JPH03295407A - Measuring method for resin film thickness of conductive composite metallic plate - Google Patents

Measuring method for resin film thickness of conductive composite metallic plate

Info

Publication number
JPH03295407A
JPH03295407A JP9895690A JP9895690A JPH03295407A JP H03295407 A JPH03295407 A JP H03295407A JP 9895690 A JP9895690 A JP 9895690A JP 9895690 A JP9895690 A JP 9895690A JP H03295407 A JPH03295407 A JP H03295407A
Authority
JP
Japan
Prior art keywords
resin film
film thickness
conductive filler
reflection intensity
containing resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9895690A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hida
緋田 泰宏
Michio Kondo
近藤 道生
Shigeo Abe
成雄 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9895690A priority Critical patent/JPH03295407A/en
Publication of JPH03295407A publication Critical patent/JPH03295407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the resin film thickness and a filler amount at the same time by irradiating a conductive filler containing resin film with infrared rays and measuring the absorption band and non-absorption band of an infrared spectrum. CONSTITUTION:A skin steel plate S which is carried from the right side to the left side is coated with the conductive filler containing resin film 2 by a resin coating device 1 and its film thickness is measured by a film thickness measuring instrument 3. The measuring instrument 3 irradiates the film 2 with infrared rays and a measuring instrument 5 diffracts its reflected infrared light spectrally to measure the reflection intensity I1 in the absorption band and the reflection intensity I2 in the non-absorption band. Then the resin film thickness (t) is found from t=alog(I1/I2)+b (a, b: constant). Further, the filler amount F is found from F=a'logI2+b' (a', b': constant).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、帯状金属板間に導電性フィラー含有樹脂膜
を介在させた導電性複合金属板を製造する際の導電性金
属板に導電性フィラー含有樹脂膜を塗布したときの樹脂
膜厚と導電性フィラー量とを同時に正確に測定すること
ができる導電性複合金属板の樹脂膜厚測定方法に関する
[Detailed Description of the Invention] [Industrial Application Field] This invention is directed to the production of a conductive composite metal plate in which a conductive filler-containing resin film is interposed between band-shaped metal plates. The present invention relates to a method for measuring the resin film thickness of a conductive composite metal plate that can simultaneously and accurately measure the resin film thickness and the amount of conductive filler when a filler-containing resin film is applied.

〔従来の技術〕[Conventional technology]

近年、帯状金属板間に導電性フィラー含有樹脂膜を介在
させた導電性複合金属板は、制振性を有しながら再溶接
性を有するため、自動車車体用等に用途が拡大されてい
る。
In recent years, conductive composite metal plates in which a conductive filler-containing resin film is interposed between belt-shaped metal plates have been expanded to applications such as automobile bodies because they have vibration damping properties and reweldability.

このような導電性複合金属板では、接着剤となる樹脂膜
の膜厚が厚くなると、接着性は向上するが導電性が低下
し、逆に樹脂膜厚が薄くなると導電性は向上するが接着
性が劣ることになり、良好な導電性と接着性とを得るた
めには、樹脂膜厚と導電性フィラー量とを正確に測定す
ることが重要である。
In such conductive composite metal plates, as the thickness of the resin film that serves as the adhesive increases, the adhesion improves but the conductivity decreases; conversely, as the resin film becomes thinner, the conductivity improves but the adhesion decreases. Therefore, in order to obtain good conductivity and adhesion, it is important to accurately measure the resin film thickness and the amount of conductive filler.

ところで、従来の導電性複合金属板の樹脂膜厚測定方法
としては、例えば特開昭63−227331号公報に記
載されているように、金属板片面に金属粉含有溶着剤を
塗布し、この溶着剤層厚をレーザー光を使用した光学的
距離測定手段による非接触式膜厚測定手段又は渦流検出
器による接触式測定手段で測定するようにしている。
By the way, as a conventional method for measuring the resin film thickness of a conductive composite metal plate, for example, as described in JP-A-63-227331, a metal powder-containing welding agent is applied to one side of the metal plate, and this welding is performed. The agent layer thickness is measured by a non-contact film thickness measuring means using an optical distance measuring means using laser light or a contact measuring means using an eddy current detector.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の導電性複合金属板の樹脂膜厚
測定方法にあっては、レーザー光を利用した膜厚測定方
法による場合は、導電性フィラーによるレーザー光の散
乱が生じることから正確な膜厚測定を行うことができず
、また渦流検出器による膜厚測定方法による場合は、導
電性フィラーの量によって測定値が異なることから同様
に正確な測定を行うことができず、何れの膜厚測定方法
によっても導電性フィラーと樹脂とが混在された状態の
導電性フィラー含有樹脂の膜厚を正確に測定することが
困難であるという未解決の課題があった。
However, in the conventional resin film thickness measurement method for conductive composite metal plates described above, when the film thickness measurement method uses laser light, the laser light is scattered by the conductive filler, so it is difficult to accurately measure the film thickness. In addition, when using the film thickness measurement method using an eddy current detector, the measurement value varies depending on the amount of conductive filler, so it is not possible to perform accurate measurement. Depending on the method, there is an unresolved problem in that it is difficult to accurately measure the film thickness of a conductive filler-containing resin in a state where the conductive filler and resin are mixed.

そこで、この発明は、上記従来例の未解決の課題に着目
してなされたものであり、赤外線吸収式の測定手段を用
いて導電性フィラー含有樹脂の膜厚と導電性フィラー量
とを同時に正確に測定することができる導電性複合金属
板の樹脂膜厚測定方法を提供することを目的としている
Therefore, this invention has been made by focusing on the unresolved problems of the conventional example described above, and uses an infrared absorption type measuring means to accurately measure the film thickness of a conductive filler-containing resin and the amount of conductive filler at the same time. The purpose of the present invention is to provide a method for measuring the resin film thickness of a conductive composite metal plate.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、この発明に係る導電性複合
金属板の樹脂膜厚測定方法は、帯状金属板間に導電性フ
ィラー含有樹脂膜を介在させた導電性複合金属板を製造
する際に、一方の帯状金属板の片面に導電性フィラー含
有樹脂膜を塗布した状態で当該導電性フィラー含有樹脂
膜の膜厚を測定する導電性複合金属板の樹脂膜厚測定方
法において、前記帯状金属板の片面に塗布された導電性
フィラー含有樹脂膜に赤外線照射手段によって赤外線を
照射し、当該導電性フィラー含有樹脂膜から反射される
赤外線を分光して吸収帯での反射強度I、及び非吸収帯
における反射強度I2を夫々反射強度測定f段で測定し
、測定された反射強度II及びT2をもとに樹脂膜厚t
を t=alog(I+ /L)十b  (a、bは定数)
の演算式を用いて求め、フィラー量FをF=a’ lo
glz +b’  (a’ 、b’ は定数)の演算式
を用いて求めることを特徴としている。
In order to achieve the above object, the method for measuring the resin film thickness of a conductive composite metal plate according to the present invention is applied when manufacturing a conductive composite metal plate in which a conductive filler-containing resin film is interposed between band-shaped metal plates. , in a method for measuring a resin film thickness of a conductive composite metal plate in which the film thickness of a conductive filler-containing resin film is measured with a conductive filler-containing resin film coated on one side of one of the belt-shaped metal plates, the band-shaped metal plate A conductive filler-containing resin film coated on one side of the conductive filler-containing resin film is irradiated with infrared rays by an infrared irradiation means, and the infrared rays reflected from the conductive filler-containing resin film are spectrally analyzed to determine the reflection intensity I in the absorption band and the non-absorption band. The reflection intensity I2 is measured at the reflection intensity measurement stage f, and the resin film thickness t is determined based on the measured reflection intensity II and T2.
t=alog(I+/L)+b (a, b are constants)
The amount of filler F is calculated using the calculation formula F=a' lo
It is characterized in that it is determined using the arithmetic expression glz +b'(a' and b' are constants).

〔作用〕[Effect]

この発明においては、帯状金属板に塗布する樹脂膜は、
これに赤外線を照射して赤外スペクトルをとると、非吸
収帯と吸収帯とを持つことが知られており、これを利用
して吸収帯の反射強度1゜を測定することにより、膜厚
を測定することができる。しかしながら、帯状金属板の
片面に塗布された導電性フィラー含有樹脂膜は、導電性
フィラーが混在していることにより、赤外光の全波長領
域で散乱が生じ、反射強度が低下することから正確な膜
厚測定を行うことができない。このため、樹脂膜の非吸
収帯の反射強度I2を同時に測定し、この非吸収帯の反
射強度I2と吸収帯の反射強度Iとの比をとることによ
り、導電性フィラーによる散乱の影響を除去した正確な
膜厚測定を行うことができる。
In this invention, the resin film applied to the band-shaped metal plate is
It is known that when this is irradiated with infrared rays and an infrared spectrum is taken, it has a non-absorption band and an absorption band.Using this, by measuring the reflection intensity 1° of the absorption band, it is possible to determine the film thickness. can be measured. However, the conductive filler-containing resin film coated on one side of the strip-shaped metal plate is not accurate because the presence of the conductive filler causes scattering in the entire wavelength range of infrared light, reducing the reflection intensity. It is not possible to perform accurate film thickness measurements. Therefore, by simultaneously measuring the reflection intensity I2 of the non-absorption band of the resin film and taking the ratio of the reflection intensity I2 of the non-absorption band and the reflection intensity I of the absorption band, the influence of scattering by the conductive filler is removed. Accurate film thickness measurements can be performed.

また、導電性フィラーによる反射強度の低下は、導電性
フィラー量に比例することがら、非吸収帯の反射強度エ
アの測定値から導電性フィラー量を測定することができ
、−回の測定で導電性フィラー含有樹脂の膜厚とこれに
含有されている導電性フィラー量とを同時に測定するこ
とができる。
In addition, since the reduction in reflection intensity due to conductive filler is proportional to the amount of conductive filler, the amount of conductive filler can be measured from the measured value of the reflection intensity air in the non-absorbing band, and the amount of conductive filler can be measured by The film thickness of the filler-containing resin and the amount of conductive filler contained therein can be measured simultaneously.

〔実施例〕〔Example〕

以下、この発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は導電性複合金属板の製造装置を示す模式図であ
って、帯状金属板としてスキン鋼板を使用した導電性複
合金属板を製造する例について説明する。
FIG. 1 is a schematic diagram showing an apparatus for manufacturing a conductive composite metal plate, and an example of manufacturing a conductive composite metal plate using a skin steel plate as a band-shaped metal plate will be described.

第1図において、右側から左側に移送されるスキン鋼板
SIは、ロールコータ等の樹脂塗布装置1によってその
上面に導電性フィラー含有樹脂膜2が塗布される。
In FIG. 1, a skin steel plate SI that is transferred from the right side to the left side is coated with a conductive filler-containing resin film 2 on its upper surface by a resin coating device 1 such as a roll coater.

次いで、導電性フィラー含有樹脂膜2の膜厚を膜厚測定
装置3で測定する。この膜厚測定装置3は、導電性フィ
ラーの含有していない場合の樹脂膜2に対して吸収され
る吸収帯の波長及び吸収されない非吸収帯の波長を含む
赤外光を照射する赤外線照射手段としての赤外光源4と
、この赤外光源4からの赤外光が導電性フィラー含有樹
脂膜2で反射された反射赤外光の反射強度を測定する反
射強度測定器5と、この反射強度測定器5から出力され
る測定値に基づいて演算を行う演算装置6とで構成され
ている。ここで、反射強度測定器5は、導電性フィラー
含有樹脂膜2で反射された反射赤外光を分光して、吸収
帯の任意波長λ1の反射強度11と非吸収帯の任意波長
λ2の反射強度■2を個別に測定し、その測定値を電気
信号に変換して演算装置6に出力する。また、演算装置
6は、入力される吸収帯の反射強度I、及び非吸収帯の
反射強度I2に基づいて下記(1)式及び(2)式に従
って演算を行い樹脂膜厚を及び導電性フィラー量Fを同
時に算出する。
Next, the thickness of the conductive filler-containing resin film 2 is measured using a film thickness measuring device 3. This film thickness measuring device 3 is an infrared irradiation means that irradiates infrared light including a wavelength in an absorption band where it is absorbed and a wavelength in a non-absorption band where it is not absorbed, to the resin film 2 when it does not contain a conductive filler. an infrared light source 4, a reflection intensity measuring device 5 for measuring the reflection intensity of the reflected infrared light from the infrared light source 4 reflected by the conductive filler-containing resin film 2, and this reflection intensity. It is comprised of a calculation device 6 that performs calculations based on the measured values output from the measuring device 5. Here, the reflection intensity measuring device 5 spectrally spectra the reflected infrared light reflected by the conductive filler-containing resin film 2, and the reflection intensity 11 at an arbitrary wavelength λ1 in the absorption band and the reflection at an arbitrary wavelength λ2 in the non-absorption band. The intensity (2) is measured individually, and the measured value is converted into an electrical signal and output to the arithmetic unit 6. Further, the calculation device 6 calculates the resin film thickness and the conductive filler by calculating according to the following equations (1) and (2) based on the input reflection intensity I of the absorption band and reflection intensity I2 of the non-absorption band. The quantity F is calculated at the same time.

t=alog(I+/Iz)+b   ++m*−・+
・mF = a ’ log I 2 +b ’   
 −−・・・・・(2)ここで、a、b、a’ 、b’
 は定数であり、予め樹脂膜厚及び導電性フィラー量を
種々変更した実験を行って求めておく。
t=alog(I+/Iz)+b ++m*-・+
・mF = a' log I 2 + b'
--・・・・・・(2) Here, a, b, a', b'
is a constant, and is determined in advance by conducting experiments in which the resin film thickness and the amount of conductive filler are variously changed.

このように(1)式によって樹脂膜厚りを算出すること
ができる所以は、吸収帯の反射強度■1は樹脂膜厚が厚
くなる程、樹脂膜での赤外線吸収量が多くなり、これに
従って反射強度Itが対数的に減少することから吸収帯
の反射強度■1によって膜厚tを求めることができるも
のであるが、導電性フィラーを含有した樹脂膜2は導電
性フィラーによって赤外光の全ての波長領域が散乱され
るため、吸収帯の反射強度も導電性フィラーの散乱の影
響を受けて測定誤差を生じる。そこで、前記(1)式の
ように樹脂膜の非吸収帯の波長λ2を参照波長として、
この反射強度1.と吸収体の反射強度■1との比をとる
ことにより、導電性フィラーによる散乱の影響を相殺し
て正確な膜厚tを求めることができる。
The reason why the resin film thickness can be calculated using equation (1) is that the reflection intensity of the absorption band (1) is calculated as follows: Since the reflection intensity It decreases logarithmically, the film thickness t can be determined from the absorption band reflection intensity 1. However, the resin film 2 containing a conductive filler is able to absorb infrared light due to the conductive filler. Since all wavelength regions are scattered, the reflection intensity of the absorption band is also affected by the scattering of the conductive filler, resulting in measurement errors. Therefore, as in equation (1) above, using the wavelength λ2 of the non-absorption band of the resin film as the reference wavelength,
This reflection intensity 1. By taking the ratio of the reflection intensity (1) of the absorber and the reflection intensity (1) of the absorber, it is possible to cancel out the influence of scattering due to the conductive filler and obtain an accurate film thickness t.

また、上述したように、導電性フィラーによって非吸収
帯の反射強度■2も対数的に減少することから、この非
吸収帯の反射強度I2に基づいて前記(2)式に従って
導電性フィラー量Fを求めることができる。
In addition, as mentioned above, since the conductive filler also logarithmically decreases the reflection intensity (I2) in the non-absorption band, the amount of conductive filler F can be found.

その後、導電性フィラー含有樹脂膜2が塗布されたスキ
ン鋼板S1は、圧着ロール7に送られ、この圧着ロール
7で導電性フィラー含有樹脂膜2上に他のスキン鋼板S
2が圧着され、これによってスキン鋼板S1及びS2が
導電性フィラー含有樹脂膜2によって接着され、目的と
する導電性複合金属板S3が形成される。
Thereafter, the skin steel sheet S1 coated with the conductive filler-containing resin film 2 is sent to a pressure roll 7, and the skin steel sheet S1 is applied onto the conductive filler-containing resin film 2 by the pressure roll 7.
2 is crimped, and thereby the skin steel plates S1 and S2 are bonded together by the conductive filler-containing resin film 2, and the intended conductive composite metal plate S3 is formed.

このように、赤外光の樹脂膜2に対して吸収がある吸収
波長帯の反射強度I、と吸収がない非吸収波長帯の反射
強度I2とに基づいて導電性フィラー含有樹脂膜2の膜
厚を及び分散された導電性フィラーの分散量Fとをオン
ラインで且つリアルタイムに同時にしかも正確に測定す
ることができるので、膜厚及び導電性フィラー量の双方
を適正範囲に管理することができるため、接着性及び再
溶接性を同時に満足する導電性複合金属板S3を製造す
ることができる。
In this way, the film of the conductive filler-containing resin film 2 is determined based on the reflection intensity I in the absorption wavelength band where there is absorption for the resin film 2 of infrared light and the reflection intensity I2 in the non-absorption wavelength band where there is no absorption. Since the thickness and the amount F of dispersed conductive filler can be simultaneously and accurately measured online and in real time, both the film thickness and the amount of conductive filler can be controlled within appropriate ranges. , it is possible to manufacture a conductive composite metal plate S3 that satisfies adhesive properties and reweldability at the same time.

また、この発明による導電性フィラー含有樹脂膜測定方
法と重量法とを使用して種々の供試材Nα1〜Nα10
について膜厚及び導電性フィラー量を測定した結果を下
記第1表に示す。ここで、重量法は、予め重量W0を測
定した鋼板に第1図に示す製造装置を使用して導電性フ
ィラー含有樹脂膜を形成した塗装鋼板の重量Wアを測定
した後、樹脂を溶解して溶は残った導電性フィラーの重
量WFを測定し、これらに基づいて下記(3)に従って
樹脂膜厚tを算出する。
In addition, various test materials Nα1 to Nα10 were measured using the conductive filler-containing resin film measuring method according to the present invention and the gravimetric method.
The results of measuring the film thickness and amount of conductive filler are shown in Table 1 below. Here, in the gravimetric method, after measuring the weight Wa of a painted steel plate on which a conductive filler-containing resin film is formed using the manufacturing equipment shown in Figure 1 on a steel plate whose weight W0 has been measured in advance, the resin is melted. Then, the weight WF of the remaining conductive filler is measured, and based on these, the resin film thickness t is calculated according to (3) below.

t =Wy −WF −WO・・・・・・・・・・・・
(3)そして、第1表における供試体N001〜N01
5の重量法による膜厚を実線で表し、本発明法による膜
厚をX印で表すと第2図に示すようになり、同様に、供
試体に6〜Nα10の重量法によるフィラー量を実線で
表し、本発明法によるフィラー量をX印で表すと第3図
に示すようになる。
t =Wy −WF −WO・・・・・・・・・・・・
(3) And specimens N001 to N01 in Table 1
The film thickness determined by the gravimetric method in No. 5 is represented by a solid line, and the film thickness determined by the method of the present invention is represented by an X mark, as shown in FIG. When the filler amount according to the method of the present invention is represented by an X mark, it becomes as shown in FIG.

これら第1表及び第2図及び第3図から明らかなように
、本発明法は重量法に非常によい相関を示すことが明ら
かであり、導電性フィラー含有樹脂膜の膜厚及び導電性
フィラー量を正確に測定できることが実証された。
As is clear from Table 1 and Figures 2 and 3, it is clear that the method of the present invention shows a very good correlation with the gravimetric method, and the thickness of the conductive filler-containing resin film and the conductive filler It has been demonstrated that the amount can be measured accurately.

第  1  表 なお、上記実施例においては、帯状金属板としてスキン
鋼板を適用した場合について説明したが、これに限定さ
れるものではな(、他の鋼板等の金属板を適用し得るこ
とは言うまでもない。
Table 1 Note that in the above embodiments, the case where a skin steel plate is applied as the band-shaped metal plate is explained, but the invention is not limited to this (it goes without saying that other metal plates such as steel plates can be applied). stomach.

〔発明の効果] 以上説明したように、この発明によれば、導電性複合金
属板を製造する際に、帯状金属板の片面に導電性フィラ
ー含有樹脂膜を形成したときの樹脂膜厚及び導電性フィ
ラー量を導電性フィラー含有樹脂膜に照射した赤外線の
反射強度のうち吸収帯の反射強度と非吸収帯の反射強度
を測定し、両者の比に基づいて膜厚tを正確に測定する
ことができ、これと同時に非吸収帯の反射強度に基づい
て導電性フィラー量を正確に測定することができ、これ
ら測定値に基づいて正確な膜厚及び導電性フィラー量の
フィードバック制御を行うことが可能となり、接着性及
び溶接性を共に満足する高品質の導電性複合金属板を製
造することができる効果が得られる。
[Effects of the Invention] As explained above, according to the present invention, when a conductive composite metal plate is manufactured, the resin film thickness and conductivity when a conductive filler-containing resin film is formed on one side of a strip metal plate are adjusted. Measure the reflection intensity of the absorption band and the reflection intensity of the non-absorption band among the reflection intensities of infrared rays irradiated onto the conductive filler-containing resin film, and accurately measure the film thickness t based on the ratio of the two. At the same time, the amount of conductive filler can be accurately measured based on the reflection intensity of the non-absorption band, and based on these measured values, accurate feedback control of the film thickness and amount of conductive filler can be performed. This makes it possible to produce a high-quality conductive composite metal plate that satisfies both adhesion and weldability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す模式図、第2図及び
第3図は夫々本発明法と重量測定法との測定結果を膜厚
及びフィラー量について示すグラフである。 図中、St、Szはスキン鋼板(帯状金属板)、S3は
導電性複合金属板、1は樹脂塗装装置、2は導電性フィ
ラー含有樹脂膜、3は膜厚測定装置、4は赤外光源、5
は反射強度測定器、6は演算装置、7は圧着ロールであ
る。 @ 2 図
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and FIGS. 2 and 3 are graphs showing the measurement results of the method of the present invention and the gravimetric method in terms of film thickness and filler amount, respectively. In the figure, St and Sz are skin steel plates (band-shaped metal plates), S3 is a conductive composite metal plate, 1 is a resin coating device, 2 is a resin film containing a conductive filler, 3 is a film thickness measuring device, and 4 is an infrared light source. ,5
6 is a reflection intensity measuring device, 6 is a calculation device, and 7 is a pressure roll. @2 Figure

Claims (1)

【特許請求の範囲】 帯状金属板間に導電性フィラー含有樹脂膜を介在させた
導電性複合金属板を製造する際に、一方の帯状金属板の
片面に導電性フィラー含有樹脂膜を塗布した状態で当該
導電性フィラー含有樹脂膜の膜厚を測定する導電性複合
金属板の樹脂膜厚測定方法において、前記帯状金属板の
片面に塗布された導電性フィラー含有樹脂膜に赤外線照
射手段によって赤外線を照射し、当該導電性フィラー含
有樹脂膜から反射される赤外線を分光して吸収帯での反
射強度I_1及び非吸収帯における反射強度I_2を夫
々反射強度測定手段で測定し、測定された反射強度I_
1及びI_2をもとに樹脂膜厚tをt=alog(I_
1/I_2)+b(a、bは定数)の演算式を用いて求
め、フィラー量Fを F=a′logI_2+b′(a′、b’は定数)の演
算式を用いて求めることを特徴とする導電性複合金属板
の樹脂膜厚測定方法。
[Scope of Claims] When manufacturing a conductive composite metal plate in which a conductive filler-containing resin film is interposed between band-shaped metal plates, a state in which a conductive filler-containing resin film is applied to one side of one of the band-shaped metal plates In the resin film thickness measuring method for a conductive composite metal plate, which measures the film thickness of the conductive filler-containing resin film, an infrared ray irradiation means is applied to the conductive filler-containing resin film coated on one side of the strip-shaped metal plate. The infrared rays reflected from the conductive filler-containing resin film are spectrally irradiated, and the reflection intensity I_1 in the absorption band and the reflection intensity I_2 in the non-absorption band are measured by a reflection intensity measuring means, and the measured reflection intensity I_
1 and I_2, the resin film thickness t is t=alog(I_
1/I_2)+b (a, b are constants), and the filler amount F is found using the equation F=a'logI_2+b'(a',b' are constants). A method for measuring resin film thickness on conductive composite metal plates.
JP9895690A 1990-04-13 1990-04-13 Measuring method for resin film thickness of conductive composite metallic plate Pending JPH03295407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9895690A JPH03295407A (en) 1990-04-13 1990-04-13 Measuring method for resin film thickness of conductive composite metallic plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9895690A JPH03295407A (en) 1990-04-13 1990-04-13 Measuring method for resin film thickness of conductive composite metallic plate

Publications (1)

Publication Number Publication Date
JPH03295407A true JPH03295407A (en) 1991-12-26

Family

ID=14233541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9895690A Pending JPH03295407A (en) 1990-04-13 1990-04-13 Measuring method for resin film thickness of conductive composite metallic plate

Country Status (1)

Country Link
JP (1) JPH03295407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510414A (en) * 2005-09-29 2009-03-12 ヴィントメーラー ウント ヘルシャー コマンディトゲゼルシャフト A device that measures and monitors the characteristics of the three-dimensional spread of coating paste on processed products
WO2016006374A1 (en) * 2014-07-10 2016-01-14 中国塗料株式会社 Coating composition and coating film formation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510414A (en) * 2005-09-29 2009-03-12 ヴィントメーラー ウント ヘルシャー コマンディトゲゼルシャフト A device that measures and monitors the characteristics of the three-dimensional spread of coating paste on processed products
WO2016006374A1 (en) * 2014-07-10 2016-01-14 中国塗料株式会社 Coating composition and coating film formation method
JP2016017164A (en) * 2014-07-10 2016-02-01 中国塗料株式会社 Coating composition and production method of coating film

Similar Documents

Publication Publication Date Title
EP0092688B1 (en) Laminate consisting of several layers and method for the verification and/or measurement of the concentration of a chemical substance, especially of biological origin
KR102172593B1 (en) Measurement of porous film
US5289266A (en) Noncontact, on-line determination of phosphate layer thickness and composition of a phosphate coated surface
CN104749113B (en) A kind of method for measuring Glass optical constant
CN107345904A (en) Method and device based on optical absorption and interferometry gas concentration
JPH095038A (en) Chromate treatment steel plate and chromate film thickness measuring method and apparatus
SE8503456L (en) PROCEDURE FOR SEATING COVERAGE QUANTITIES
GB2016678A (en) Method and Apparatus for Measuring the Thicknesses of Film Layers Using Infrared Radiation
EP1287310B1 (en) Method and device for determining the thickness of transparent organic layers
JPH03295407A (en) Measuring method for resin film thickness of conductive composite metallic plate
DE1623196C3 (en) Method and device for measuring the thickness of a film
CA1079414A (en) Procedure for measuring unit area weights
JPS6217166B2 (en)
JP4268508B2 (en) Film thickness measuring method and film thickness measuring apparatus
KR920011038B1 (en) Method of non-contact on-line determination of thickness and composition of phosphate layer of phosphate film surface
JPH01124703A (en) Method and device for noncontact measurement of film characteristic
JPS61172002A (en) Infrared ray type coating film thickness measuring device
JPH01132936A (en) Method and apparatus for analyzing film
JPS57108704A (en) Measuring method of thickness of film coated on metallic plate
GB2099994A (en) Determining coating thickness
JP4234945B2 (en) Surface inspection method and surface inspection apparatus
JP2892531B2 (en) Method and apparatus for measuring oil amount
JPH0387605A (en) Method and device for measuring film thickness
CN105115897A (en) Water body parameter measurement device and strong absorption liquid absorption coefficient measurement method
JPS57103004A (en) Method for measuring film thickness of surface