operation of the endoscope according to the above method is complicated. In the endoscope according to the above method, the size of the device becomes large and the operation is complicated. The resolution of distance and position is low in the endoscope according to the method (in other words, the accuracy cannot be increased).

【0004】そこで本発明は、内視鏡挿入部の先端から
観察部までの距離および該観察部の位置の分解能の向上
を図ることができる計測機能付き内視鏡を提供すること
を目的としている。
Therefore, an object of the present invention is to provide an endoscope with a measuring function which can improve the distance from the tip of the endoscope insertion portion to the observation portion and the resolution of the position of the observation portion. .

【0005】[0005]

【課題を解決するための手段】かかる課題を解決するた
本発明の計測機能付き内視鏡は、内視鏡挿入部の先端
より扇状に広がる照明光を出力する照明光出力手段と、
前記内視鏡挿入部の先端よりビーム状の測定光を出力す
複数の測定光出力手段と、前記照明光出力手段の照明
範囲を撮影する撮影手段とを備えた計測機能付き内視鏡
において、前記複数の測定光出力手段が、前記測定光を
前記照明光の照射方向に対して何れも斜め方向で、かつ
該測定光のスポットが前記照明光による撮影範囲内に入
るように照射方向の角度付けをする測定光屈折手段と、
前記撮影手段で取り込まれた画像から、前記測定光スポ
ット各々を個別に検出且つ識別するとともに、該測定光
スポット各々の基準点からの3次元位置情報を演算する
演算手段と、前記演算手段により求められた演算結果の
表示手段に対する表示制御を行う制御手段とを有する
のである。
[Means for Solving the Problems ]
Therefore , the endoscope with a measuring function of the present invention includes an illumination light output unit that outputs illumination light that spreads in a fan shape from the tip of the endoscope insertion portion,
In an endoscope with a measuring function, comprising a plurality of measuring light output means for outputting a beam of measuring light from the tip of the endoscope insertion portion, and an imaging means for imaging the illumination range of the illumination light output means, The plurality of measurement light output means are arranged so that the measurement light is oblique with respect to the irradiation direction of the illumination light, and the angle of the irradiation direction is such that the spot of the measurement light is within the photographing range of the illumination light. Measuring light refraction means to attach,
From said captured image photographing means, along with identifying the measurement spot each and individually detected, and <br/> calculating means for calculating a three-dimensional position information from the reference point of the surveying constant light spots each, the Of the calculation result obtained by the calculation means
It also has a control means for performing display control on the display means .

【0006】また、本発明の計測機能付き内視鏡は、前
記複数の測定光出力手段が、各々の測定光スポットを識
別する各々異なる波長の出射光を出射する手段、各々の
測定光スポット形状を異ならせる手段、光路中に測定光
スポットの色を異ならせる手段の何れかの手段を有する
ものである。
Further, in the endoscope with a measuring function of the present invention, the plurality of measuring light output means emits emitted light of different wavelengths for identifying the respective measuring light spots, and the shape of each measuring light spot. And a means for changing the color of the measurement light spot in the optical path.

【0007】[0007]

【0008】[0008]

【0009】[0009]

【0010】[0010]

【作用】本発明では、ビーム状の測定光を扇状に広がる
照明光の照射方向に対して斜め方向で、かつ該測定光の
スポットが照明光による撮影範囲内に入るように照射方
向を角度付けする。これにより、測定光スポット位置が
観察画面の上部から下部に亘って移動し、撮影手段の受
光域が平行光の場合よりも広くなる。したがって、撮影
手段の1画素あたりの距離の変化量が小さくなることか
ら、内視鏡挿入部の先端から観察部までの距離に伴う変
化の検出能力が向上する。また、本発明では、測定光を
複数にする。これにより、2点間の距離、2点を含む観
察部の面積、もしくは3点を含む観察部の体積を簡単に
算出することができる。さらに複数の点を用いることか
ら、内視鏡撮像画面と平行でない面、曲面、斜面上にあ
る観察部の測定が可能になる。
According to the present invention, the beam-shaped measuring light is oblique to the irradiation direction of the illumination light that spreads in a fan shape, and the irradiation direction is angled so that the spot of the measuring light falls within the photographing range of the illumination light. To do. As a result, the measurement light spot position moves from the upper part to the lower part of the observation screen, and the light receiving area of the photographing means becomes wider than in the case of parallel light. Therefore, since the amount of change in the distance per pixel of the image pickup means is small, the ability to detect changes with the distance from the tip of the endoscope insertion part to the observation part is improved. Further, in the present invention, the measurement light is plural. This makes it possible to easily calculate the distance between two points, the area of the observation section including the two points, or the volume of the observation section including the three points. Furthermore, since a plurality of points are used, it is possible to measure the observation part on a surface, a curved surface, or a slope that is not parallel to the endoscope imaging screen.

【0011】[0011]

【実施例】以下、本発明を図面に基づいて説明する。 実施例1.図1は本発明の計測機能付き内視鏡の実施例
1の構成を示すブロック図である。この図において、1
は測定光発生部であり、ビーム状に絞った測定光L1
発生する。2は測定光発生部1を制御する測定光制御
部、3は測定光発生部1より発生した測定光L1を内視
鏡挿入部50(図2参照)まで導く測定光ガイド、4は
測定光ガイド3により導かれた測定光L1を内視鏡挿入
部50より内視鏡観察域に向けて照射する屈折器(プリ
ズム等)である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. Example 1. 1 is a block diagram showing a configuration of a first embodiment of an endoscope with a measuring function of the present invention. In this figure, 1
Is a measuring light generator, which generates the measuring light L 1 focused into a beam. Reference numeral 2 is a measurement light control unit for controlling the measurement light generation unit 1, 3 is a measurement light guide for guiding the measurement light L 1 generated by the measurement light generation unit 1 to the endoscope insertion unit 50 (see FIG. 2), and 4 is a measurement light guide. It is a refractor (prism or the like) that irradiates the measurement light L 1 guided by the light guide 3 from the endoscope insertion section 50 toward the endoscope observation area.

【0012】5は照明光発生部であり、扇状に広がる照
明光L2を発生する。6は照明光発生部5より発生した
照明光L2を内視鏡挿入部50(図2参照)まで導く照
明光ガイドである。7は撮像素子(CCD)7a、およ
び、この撮像素子7aの前方(観察部51側:図2参
照)に配設されるレンズ7bを有する撮像系、8は撮像
系7より出力される映像信号を入力する映像入力部、9
は映像入力部8より出力される映像情報を処理すると共
に処理結果より表示用の映像信号を生成する映像処理
部、10は映像処理部9より出力される映像信号を出力
する映像出力部、11はモニタ等の表示装置、12はプ
リンタ等の印刷装置である。13は各種スイッチより構
成される計測スイッチ部であり、各種指令の入力に使用
される。
Reference numeral 5 denotes an illuminating light generator, which generates illuminating light L 2 that spreads in a fan shape. Reference numeral 6 is an illumination light guide that guides the illumination light L 2 generated by the illumination light generator 5 to the endoscope insertion portion 50 (see FIG. 2). Reference numeral 7 denotes an image pickup device (CCD) 7a, and an image pickup system having a lens 7b arranged in front of the image pickup device 7a (on the observation section 51 side: see FIG. 2), and 8 denotes a video signal output from the image pickup system 7. Video input section for inputting 9
Is a video processing unit that processes the video information output from the video input unit 8 and generates a video signal for display from the processing result, 10 is a video output unit that outputs the video signal output from the video processing unit 9, 11 Is a display device such as a monitor, and 12 is a printing device such as a printer. Reference numeral 13 is a measurement switch unit including various switches, which is used for inputting various commands.

【0013】映像処理部9は、画像メモリ15、測定光
検出回路16、1次演算回路17、2次演算回路18お
よび表示制御回路19を有して構成される。画像メモリ
15は撮像系7により撮影された画像を記録する。測定
光検出回路16は測定光スポットLspの検出を行ない、
これの撮像素子7a上(または表示装置11の表示画面
上)の位置(2次元座標)を算出する。この場合、測定
光検出回路16は照明光L2下での測定光スポットLsp
の識別を、画像の中の素子毎の輝度を比較することによ
り行う。1次演算回路17は、測定光検出回路16によ
り算出された2次元座標から実際の測定光スポットLsp
の位置(3次元座標)を算出する。2次演算回路18
は、1次演算回路17により算出された3次元座標に基
づいて内視鏡挿入部50の先端から観察部51までの距
離や、この距離に基づいて表示画面の表示倍率の算出、
および、この表示倍率に基づいて表示画面上の観察部5
1の大きさの算出を行う。表示制御回路19は演算結果
や計測時の画像の表示を制御する。
The video processing unit 9 comprises an image memory 15, a measurement light detection circuit 16, a primary arithmetic circuit 17, a secondary arithmetic circuit 18, and a display control circuit 19. The image memory 15 records the image taken by the image pickup system 7. The measurement light detection circuit 16 detects the measurement light spot L sp ,
The position (two-dimensional coordinate) of this on the image pickup device 7a (or on the display screen of the display device 11) is calculated. In this case, the measurement light detection circuit 16 uses the measurement light spot L sp under the illumination light L 2.
Is identified by comparing the brightness of each element in the image. The primary calculation circuit 17 calculates the actual measurement light spot L sp from the two-dimensional coordinates calculated by the measurement light detection circuit 16.
Position (three-dimensional coordinate) is calculated. Secondary operation circuit 18
Is the distance from the tip of the endoscope insertion section 50 to the observation section 51 based on the three-dimensional coordinates calculated by the primary operation circuit 17, and the calculation of the display magnification of the display screen based on this distance.
And the observation unit 5 on the display screen based on this display magnification.
The size of 1 is calculated. The display control circuit 19 controls the display of the calculation result and the image at the time of measurement.

【0014】図2は内視鏡挿入部50の拡大図であり、
この図に示すように測定光ガイド3と、照明光ガイド6
と撮像系7とが並行して配設されている。測定光ガイド
3からはビーム状に絞られた測定光L1が出力され、照
明光ガイド6からは扇状に広がる照明光L2が出力され
る。測定光L1は屈折器4により角度付けされて測定光
ガイド3より放射される。この場合、測定光L1は、扇
状に広がる照明光L2の照射方向に対して斜め方向で、
かつそのスポットが照明光による撮影範囲内に入るよう
に角度付けされている。なお、実際に撮影できる範囲は
照明光により照された領域になるので、”撮影範囲を、
照明光による撮影範囲”と定義した。
FIG. 2 is an enlarged view of the endoscope insertion portion 50.
As shown in this figure, the measurement light guide 3 and the illumination light guide 6
And the imaging system 7 are arranged in parallel. The measurement light guide 3 outputs the measurement light L 1 which is focused in a beam shape, and the illumination light guide 6 outputs the illumination light L 2 which spreads in a fan shape. The measuring light L 1 is emitted by the measuring light guide 3 after being angled by the refractor 4. In this case, the measurement light L 1 is oblique to the irradiation direction of the illumination light L 2 that spreads in a fan shape,
Moreover, the spot is angled so that it falls within the shooting range of the illumination light. Note that the actual shooting range is the area illuminated by the illumination light.
It is defined as the "shooting range by illumination light".

【0015】ここで、内視鏡挿入部50の先端(観察
窓)から測定光スポットLspまでの距離は次のようにし
て算出される。図2に示すように撮像素子7aの観察領
域は扇型になっているので、内視鏡挿入部50より光を
出力した場合、内視鏡挿入部50の先端から観察部51
までの距離により、測定光スポットLspを受光する撮像
素子7a上の2次元座標が変化する。この2次元座標と
実際の内視鏡からの位置(3次元座標)に関する換算表
もしくは換算式を予め用意(記憶)しておくことによ
り、測定光スポットLspの2次元座標に基づいて実際の
測定光スポットLspの位置(内視鏡挿入部50の先端を
基準とした座標)を算出することができる。
Here, the distance from the tip (observation window) of the endoscope insertion portion 50 to the measurement light spot L sp is calculated as follows. As shown in FIG. 2, since the observation area of the image pickup device 7a is fan-shaped, when light is output from the endoscope insertion portion 50, the observation portion 51 extends from the tip of the endoscope insertion portion 50.
The two-dimensional coordinates on the image sensor 7a that receive the measurement light spot L sp change depending on the distance to. By preparing (storing) a conversion table or a conversion formula relating to the two-dimensional coordinates and the actual position (three-dimensional coordinates) from the endoscope in advance, the actual conversion based on the two-dimensional coordinates of the measurement light spot L sp . The position of the measurement light spot L sp (coordinates with the tip of the endoscope insertion portion 50 as a reference) can be calculated.

【0016】図3に示すように内視鏡挿入部50の先端
から観察部51までの距離が長くなるにしたがって撮像
される領域Aが拡大する(領域A1から領域A2へ)。ま
た、測定光スポットLspは内視鏡挿入部50が観察部5
1から離れるにしたがって領域A内を移動(この図では
上から下へ)する。いま、このような測定光照射機能を
有する内視鏡の観察空間に関して図4に示すように、観
察窓の中心を(0、0、0)、観察窓の中心を含み、観
察方向の軸をZ軸(このときZ座標は距離を示す)、観
察窓の中心と屈折器4の中心を通る直線(観察画面の縦
方向)をY軸、観察窓の中心を通りY軸に直交する直線
(観察画面の横方向)をX軸とする3次元座標を定義
し、屈折器4の位置をY軸上の(0、g、0)、測定光
のYZ平面内下向き照射角をθ2とする。
As shown in FIG. 3, as the distance from the distal end of the endoscope insertion section 50 to the observation section 51 increases, the imaged area A expands (from area A 1 to area A 2 ). In addition, the measuring light spot L sp is measured by the endoscope insertion unit 50 and the observation unit 5.
It moves in the area A as it moves away from 1 (from top to bottom in this figure). Now, as shown in FIG. 4 regarding the observation space of the endoscope having the measurement light irradiation function, the center of the observation window is (0, 0, 0), the center of the observation window is included, and the axis of the observation direction is Z axis (at this time, the Z coordinate indicates a distance), a straight line passing through the center of the observation window and the center of the refractor 4 (longitudinal direction of the observation screen) is the Y axis, and a straight line passing through the center of the observation window and orthogonal to the Y axis ( Three-dimensional coordinates with the X-axis in the horizontal direction of the observation screen) are defined, the position of the refractor 4 is (0, g, 0) on the Y-axis, and the downward irradiation angle of the measurement light in the YZ plane is θ2.

【0017】分かりやすくするために、図4をX軸方向
から見たY、Z平面の図(図5)にしたがって距離dの
算出方法について説明する。既知のパラメータである画
角θ1、測定光照射角θ2、観察窓の中心から屈折器4の
中心までの距離g、対物レンズの焦点距離fを用いて、
距離dにある観察画面の半径rおよび観察画面の最上端
から測定光スポットLspまでの距離pは、下記のように
算出できる(r1は距離d1でのr、p1は距離d1での
p)。
For the sake of clarity, a method of calculating the distance d will be described with reference to the Y-Z plane view (FIG. 5) of FIG. 4 viewed from the X-axis direction. Using the known parameters angle of view θ 1 , measurement light irradiation angle θ 2 , distance g from the center of the observation window to the center of the refractor 4, and focal length f of the objective lens,
The radius r of the observation screen at the distance d and the distance p from the uppermost end of the observation screen to the measurement light spot L sp can be calculated as follows (r 1 is r at the distance d 1 and p 1 is the distance d 1 P).

【0018】r1=(f+d1)×tan(1/2)θ11=r1−g+d1×tanθ2 R 1 = (f + d 1 ) × tan (1/2) θ 1 p 1 = r 1 −g + d 1 × tan θ 2

【0019】ここで、観察画面の直径(2×r1)とp1
との比R(p1/(2×r1))を考える。 R=p1/(2×r1)=(r1−g+d1×tanθ2)/(2×r1) =(1/2)−(g−d1×tanθ2)/(2×(f+d1)×tan(1 /2)θ1
Here, the diameter (2 × r 1 ) of the observation screen and p 1
Consider the ratio R (p 1 / (2 × r 1 )) to R = p 1 / (2 × r 1 ) = (r 1 −g + d 1 × tan θ 2 ) / (2 × r 1 ) = (1/2) − (g−d 1 × tan θ 2 ) / (2 × ( f + d 1 ) × tan (1/2) θ 1 )

【0020】このR(例えばr1、r2)は、図5からも
分るように距離d(例えばd1、d2)によって変化し、
撮像素子7a上で計測可能である。故に、R、g、
θ1、θ2、fより、測定光スポットLspを含む平面まで
の観察窓の中心からの距離d(例えばd1、d2)が算出
できる。すなわち、 d=(g×tanθ2−(1−2R)×f×tan(1
/2)θ1)/((1−2R)×tan(1/2)θ1
tanθ2) となる。
This R (for example, r 1 and r 2 ) changes depending on the distance d (for example, d 1 and d 2 ) as can be seen from FIG.
It can be measured on the image sensor 7a. Therefore, R, g,
From θ 1 , θ 2 , and f, the distance d (for example, d 1 and d 2 ) from the center of the observation window to the plane including the measurement light spot L sp can be calculated. That is, d = (g × tan θ 2 − (1-2R) × f × tan (1
/ 2) θ 1 ) / ((1-2R) × tan (1/2) θ 1 +
tan θ 2 ).

【0021】このように、平面距離dが決れば、その観
察画面の撮像素子7aに対する拡大率が決るので、その
拡大率をnとすると、撮像素子7a上の座標(x、y)
を用いて、測定光スポットLspの実際の3次元座標
(X、Y、Z)は下記のように求められる。 (X、Y、Z)=(nx、ny、d)
Thus, if the plane distance d is determined, the enlargement ratio of the observation screen with respect to the image pickup device 7a is decided. Therefore, when the enlargement ratio is n, the coordinates (x, y) on the image pickup device 7a are determined.
Using, the actual three-dimensional coordinates (X, Y, Z) of the measurement light spot L sp can be obtained as follows. (X, Y, Z) = (nx, ny, d)

【0022】次に、測定光ガイド3の先端部に屈折器4
を設けて、測定光L1を角度付けしたのは、内視鏡挿入
部50の先端から観察部51までの距離による撮像素子
7a上の測定光スポット位置(2次元座標)の変化量を
大きくするためである。すなわち、図6に示すように測
定光L1を平行光にした場合には、内視鏡挿入部50の
先端から観察部51までの距離の増加に伴って測定光ス
ポット位置が撮像素子7aの上部から中央部に移動する
が、撮像素子7aの受光域は撮像素子7aの半分未満と
狭い。
Next, the refractor 4 is attached to the tip of the measurement light guide 3.
The measurement light L 1 is angled by providing a large amount of change in the measurement light spot position (two-dimensional coordinate) on the image sensor 7a depending on the distance from the tip of the endoscope insertion portion 50 to the observation portion 51. This is because That is, when the measurement light L 1 is collimated as shown in FIG. 6, the measurement light spot position of the image pickup element 7a is changed as the distance from the tip of the endoscope insertion portion 50 to the observation portion 51 increases. Although it moves from the upper part to the central part, the light receiving area of the image pickup device 7a is narrow, which is less than half that of the image pickup device 7a.

【0023】これに対して、図7に示すように内視鏡挿
入部50の先端から観察部51までの距離を増加させる
に伴って測定光スポット位置が撮像素子7aの上部から
下部に亘って移動し、その受光域は平行光の場合よりも
広くなる。これにより、撮像素子7aの1画素あたりの
距離の変化量が小さくなるので、位置測定の精度/分解
能が高くなる。このような理由から測定光L1を角度付
けする。
On the other hand, as shown in FIG. 7, as the distance from the tip of the endoscope insertion section 50 to the observation section 51 is increased, the measurement light spot position extends from the upper part to the lower part of the image pickup device 7a. It moves and its light-receiving area becomes wider than in the case of parallel light. As a result, the amount of change in the distance per pixel of the image pickup device 7a becomes small, so that the accuracy / resolution of position measurement becomes high. For this reason, the measurement light L 1 is angled.

【0024】上記測定光発生部1と測定光ガイド3は測
定光出力手段100を構成し、また、上記照明光発生部
5と照明光ガイド6は照明光出力手段110を構成す
る。また、上記屈折器4は測定光屈折手段に対応し、ま
た、上記撮影系7は撮影手段に対応する。また、上記映
像処理部9は演算手段および制御手段に対応する。ま
た、上記表示装置11および上記印刷装置12はそれぞ
れ表示手段に対応する。また、上記計測スイッチ部13
は平面形状指定手段または立体形状形状指定手段に対応
する。
The measurement light generating section 1 and the measurement light guide 3 constitute the measurement light output means 100, and the illumination light generation section 5 and the illumination light guide 6 constitute the illumination light output means 110. The refractor 4 corresponds to the measuring light refracting means, and the photographing system 7 corresponds to the photographing means. Further, the video processing section 9 corresponds to a calculation means and a control means. The display device 11 and the printing device 12 correspond to display means. In addition, the measurement switch unit 13
Corresponds to the plane shape designating means or the three-dimensional shape designating means.

【0025】動作説明 このような構成において、操作者は、内視鏡を体内に挿
入し、患部を観察しながら内視鏡挿入部50の先端を対
象患部近傍に持っていき、測定光スポットLspが計測し
たい地点と重なるように内視鏡挿入部50を動かす。そ
して、測定光スポットLspが計測地点に到達すると計測
スイッチ部13を操作する。これにより、測定光検出回
路16により2次元座標が算出される。そして、算出さ
れた2次元座標に基づいて1次演算回路17により測定
光スポットLspの3次元座標が算出される。
Description of Operation In such a configuration, the operator inserts the endoscope into the body, and while observing the affected part, brings the tip of the endoscope insertion part 50 to the vicinity of the target affected part, and the measurement light spot L The endoscope insertion part 50 is moved so that sp overlaps with the point to be measured. Then, when the measurement light spot L sp reaches the measurement point, the measurement switch unit 13 is operated. As a result, the measurement light detection circuit 16 calculates the two-dimensional coordinates. Then, the three-dimensional coordinates of the measurement light spot L sp are calculated by the primary calculation circuit 17 based on the calculated two-dimensional coordinates.

【0026】測定光スポットLspの3次元座標が算出さ
れると、この値に基づいて2次演算回路18により内視
鏡挿入部50の先端から測定光スポットLspを含む面ま
での距離が算出され、さらにこの距離に基づいて観察画
面の表示倍率が算出される。また、算出された表示倍率
に基づいて画面上の観察部51の大きさが算出される。
そして、算出されたこれらの値(2次元座標、3次元座
標、距離、表示倍率、観察部の大きさ)が表示装置11
にて表示されると共に印刷装置12にて印刷される。こ
の場合、計測スイッチ部11と観察画面の印刷がリンク
されており、計測スイッチ部11が操作された時点の画
像が記録され、そのメモリ画像に計測結果がインポーズ
された形で表示および印刷が行われる。
When the three-dimensional coordinates of the measurement light spot L sp are calculated, the distance from the tip of the endoscope insertion portion 50 to the surface including the measurement light spot L sp is calculated by the secondary operation circuit 18 based on this value. Then, the display magnification of the observation screen is calculated based on this distance. Further, the size of the observation unit 51 on the screen is calculated based on the calculated display magnification.
Then, the calculated values (two-dimensional coordinates, three-dimensional coordinates, distance, display magnification, size of the observation unit) are displayed on the display device 11.
And is printed by the printing device 12. In this case, the measurement switch unit 11 and the printing of the observation screen are linked, the image at the time when the measurement switch unit 11 is operated is recorded, and the measurement result is displayed and printed in the memory image in a superimposed manner. Done.

【0027】実施例2.上記実施例1では、1つの測定
光L1により各種情報(2次元座標、3次元座標、距
離、表示倍率および観察部の大きさ)を得るようにした
が、この実施例2は測定光L1の数を増やしてより高度
な情報を得るようにしたものである。例えば、図8、9
に示すように内視鏡挿入部50の先端から2つの測定光
1a、L1bを照射する内視鏡において、2つの測定光ス
ポットLspa、Lspbが測定したい地点に重なるように内
視鏡を動かし、2つの測定光スポットLspa、Lspbの3
次元座標を算出することで、この2点間の距離を算出す
ることができる。
Example 2. In Embodiment 1, various kinds of information by one of the measurement light L 1 was to obtain a (2-dimensional coordinates, three-dimensional coordinates, the distance, the size of the display magnification and the observation unit), this second embodiment the measurement light L The number of 1 is increased to obtain more advanced information. For example, FIGS.
As shown in FIG. 6, in the endoscope that irradiates the two measurement lights L 1a and L 1b from the tip of the endoscope insertion portion 50, the two measurement light spots L spa and L spb are endoscopic so as to overlap with the point to be measured. Move the mirror and set the two measurement light spots L spa and L spb to 3
The distance between these two points can be calculated by calculating the dimensional coordinates.

【0028】また、このとき、観察部51の両端にそれ
ぞれの測定光スポットLspa、Lspbが位置するようにす
れば、2点間の距離により観察部51の径を算出するこ
とができる。また、観察部51の形状を円形と仮定し、
上記2点間距離を観察部51の直径と指定すれば、観察
部51の面積の概算も可能である。なお、この距離の測
定は図10に示すように観察部51が斜めであっても問
題はない。
At this time, if the measuring light spots L spa and L spb are positioned at both ends of the observation section 51, the diameter of the observation section 51 can be calculated from the distance between the two points. Further, assuming that the shape of the observation unit 51 is circular,
If the distance between the two points is designated as the diameter of the observation part 51, the area of the observation part 51 can be roughly estimated. It should be noted that there is no problem in measuring this distance even if the observation section 51 is oblique as shown in FIG.

【0029】さらに、面積算出の考えを発展させること
で、体積の概算も可能である。図11、12に示すよう
に、3つの測定光L1a、L1b、L1cを照射する内視鏡に
おいて、3つの測定光スポットLspa、Lspb、Lspc
観察部51上に位置するように内視鏡を移動させ、それ
ぞれの3次元座標を算出する。次に、例えばレンズ様の
形状を仮定し、その形状のどの部分に測定光スポットL
spa、Lspb、Lspcが位置しているかを指示すること
で、3点を含む形状の体積の概算ができる。なお、この
面積、体積の概算に関しては、想定できる形状と座標か
らのその形状に関する演算方式を予め演算回路に登録し
ておくことで、様々な面積、体積が概算でき、概算可能
な形状は円形、レンズ形に限られるものではない。な
お、想定できる形状を設定する形状設定手段を操作スイ
ッチ部13に持たせるようにすればよい。
Further, the volume can be roughly estimated by developing the idea of area calculation. As shown in FIGS. 11 and 12, in the endoscope that emits the three measurement lights L 1a , L 1b , and L 1c , the three measurement light spots L spa , L spb , and L spc are located on the observation unit 51. The endoscope is moved as described above, and the respective three-dimensional coordinates are calculated. Next, assuming, for example, a lens-like shape, which portion of the shape has the measurement light spot L
By instructing whether spa , L spb , and L spc are located, the volume of the shape including three points can be roughly estimated. Regarding this area and volume estimation, various areas and volumes can be estimated by registering the calculation method related to the shape from the assumed shape and coordinates in advance in the calculation circuit. , But not limited to the lens shape. It should be noted that the operation switch section 13 may be provided with a shape setting means for setting an assumed shape.

【0030】ところで、複数の測定光L1を用いる場
合、これらの識別を行う必要があるが、例えば各測定光
1の波長をそれぞれ違えたり、内視鏡先端部50の各
測定光L1の照射孔に色の異なるフィルタを使用した
り、あるいは測定光L1の照射孔の形状もしくは配列を
変える等によって測定光スポットの形状を違えたりすれ
ばよい。
By the way, in the case of using a plurality of measurement light L 1, it is necessary to perform these identification, for example, or Chigae the wavelengths of the measurement light L 1 respectively, each measurement light L 1 of the endoscope front end portion 50 The color of the measurement light spot may be changed by using a filter having a different color for the light irradiation hole, or by changing the shape or arrangement of the measurement light L 1 irradiation holes.

【0031】なお、上記実施例では、図13に示すよう
に、測定光L1の角度付けにプリズムを用いた屈折器4
により行うようにしたが、図14に示すように、内視鏡
挿入部50に鏡等の反射器21を設けると共に、測定光
1を内視鏡内部の内側から外側へ向う形で通過させて
(非直線的に導光して)反射器(測定光屈折手段)21
に当てるようにしてもよい。本発明のすべてを側視鏡に
適用することができる。 また、屈折器4、反射器21
を内視鏡挿入部50の内部に設けるのではなく、内視鏡
挿入部50から突出させて取り付けるようにしてもよ
い。
In the above embodiment, as shown in FIG. 13, a refractor 4 using a prism for angling the measurement light L 1.
However, as shown in FIG. 14, a reflector 21 such as a mirror is provided in the endoscope insertion portion 50, and the measurement light L 1 is passed through from the inside to the outside of the endoscope. Reflector (measurement light refracting means) 21
You may try to hit it. All of the present invention can be applied to a side endoscope. In addition, the refractor 4 and the reflector 21
May not be provided inside the endoscope insertion portion 50, but may be attached so as to project from the endoscope insertion portion 50.

【0032】また、上記実施例では、照明光L2の下で
の測定光スポットLspの識別を、1枚の画像中の素子毎
の輝度を比較することにより行うようにしたが、色の違
いで識別するようにしてもよい。また、測定光L1を断
続的に照射するようにして、同一素子の測定光L1の照
射時の映像と測定光L1の非照射の映像との差をとる
(サブトラクション)ことにより、測定光スポットLsp
を検出するようにしてもよい。すなわち、連続的に照射
している照明光L2では差がないのに対し、測定光スポ
ットLspでは差がでるので、これにより測定光スポット
spを容易に検出することができる。また、自動的に測
定光L1を識別する以外に、表示画面を見ながら操作者
が表示画面上で測定光スポットLspを識別/指定するよ
うにしてもよい。
In the above embodiment, the measurement light spot L sp under the illumination light L 2 is identified by comparing the brightness of each element in one image. You may make it identify by a difference. Further, the measurement light L 1 is emitted intermittently, and the difference between the image when the measurement light L 1 of the same element is emitted and the image where the measurement light L 1 is not emitted is subtracted (subtraction). Light spot L sp
May be detected. That is, there is no difference in the illumination light L 2 that is continuously irradiated, but there is a difference in the measurement light spot L sp , so that the measurement light spot L sp can be easily detected. Further, instead of automatically identifying the measurement light L 1 , the operator may identify / specify the measurement light spot L sp on the display screen while looking at the display screen.

【0033】また、上記実施例では、観察部51に対す
る各種演算結果を数値で示すようにしたが、演算結果に
基づいて図15に示すように物差し23を画面上に表示
してもよい。そして、この物差し23を任意の場所に移
動できるようにすると共に任意の角度に回転できるよう
にすることで、画面内の物の計測が簡便になる。
Further, in the above embodiment, various calculation results for the observation section 51 are shown by numerical values, but the ruler 23 may be displayed on the screen as shown in FIG. 15 based on the calculation results. By allowing the ruler 23 to be moved to an arbitrary place and rotated at an arbitrary angle, the measurement of the object on the screen becomes simple.

【0034】また、上記実施例では、常に測定光L1
照射するようにしたが、必要とする時にのみ測定光L1
を照射するようにしてもよい。このようにすることで、
照明光L2により画像が見にくくなることを避けること
ができると共に、測定光照明光源の稼働時間を短縮する
ことができる。
Further, in the above embodiment, the measurement light L 1 is always emitted, but the measurement light L 1 is emitted only when necessary.
May be irradiated. By doing this,
It is possible to prevent the image from becoming difficult to see due to the illumination light L 2, and it is possible to shorten the operating time of the measurement light illumination light source.

【0035】また、上記実施例において、測定光スポッ
トLspの実際の位置、内視鏡挿入部50の先端から測定
光スポットLspまでの距離、2つの測定光スポット間の
実際の距離、観察部51の実際の大きさ、および、観察
部51の実際の体積等の算出の際に測定誤差を算出する
ようにしてもよい。また、算出した測定誤差を表示する
ようにしてもよい。また、上記実施例において、測定光
1の角度調整、照明光L2と測定光L1の識別調整、各
測定光L1における識別調整を行う機能を持たせてもよ
い。また、これからの内視鏡の開発は、複数の光学系を
有した立体内視鏡が中心となると考えられるが、当然、
この種の内視鏡に対しても本発明を適用できることは明
らかである。
Further, in the above embodiment, the actual position, the distance from the distal end of the endoscope insertion portion 50 to the measurement spot L sp of the measurement light spot L sp, the actual distance between the two measurement spots, observation The measurement error may be calculated when calculating the actual size of the part 51 and the actual volume of the observation part 51. Further, the calculated measurement error may be displayed. Further, in the above-described embodiment, it may be possible to provide a function of adjusting the angle of the measurement light L 1 , the adjustment adjustment of the illumination light L 2 and the measurement light L 1 , and the adjustment adjustment of each measurement light L 1 . Moreover, it is considered that the development of endoscopes from now on will be centered on stereoscopic endoscopes having a plurality of optical systems, but of course,
It is obvious that the present invention can be applied to this type of endoscope.

【0036】[0036]

【発明の効果】本発明によれば、ビーム状の測定光を扇
状に広がる照明光の照射方向に対して斜め方向で、かつ
該測定光のスポットが照明光による撮影範囲内に入るよ
うに照射方向を角度付けするようにしたので、内視鏡挿
入部の先端から観察部までの距離に伴う変化の検出能力
を向上させることができ、内視鏡挿入部の先端から観察
部までの距離および該観察部の位置の分解能が向上す
る。また、本発明によれば、測定光を複数にしたので、
2点間の距離、2点を含む観察部の面積、もしくは3点
を含む観察部の体積を簡単に算出することができる。さ
らに複数の点を用いることから、内視鏡撮像画面と平行
でない面、曲面、斜面上における観察部の測定ができ
る。
According to the present invention, the beam-shaped measurement light is irradiated in a direction oblique to the irradiation direction of the illumination light that spreads in a fan shape, and the spot of the measurement light is irradiated within the photographing range of the illumination light. Since the directions are angled, it is possible to improve the ability to detect changes with the distance from the distal end of the endoscope insertion section to the observation section, and the distance from the distal end of the endoscope insertion section to the observation section and The resolution of the position of the observation part is improved. Further, according to the present invention, since the measurement light is plural,
The distance between two points, the area of the observation part including two points, or the volume of the observation part including three points can be easily calculated. Furthermore, by using a plurality of points, it is possible to measure the observation portion on a surface, a curved surface, or a slope that is not parallel to the endoscope imaging screen.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る計測機能付き内視鏡の実施例1の
ブロック図である。
FIG. 1 is a block diagram of a first embodiment of an endoscope with a measuring function according to the present invention.

【図2】同実施例の計測機能付き内視鏡の挿入部を示す
図である。
FIG. 2 is a diagram showing an insertion portion of the endoscope with a measuring function of the embodiment.

【図3】同実施例の計測機能付き内視鏡の測定原理を説
明するための図である。
FIG. 3 is a diagram for explaining a measurement principle of the endoscope with a measurement function of the same embodiment.

【図4】同実施例の計測機能付き内視鏡の測定原理を説
明するための図である。
FIG. 4 is a view for explaining the measurement principle of the endoscope with a measuring function of the same embodiment.

【図5】同実施例の計測機能付き内視鏡の測定原理を説
明するための図である。
FIG. 5 is a diagram for explaining a measurement principle of the endoscope with a measuring function of the same embodiment.

【図6】同実施例の計測機能付き内視鏡の特徴を説明す
るための図である。
FIG. 6 is a diagram for explaining the features of the endoscope with a measuring function of the same embodiment.

【図7】同実施例の計測機能付き内視鏡の特徴を説明す
るための図である。
FIG. 7 is a diagram for explaining the features of the endoscope with a measuring function of the same example.

【図8】本発明に係る計測機能付き内視鏡の実施例2の
挿入部を示す図である。
FIG. 8 is a diagram showing an insertion portion of a second embodiment of the endoscope with a measuring function according to the present invention.

【図9】同実施例の計測機能付き内視鏡の表示画面を示
す図である。
FIG. 9 is a diagram showing a display screen of the endoscope with a measuring function of the embodiment.

【図10】同実施例の計測機能付き内視鏡のの挿入部を
示す図である。
FIG. 10 is a view showing an insertion portion of the endoscope with a measuring function of the same example.

【図11】同実施例の計測機能付き内視鏡の応用例の挿
入部を示す図である。
FIG. 11 is a view showing an insertion portion of an application example of the endoscope with a measuring function of the same embodiment.

【図12】同応用例の計測機能付き内視鏡における形状
指定を説明するための図である。
FIG. 12 is a diagram for explaining shape designation in the endoscope with a measurement function of the same application example.

【図13】本発明に係る計測機能付き内視鏡の実施例1
及び実施例2の内視鏡挿入部の一部分を示す図である。
FIG. 13 is a first embodiment of an endoscope with a measuring function according to the present invention.
9A and 9B are views showing a part of the endoscope insertion portion of the second embodiment.

【図14】本発明に係る計測機能付き内視鏡の実施例1
及び実施例2の内視鏡挿入部の一部分の他の例を示す図
である。
FIG. 14 is a first embodiment of an endoscope with a measuring function according to the present invention.
9A and 9B are diagrams showing another example of a part of the endoscope insertion portion of the second embodiment.

【図15】本発明に係る計測機能付き内視鏡の実施例1
及び実施例2の距離表示の他の例を示す図である。
FIG. 15 is a first embodiment of an endoscope with a measuring function according to the present invention.
9A and 9B are diagrams illustrating another example of distance display according to the second embodiment.

【符号の説明】[Explanation of symbols]

4 屈折器(測定光屈折手段) 7 撮影系(撮影手段) 9 映像処理部(演算手段、制御手段) 11 表示装置(表示手段) 12 印刷装置(表示手段) 13 計測スイッチ部(平面形状指定手段、立体形状形
状指定手段) 21 反射器(測定光屈折手段) 50 内視鏡挿入部 100 測定光出力手段 110 照明光出力手段
4 Refractor (measurement light refraction means) 7 Imaging system (imaging means) 9 Image processing section (calculation means, control means) 11 Display device (display means) 12 Printing device (display means) 13 Measurement switch section (planar shape designating means) , Three-dimensional shape designating means) 21 reflector (measuring light refracting means) 50 endoscope insertion portion 100 measuring light output means 110 illumination light outputting means

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) A61B 1/00 - 1/32 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) A61B 1/00-1/32

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内視鏡挿入部の先端より扇状に広がる照
明光を出力する照明光出力手段と、 前記内視鏡挿入部の先端よりビーム状の測定光を出力す
複数の測定光出力手段と、 前記照明光出力手段の照明範囲を撮影する撮影手段とを
備えた計測機能付き内視鏡において、前記複数の測定光出力手段が、 前記測定光を前記照明光の照射方向に対して何れも斜め
方向で、かつ該測定光のスポットが前記照明光による撮
影範囲内に入るように照射方向の角度付けをする測定光
屈折手段と、 前記撮影手段で取り込まれた画像から、前記測定光スポ
ット各々を個別に検出且つ識別するとともに、該測定光
スポット各々の基準点からの3次元位置情報を演算する
演算手段と、前記演算手段により求められた演算結果の表示手段に対
する表示制御を行う制御手段とを有することを特徴とす
る計測機能付き内視鏡。
1. An illumination light output unit that outputs illumination light that spreads in a fan shape from the tip of the endoscope insertion unit, and a plurality of measurement light output units that outputs beam-shaped measurement light from the tip of the endoscope insertion unit. When, in the measurement function endoscope having an imaging means for imaging the illumination range of the illumination light output means, said plurality of measuring light output means, either the measuring light with respect to the irradiation direction of the illumination light The measuring light refracting means for angling the irradiation direction so that the spot of the measuring light is in the photographing range of the illumination light in an oblique direction, and the measuring light spot is obtained from the image captured by the photographing means. Each is individually detected and identified, and the calculation means for calculating the three-dimensional position information from the reference point of each of the measurement light spots and the display means for displaying the calculation result obtained by the calculation means are paired.
Control means for performing display control for
An endoscope with a measuring function.
【請求項2】 前記複数の測定光出力手段が、各々の測
定光スポットを識別する下記1,2,3の何れかの手段
を有することを特徴とする請求項1記載の計測機能付き
内視鏡。 1. 各々異なる波長の出射光を出射する手段 2. 各々の測定光スポット形状を異ならせる手段 3. 光路中に測定光スポットの色を異ならせる手段
2. The internal view with a measuring function according to claim 1, wherein the plurality of measuring light output means have any one of the following 1, 2 and 3 for identifying each measuring light spot. mirror. 1. 1. Means for emitting emitted light of different wavelengths 2. A means for making each measuring light spot shape different. Means for changing the color of the measuring light spot in the optical path
JP31119493A 1993-11-16 1993-11-16 Endoscope with measurement function Expired - Lifetime JP3446272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31119493A JP3446272B2 (en) 1993-11-16 1993-11-16 Endoscope with measurement function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31119493A JP3446272B2 (en) 1993-11-16 1993-11-16 Endoscope with measurement function

Publications (2)

Publication Number Publication Date
JPH07136101A JPH07136101A (en) 1995-05-30
JP3446272B2 true JP3446272B2 (en) 2003-09-16

Family

ID=18014233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31119493A Expired - Lifetime JP3446272B2 (en) 1993-11-16 1993-11-16 Endoscope with measurement function

Country Status (1)

Country Link
JP (1) JP3446272B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3513703A4 (en) * 2016-09-15 2019-09-18 FUJIFILM Corporation Measurement assistance device, endoscope system, processor for endoscope system, and measurement assistance method
EP3513704A4 (en) * 2016-09-15 2019-10-16 FUJIFILM Corporation Endoscope system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3532368B2 (en) * 1996-12-10 2004-05-31 富士写真フイルム株式会社 Endoscope
US8165351B2 (en) * 2010-07-19 2012-04-24 General Electric Company Method of structured light-based measurement
JP5576758B2 (en) * 2010-10-05 2014-08-20 オリンパス株式会社 Guide tube device and endoscope system
JP6535020B2 (en) * 2014-03-02 2019-06-26 ブイ.ティー.エム.(バーチャル テープ メジャー)テクノロジーズ リミテッド System for measuring 3D distance and dimensions of visible objects in endoscopic images
JP6644899B2 (en) * 2016-09-20 2020-02-12 富士フイルム株式会社 Measurement support device, endoscope system, and processor of endoscope system
JP6898425B2 (en) 2017-03-03 2021-07-07 富士フイルム株式会社 Measurement support devices, endoscopic systems, and processors for endoscopic systems
EP3603477A4 (en) 2017-03-28 2020-02-05 FUJIFILM Corporation Measurement support device, endoscopic system, and processor
JP6666519B2 (en) 2017-03-28 2020-03-13 富士フイルム株式会社 Measurement support device, endoscope system, and processor
CN110799081B (en) * 2017-07-18 2022-04-05 富士胶片株式会社 Endoscope device and measurement support method
JP7115897B2 (en) * 2018-04-20 2022-08-09 富士フイルム株式会社 endoscope device
JP6924727B2 (en) * 2018-06-25 2021-08-25 富士フイルム株式会社 Endoscope device
JP2020005745A (en) 2018-07-04 2020-01-16 富士フイルム株式会社 Endoscope apparatus
JP2020014808A (en) * 2018-07-27 2020-01-30 富士フイルム株式会社 Endoscope apparatus, operation method for the same, and program for endoscope apparatus
JP7029359B2 (en) * 2018-07-27 2022-03-03 富士フイルム株式会社 Endoscope device and its operation method as well as programs for endoscope devices
JP7069062B2 (en) * 2019-02-20 2022-05-17 富士フイルム株式会社 Endoscope device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273223A (en) * 1985-09-26 1987-04-03 Toshiba Corp Endoscope device
JPS6472005A (en) * 1987-09-11 1989-03-16 Matsushita Electric Ind Co Ltd Visual sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3513703A4 (en) * 2016-09-15 2019-09-18 FUJIFILM Corporation Measurement assistance device, endoscope system, processor for endoscope system, and measurement assistance method
EP3513704A4 (en) * 2016-09-15 2019-10-16 FUJIFILM Corporation Endoscope system
US11536556B2 (en) 2016-09-15 2022-12-27 Fujifilm Corporation Measurement support device, endoscope system, processor for endoscope system, and measurement support method for measuring object size
US12059126B2 (en) 2016-09-15 2024-08-13 Fujifilm Corporation Endoscope system

Also Published As

Publication number Publication date
JPH07136101A (en) 1995-05-30

Similar Documents

Publication Publication Date Title
JP3446272B2 (en) Endoscope with measurement function
US7912532B2 (en) Method and instrument for surgical navigation
EP2689708B1 (en) Endoscopic apparatus and measurement method
EP3025122B1 (en) System, method and computer program for 3d contour data acquisition and caries detection
US20150057533A1 (en) Optical scanning device
US10624540B2 (en) Method and instrument for surgical navigation
US5657128A (en) Surgical microscope for conducting computer-supported stereotactic microsurgery and a method for operating the same
US7791738B2 (en) Three-dimensional shape measuring device, and portable measuring device
US20160198982A1 (en) Endoscope measurement techniques
JP2010507079A (en) Apparatus and method for non-contact detection of 3D contours
US6291817B1 (en) Moire apparatus having projection optical system and observation optical system which have optical axes parallel to each other
US20070146719A1 (en) Scanning apparatus for optically scanning surfaces
JPH03102202A (en) Testing method of objective part by photographing means
KR20150110651A (en) Endoscope, particularly for minimally invasive surgery
JP3435019B2 (en) Lens characteristic measuring device and lens characteristic measuring method
US4867554A (en) Surface examining apparatus
US7436524B2 (en) Apparatus and method for three-dimensional measurement and program for allowing computer to execute method for three-dimensional measurement
JPH0349567B2 (en)
WO2019137946A1 (en) Endoscopic non-contact measurement device
JP5438119B2 (en) Ophthalmic measuring device
JP2005214807A (en) Grid projection type moire device
JPH0412724A (en) Measuring endoscope
JP2007504844A (en) Corneal curvature measurement module connected to slit lamp and / or eyepiece microscope
JPH01209415A (en) Endoscope device with measuring function
JPH04250B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term