WO2016006374A1 - Coating composition and coating film formation method - Google Patents

Coating composition and coating film formation method Download PDF

Info

Publication number
WO2016006374A1
WO2016006374A1 PCT/JP2015/066373 JP2015066373W WO2016006374A1 WO 2016006374 A1 WO2016006374 A1 WO 2016006374A1 JP 2015066373 W JP2015066373 W JP 2015066373W WO 2016006374 A1 WO2016006374 A1 WO 2016006374A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
infrared
coating film
film thickness
wet
Prior art date
Application number
PCT/JP2015/066373
Other languages
French (fr)
Japanese (ja)
Inventor
健志 西
瑞穂 本間
康人 引地
加藤 修
伸 原田
Original Assignee
中国塗料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国塗料株式会社 filed Critical 中国塗料株式会社
Publication of WO2016006374A1 publication Critical patent/WO2016006374A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Definitions

  • the present invention can easily form a coating film having a desired thickness of 50 ⁇ m or more used for, for example, a ship, an offshore structure, a bridge, a building, a plant facility, a steel structure, a concrete structure, a transportation machine such as an automobile.
  • the present invention relates to a formable coating composition. Moreover, it is related with the formation method of the coating film which can form the coating film of a desired film thickness easily using the coating composition.
  • Measurement of film thickness inside ship structures is usually done using a wet gauge for wet coatings and an electromagnetic film thickness meter for dry coatings. Therefore, it is required to measure the film thickness at various locations.
  • a non-contact type film thickness measuring method As a method for measuring the film thickness, there is a non-contact type film thickness measuring method in addition to the above method, and one of the methods is a film thickness measuring method using infrared rays (for example, Patent Documents 1 and 2). ).
  • a film thickness measuring method using infrared rays for example, Patent Documents 1 and 2.
  • the film thickness measurement method using infrared rays could hardly be applied to such applications.
  • reflected infrared light is used for measuring the film thickness of the coating film, but all are techniques for thin films up to about several ⁇ m, and can measure a film thickness of 50 ⁇ m or more. It wasn't.
  • This invention is made
  • a configuration example of the present invention is as follows.
  • the infrared transmittance of the dried coating film (A) is 2% or more
  • the absolute value of the difference from the infrared reflectance Ra% measured from is 2% or more, A coating composition whose dry film thickness can be measured by infrared reflection intensity.
  • the infrared transmittance of the dried coating film (A) obtained by drying the wet coating film (A ′) is 2% or more
  • the absolute value of the difference from the infrared reflectance Ra% measured from the side where the dry coating film (A) is laminated is 2% or more
  • a coating composition capable of measuring wet film thickness by infrared reflection intensity is 2% or more.
  • the coating composition contains 0.03 to 3% by volume of an infrared reflective pigment with respect to 100% by volume of the dried coating film (A).
  • the coating composition as described.
  • the infrared reflective pigment is titanium dioxide, cuprous oxide, zinc oxide, dial, yellow dial, chrome green black hematite, manganese bismuth black pigment, chromium iron oxide, nickel antimony titanium yellow rutile, chromium antimony titanium buff [4]
  • the absolute value of the difference from the infrared reflectance Ra% measured from is 2% or more, After the coating composition is applied onto the article (C) and dried, A method for forming a dried coating film, wherein the dried coating film is judged to have reached a desired film thickness by measuring the infrared reflection intensity with an infrared reflection intensity measuring device.
  • the infrared transmittance of the dried coating film (A) is 10% or more, and the absolute value of the difference between Rc and Ra is 3% or more, [6] to [8] The forming method as described.
  • the infrared reflective pigment is titanium dioxide, cuprous oxide, zinc oxide, dial, yellow dial, chrome green black hematite, manganese bismuth black pigment, chromium iron oxide, nickel antimony titanium yellow rutile, chromium antimony titanium buff
  • the forming method according to [10] which is at least one pigment selected from the group consisting of rutile and rutile tin zinc.
  • the infrared reflection intensity measuring device analyzes a light source capable of emitting infrared rays, a sensor for detecting infrared intensity reflected when the object is irradiated with infrared rays, and an infrared reflection intensity detected by the sensor.
  • the present invention it is possible to provide a coating composition capable of easily measuring the thickness of a coating film (thick film of 50 ⁇ m or more) based on infrared reflection intensity, and a method for easily measuring the thickness of the coating film.
  • a coating composition capable of easily measuring the thickness of a coating film (thick film of 50 ⁇ m or more) based on infrared reflection intensity, and a method for easily measuring the thickness of the coating film.
  • the film thickness obtained after the coating film is dried can be determined by measuring the infrared reflection intensity in the state of the wet coating film.
  • the film thickness is measured by the infrared reflection intensity, the film thickness can be measured without any problem even at a painting site where there is not sufficient brightness.
  • the film thickness can be measured by a non-contact method, the film thickness can be quickly increased as compared with a film thickness measuring method using a contact film thickness meter such as a conventional wet gauge or electromagnetic film thickness meter. It can be measured and a great improvement in work efficiency can be expected.
  • a contact film thickness measurement method it is necessary to provide a scaffold for bringing a film thickness meter or the like into contact with the coating film. However, depending on the painting place, there are places where it is difficult to install such a scaffold. Since the present invention can measure the film thickness in a non-contact manner, the film thickness can be measured even in such a place.
  • the present invention since it is possible to control the film thickness of the wet coating film, it is possible to prevent the coating of an excessive amount of paint exceeding the amount that achieves a desired dry film thickness, Since the formation of a coating film having a film thickness exceeding the desired dry film thickness can be suppressed, a dry coating film in which cracks or the like hardly occur can be obtained.
  • FIG. 1 is a graph plotting the relationship between the film thickness of the top coat film obtained in Example 1 and the difference in infrared reflectance.
  • FIG. 2 is a graph in which the film thickness of the top coat film obtained in Example 1 and the digital level that is the infrared reflection intensity measured by the apparatus 1 are plotted.
  • FIG. 3 is a graph in which the film thickness of the top coat film obtained in Example 1 and the photodiode voltage, which is the infrared reflection intensity measured by the apparatus 2, are plotted.
  • FIG. 4 is a graph plotting the film thickness of the wet topcoat film obtained in Example 1 and the digital level, which is the infrared reflection intensity measured by the apparatus 1.
  • FIG. 5 is a graph plotting the relationship between the film thickness of the top coat film obtained in Example 2 and the difference in infrared reflectance.
  • FIG. 6 is a graph in which the film thickness of the top coat film obtained in Example 2 and the photodiode voltage, which is the infrared reflection intensity measured by the apparatus 2, are plotted.
  • FIG. 7 is a graph plotting the film thickness of the wet topcoat film obtained in Example 2 and the photodiode voltage, which is the infrared reflection intensity measured by the apparatus 2.
  • FIG. 8 is a graph plotting the relationship between the film thickness of the top coat film obtained in Example 3 and the difference in infrared reflectance when SP-BK is used as the undercoat paint.
  • FIG. 9 is a graph plotting the film thickness of the top coat film obtained in Example 3 and the digital level that is the infrared reflection intensity measured by the apparatus 1 when SP-BK is used as the undercoat paint.
  • FIG. 10 is a graph plotting the film thickness of the top coat film obtained in Example 3 and the photodiode voltage as the infrared reflection intensity measured by the apparatus 2 when SP-BK is used as the undercoat paint. is there.
  • FIG. 11 is a graph plotting the relationship between the film thickness of the top coat film obtained in Comparative Example 1 and the difference in infrared reflectance.
  • FIG. 12 is a graph in which the film thickness of the top coat film obtained in Comparative Example 1 and the digital level that is the infrared reflection intensity measured by the apparatus 1 are plotted.
  • FIG. 13 is a graph plotting the relationship between the film thickness of the top coat film obtained in Comparative Example 2 and the difference in infrared reflectance.
  • FIG. 14 is a graph plotting the relationship between the film thickness of the top coat film obtained in Comparative Example 3 and the difference in infrared reflectance.
  • FIG. 15 is a graph plotting the relationship between the film thickness of the top coat film obtained in Comparative Example 4 and the difference in infrared reflectance.
  • FIG. 16 is a graph in which the film thickness of the top coat film obtained in Comparative Example 2 and the digital level that is the infrared reflection intensity measured by the apparatus 1 are plotted.
  • FIG. 17 is a graph in which the film thickness of the top coat film obtained in Comparative Example 3 and the digital level that is the infrared reflection intensity measured by the apparatus 1 are plotted.
  • FIG. 18 is a graph in which the film thickness of the top coat film obtained in Comparative Example 4 and the digital level that is the infrared reflection intensity measured by the apparatus 1 are plotted.
  • the coating composition according to the present invention forms a dry coating film (A) having a desired dry film thickness of 50 ⁇ m or more on the article (C) to be coated.
  • it is a coating composition for forming a wet coating film (A ′) having a desired wet film thickness of 50 ⁇ m or more, and satisfies the following requirements (I) and (II) or (i) and (ii): It is a coating composition capable of measuring a dry film thickness or a wet film thickness depending on strength.
  • the infrared transmittance of the dried coating film (A) is 2% or more.
  • the infrared reflectance of the article (C) to be coated (the side on which the dried coating film (A) of the article (C) is formed) Infrared reflectance measured from (same below) Measured from the side of the laminate comprising Rc% and the article (C) to be coated and the dried coating film (A) on which the dried coating film (A) was laminated.
  • the absolute value of the difference from the infrared reflectance Ra% is 2% or more.
  • the infrared transmittance of the dried coating film (A) obtained by drying the wet coating film (A ′) is 2% or more.
  • the dry coating film refers to a coating film obtained by applying a coating to an object and passing through a drying process.
  • the volatile component (solvent amount) in the coating film is 10 This refers to a coating film having a weight% or less.
  • the wet coating film refers to a coating film other than the dry coating film formed on the object to be coated.
  • the term “coating film” is simply used to include a dry coating film and a wet coating film.
  • the dry coating film obtained by drying the wet coating film (A ′) having the desired wet film thickness is not particularly limited as long as it is a coating film obtained from the wet coating film (A ′) through a drying step, but usually Since the dry coating film obtained by drying the wet coating film (A ′) is a dry coating film (A) having a desired dry film thickness, it is described as “dry coating film (A)” for convenience.
  • the desired dry film thickness is not particularly limited as long as it is 50 ⁇ m or more, and may be appropriately selected according to the desired use, but is preferably 100 to 1000 ⁇ m, more preferably 100 to 600 ⁇ m. Further, the desired wet film thickness is not particularly limited as long as it is 50 ⁇ m or more, and may be appropriately selected according to the desired application. However, the film thickness after drying the wet coating film falls within the above range. It is preferable that the film thickness is large.
  • the film thickness of such a wet coating film is preferably 110 to 2000 ⁇ m, more preferably 110 to 800 ⁇ m.
  • Infrared transmittance in the (I) and (i) is 2% or more, preferably 10% or more.
  • the absolute value of the difference between Ra and Rc in (II) and (ii) is 2% or more, preferably 3% or more.
  • the wavelength range of infrared rays and infrared rays used for measurement of Ra and Rc is preferably 800 nm to 1000 ⁇ m.
  • the coating film thickness can be measured by infrared reflection intensity, Become.
  • the graph which plotted the relationship between a film thickness and infrared reflected intensity turns into a graph which has a moderate inclination by using the coating composition which satisfy
  • the coating composition satisfying the above (I) and (II) or (i) and (ii) there is almost no influence by the solvent, and the film thickness can be controlled in a wet state.
  • the infrared transmittance and infrared reflectance can be specifically measured by the methods described in the following examples.
  • the coating composition of the present invention is a coating composition capable of measuring the film thickness of the coating film by infrared reflection intensity
  • the hue of the coating composition and the coating film obtained from the composition are not limited.
  • the infrared wavelength region is about 800 nm to 1000 ⁇ m, and is independent of the wavelength at which we visually recognize the hue, about 380 to 780 nm. For example, it is a condition where the film thickness cannot be confirmed due to a change in hue. Even under conditions in which a black top coat is applied on a black undercoat, the film thickness can be accurately determined by infrared reflection intensity if the above requirements (I) and (II) or (i) and (ii) are satisfied. Can be measured.
  • the film thickness of the coating film obtained from the coating composition of the present invention is measured by infrared reflection intensity.
  • the film thickness of the coating film formed from the coating composition to be used, and the infrared reflection intensity at the film thickness (formed on the object to be coated) Irradiate infrared rays from the coating film side of the coated film, measure several reflection strengths), determine the relationship between the film thickness and infrared reflection strength (curve graph) in advance, and based on this relationship
  • a method of measuring (deriving) the current thickness of the coating film from the infrared reflection intensity measured during actual coating is preferable.
  • the thickness of the coating film during coating can be easily measured.
  • a dry coating film as well as a wet coating film can be used. It is possible to measure a film thickness close to the actual film thickness that is about the same as the film thickness measured with a gauge or the like. Further, since the film thickness is measured by the infrared reflection intensity, the film thickness can be measured by a non-contact method even under dark conditions (for example, an environment of less than 20 lux).
  • Such infrared reflection intensity can be measured using a conventionally known apparatus such as an ultraviolet-visible-near-infrared spectrophotometer, etc., but is reflected when a light source capable of irradiating infrared rays and the object to be coated are irradiated with infrared rays. It is preferable to measure using an infrared reflection intensity measuring device including a sensor for detecting infrared intensity and a device for analyzing the infrared reflection intensity detected by the sensor.
  • an infrared reflection intensity measuring device using infrared rays having one or two or more wavelengths selected from the near infrared region is preferable because it is hardly affected by the temperature near room temperature and has good sensitivity.
  • the light source may be arbitrarily selected as long as it is capable of emitting infrared rays, and examples thereof include a halogen lamp, a reflight for photographing, LED, laser light, and sunlight.
  • any sensor having sensitivity in the infrared region can be arbitrarily selected.
  • the apparatus for analyzing the intensity of infrared reflection detected by the sensor can be arbitrarily selected, and examples thereof include an analysis program (such as Altair (manufacturer: FLIR Systems, Inc.)), an oscilloscope, and a voltmeter.
  • an analysis program such as Altair (manufacturer: FLIR Systems, Inc.)
  • an oscilloscope such as a voltmeter.
  • the infrared reflection intensity measuring apparatus 1 and the infrared reflection intensity measuring apparatus 2 used in the following examples are preferable.
  • the coating composition is not particularly limited as long as the composition satisfies the requirements (I) and (II) or (i) and (ii).
  • the infrared reflection intensity measured by the infrared reflection intensity measuring device is most dependent on the type and amount of pigment.
  • the coating composition contains an infrared reflective pigment as this pigment, a coating composition that satisfies the requirements (I) and (II) or (i) and (ii) can be easily obtained. Use is preferable because the degree of freedom in blending other components is increased.
  • the coating composition containing the infrared reflective pigment the film thickness of the dry coating film derived from the infrared reflection intensity of the coating film in the wet state immediately after coating is the film thickness of the actually obtained dry coating film. It is preferable because the value is very close to.
  • the term “infrared reflective pigment” refers to a pigment in the solid content of a paint on a coating film formed by applying and drying an undercoat paint SP-BK of Table 1 below to a dry film thickness of about 10 ⁇ m.
  • an overcoating film is formed by applying a topcoating material containing a pigment in such an amount that the content is 0.6% by volume and drying at 60 ° C. for 24 hours, the infrared of the topcoating film at a film thickness of 400 ⁇ m is formed.
  • This refers to a pigment having a reflectance of 15% or more, and the pigment is preferably a pigment having an infrared reflectance of 15 to 60%.
  • the infrared reflectance of the top coat film at a film thickness of 400 ⁇ m is determined by the method described in the Examples below.
  • the infrared reflective pigment is not particularly limited, but for example, titanium dioxide, cuprous oxide, zinc oxide, petrol, yellow petrol, chrome green black hematite, manganese bismuth black pigment, chromium iron oxide, nickel antimony titanium yellow rutile. , Chromium antimony titanium baflutyl and rutile tin zinc.
  • infrared reflective pigments include “Titone R-5N” (trade name) (manufactured by Sakai Chemical Industry Co., Ltd., titanium dioxide), “Taipeke R-930” (trade name) (manufactured by Ishihara Sangyo Co., Ltd.) ), “Gekkou BB” (trade name) (manufactured by Toda Pigment Co., Ltd., ferric oxide (valve)), “NC-301” (trade name) (Nisshin Chemco Co., Ltd., cuprous oxide), “Zinc Oxide 3 types” (trade name) (Kyushu Hakusui Co., Ltd., Zinc Oxide), “Valent 404” (Morishita Bengal Kogyo Co., Ltd., ferric oxide), “TAROX LL-XLO” ( (Trade name) (made by Titanium Industry Co., Ltd., yellow synthetic iron oxide ( ⁇ -iron oxyhydroxide)), “Black 10C909
  • Nganbismuth black pigment “Black 411A” (trade name) (Shepherd® Color® Company, chromium iron oxide), “Yellow 10C112” (trade name) (Shepherd® Color® Company, nickel anti-montitanium yellow rutile), “Yellow 10C242” (Product name) (Shepherd® Color® Company, Chrome Antimony Titanium Baffle), “Orange 10P320” (Shepherd® Color® Company, Rutile Tin Zinc), and the like.
  • the blending amount of the infrared reflecting pigment is too small, particularly less than 0.03% by volume, the change in the reflectance of light in the infrared region is small even when the film thickness is increased, so that the coating composition has sufficient sensitivity. In some cases, a coating film cannot be obtained. On the contrary, when the amount of the infrared reflecting pigment is too large, the light transmittance in the infrared region is reduced, so that it is difficult for infrared rays to reach the deep part of the coating film, particularly 3.0% by volume. If it exceeds, it tends to be difficult to measure the thickness of a thick film exceeding 50 ⁇ m.
  • the infrared reflective pigments may be used alone or in combination of two or more. When using 2 or more types, it is preferable to make the total compounding quantity of these several types of infrared reflective pigments become the range of the said compounding quantity.
  • infrared reflective pigments particularly when an infrared reflective pigment having a high reflectance in the infrared region and a low transmittance, for example, titanium dioxide, a petiole, a yellow petiole, etc., is blended (I) or ( In order to obtain a coating film that satisfies i), for example, when titanium dioxide is used, it is desirable to blend so as not to exceed 2.0% by volume in the dry coating film.
  • known components used in conventional coatings can be blended within a range that does not impair the effects of the present invention.
  • These components to be blended specifically solvents, resins, additives and the like, can be arbitrarily selected because they have less influence on the infrared transmittance and reflectance of the resulting coating film than pigment components. .
  • Binder resin The coating composition of the present invention usually contains a binder resin.
  • a binder resin is not particularly limited, and examples thereof include an epoxy resin, a urethane resin, an alkyd resin, an acrylic resin, a vinyl chloride resin, a chlorinated olefin resin, a chlorinated rubber, and a vinyl acetate resin.
  • an epoxy resin is particularly preferable.
  • the binder resin can be used alone or in combination of two or more.
  • the epoxy resin is not particularly limited, and examples thereof include non-tar epoxy resins described in JP-A-11-343454 and JP-A-10-259351.
  • the epoxy resin examples include a polymer or oligomer containing two or more epoxy groups in the molecule, and a polymer or oligomer generated by a ring-opening reaction of the epoxy group.
  • examples of such epoxy resins include bisphenol type epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, phenol novolac type epoxy resins, cresol type epoxy resins, dimer acid-modified epoxy resins, aliphatic epoxy resins, and alicyclic groups.
  • An epoxy resin, an epoxidized oil type epoxy resin, etc. are mentioned.
  • the epoxy resin may be synthesized by a conventionally known method or may be a commercially available product.
  • As a commercially available product “E028” (manufactured by Akira Ohtake Shin Chemical Co., Ltd., bisphenol A diglycidyl ether resin, epoxy equivalent of 180 to 190, viscosity of 12,000 to 15,000 mPa ⁇ s / 25 as a liquid at room temperature.
  • JER1001 Mitsubishi Chemical Corporation, bisphenol A type epoxy resin, epoxy equivalent 450-500
  • E-001-75X Otake Akira Shin Chemical Co., Ltd., bisphenol
  • epoxy resin 1001 manufactured by Akira Otake Shin Chemical Co., Ltd., bisphenol A type solid epoxy resin
  • the epoxy resin can be used alone or in combination of two or more.
  • the epoxy resin is preferably liquid or semi-solid at room temperature (temperature of 15 to 25 ° C., the same shall apply hereinafter) from the viewpoint of obtaining a composition having excellent adhesion to the substrate.
  • the epoxy equivalent of the epoxy resin is preferably 150 to 1000, more preferably 150 to 600, and particularly preferably 180 to 500 from the viewpoint of corrosion resistance and the like.
  • the weight average molecular weight measured by GPC gel permeation chromatograph of the epoxy resin is not generally determined depending on the coating curing conditions (eg, normal dry coating or baking coating) of the resulting composition, but preferably Is 350 to 20,000.
  • the binder resin is contained in the coating composition of the present invention in an amount of preferably 5 to 70% by weight, more preferably 10 to 30% by weight.
  • the binder resin when the coating composition of the present invention is a two-component composition comprising a main component and a curing agent component, the binder resin is included in the main component, and preferably in the main component. Is preferably contained in an amount of 5 to 80% by weight, more preferably 5 to 50% by weight.
  • the coating composition of the present invention may contain a curing agent. Although it does not restrict
  • an isocyanate compound may be used as the curing agent in order to obtain a urethane resin.
  • the epoxy resin curing agent is not particularly limited, and examples thereof include amine curing agents and acid anhydride curing agents. Among them, aliphatic, alicyclic, aromatic, heterocyclic, etc. The amine curing agent is preferred.
  • amines (amine compounds) described in JP-B-49-48480 can be used, and diethylaminopropylamine, polyether diamine, and the like can also be used.
  • amine curing agent examples include a modified product of the above-described amine curing agent, such as polyamide, polyamide amine (polyamide resin), amine adduct with an epoxy compound, Mannich compound (eg, Mannich modified polyamide amine), and Michael adduct. , Ketimine, aldimine, phenalkamine and the like.
  • the active hydrogen equivalent of the amine curing agent is preferably 50 to 1000, more preferably 80 to 400, from the viewpoint of obtaining a coating film having excellent anticorrosion properties.
  • Examples of the acid anhydride curing agent include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, 3,6-endomethylenetetrahydrophthalic anhydride, hexachloroendomethylenetetrahydrophthalic anhydride, methyl-3,6- Examples include endomethylenetetrahydrophthalic anhydride.
  • the curing agent may be synthesized by a conventionally known method or may be a commercially available product.
  • commercially available products include aliphatic polyamines “ACI Hardener K-39” (manufactured by PTI Japan), polyamidoamines “PA-66”, “PA-23” and “PA-290 (A ”” (Both manufactured by Otake Akira Shin Chemical Co., Ltd.), modified polyamine “MAD-204 (A)” (produced by Otake Akira Shin Chemical Co., Ltd.), Mannich modified polyamidoamine “Adeka Hardener EH- 342W3 "(manufactured by ADEKA Co., Ltd.),” Sanmide CX-1154 "(manufactured by Sanwa Chemical Co., Ltd.), a Mannich-modified aliphatic polyamine, and" Cardlight NC556X80 "(manufactured by Cardlight), a phenorcamine adduct. Is mentioned.
  • the curing agent can be used alone or in combination of two or more.
  • the equivalent ratio of the curing agent and the epoxy resin is preferably 0.3. It is desirable to use it in such an amount that it is ⁇ 1.5, more preferably 0.5 ⁇ 1.0.
  • Pigment A pigment (however, excluding the infrared reflection pigment) may be blended in the coating composition of the present invention.
  • pigments include conventionally known pigments, such as those described in “Paint Raw Material Handbook 9th Edition” (published by the Japan Paint Manufacturers Association) and “Organic Pigment Handbook” (Color Office, written by Isao Hashimoto). Pigments can be used.
  • the pigment (C) can be used alone or in combination of two or more.
  • the blending amount of the pigment is preferably 0.03 to 80 parts by weight, more preferably 100 parts by weight of the nonvolatile content of the coating composition of the present invention. Is 5 to 70 parts by weight.
  • the pigment include, for example, MIO (Micaceous Iron Oxide), aniline black, channel black, furnace black, conductive carbon black, carbon black, graphite, black petrol, composite metal oxide, Perylene black, N, N'-bis (2-phenylethyl) -3,4,9,10-perylenebiscarbodiimide, Victoria Pure Blue B0 Lake, Phthalocyanine Blue R, Phthalocyanine Blue G, Phthalocyanine Blue E, Metal-free Phthalocyanine Blue , First Sky Blue, Bituminous Blue, Cobalt Blue, Ultramarine Blue, Indantron Blue 3R, Decachlorinated, Condensed Azo Brown, Benzimidazolone Brown HR, Phthalocyanine Green, Chrome Green , Chromium oxide green, phthalocyanine green 6Y, aluminum, al paste gold color, al paste (non-leafing), al paste (leafing), zinc powder, dinitroaniline orange, pyrazolone orange, dianididine orange,
  • a pigment having a high light transmittance in the infrared region and a low reflectance for example, a pigment belonging to a low reflection pigment such as talc or barium sulfate, is used as the pigment in the coating composition of the present invention. Since the coating film to be formed has a tendency that the infrared reflectance hardly increases even when the film thickness is increased, it may be difficult to obtain a coating composition in which the coating film thickness can be easily measured by the infrared reflection intensity. Therefore, when using a pigment having a high light transmittance in these infrared regions and a low reflectance, it is preferable to use at least one pigment selected from the infrared reflective pigments in combination.
  • (D) Plasticizer It is also preferable to mix
  • the said plasticizer may be used individually by 1 type, and may use 2 or more types.
  • liquid hydrocarbons such as low-boiling fractions obtained by thermal decomposition of chlorinated paraffin (CERECOLOR S52, etc.), tricresyl phosphate, dioctyl phthalate, and naphtha.
  • resins include resins, petroleum resins that are solid at room temperature, xylene resins, and coumarone indene resins.
  • Specific examples include liquid hydrocarbon resins and flexibility imparting resins described in JP-A-2006-342360.
  • liquid hydrocarbon resins and hydroxyl-containing solid petroleum resins, xylene resins and coumarone indene resins are preferred from the viewpoint of good compatibility with epoxy resins.
  • liquid hydrocarbon resins include “Nesiles EPX-L”, “Nesiles EPX-L2” (hereinafter, NEVCIN / phenol-modified hydrocarbon resin), “HIRENOL PL-1000S” (manufactured by KOLON Chemical / Liquid hydrocarbon resins) and petroleum-based resins that are solid at room temperature include “Neopolymer E-100”, “Neopolymer K-2”, “Neopolymer K3” (Shin Nippon Petrochemical Co., Ltd.) (Manufactured by C9 series hydrocarbon resin) and coumarone indene resin are commercially available as “NOVARES CA 100” (Rutgers Chemicals AG), and as xylene resin as “Nicanol Y-51” (Mitsubishi Gas Chemical ( Etc.).
  • the blending amount of the plasticizer is determined from the viewpoint that a coating film having excellent weather resistance and crack resistance is obtained.
  • the amount is preferably 1 to 50 parts by weight, more preferably 3 to 30 parts by weight with respect to 100 parts by weight.
  • (E) Curing accelerator It is also preferable to mix
  • the curing accelerator include tertiary amines.
  • the said hardening accelerator may be used individually by 1 type, and may use 2 or more types.
  • curing accelerator examples include triethanolamine, dialkylaminoethanol, triethylenediamine [1,4-diazacyclo (2,2,2) octane], 2,4,6-tri (dimethylaminomethyl) phenol (example: The product name “Versamine EH30” (manufactured by Henkel Hakusui Co., Ltd.) and the product name “Ankamin K-54” (manufactured by Air Products Japan Co., Ltd.) can be mentioned. These curing accelerators are preferably blended in the coating composition of the present invention in an amount of 0.05 to 2.0% by weight.
  • (F) Solvent It is preferable to mix
  • the solvent is not particularly limited, and a conventionally known solvent can be used.
  • a conventionally known solvent can be used.
  • the said solvent may be used individually by 1 type, and may use 2 or more types.
  • the blending amount of the solvent is not particularly limited, and may be appropriately adjusted according to the coating method when the coating composition of the present invention is applied.
  • the non-volatile content of the coating composition of the present invention is contained in an amount such that it is preferably 10 to 98% by weight, more preferably 65 to 95% by weight. It is desirable.
  • the solvent preferably has a non-volatile concentration of the coating composition of the present invention of 20 to 95% by weight, more preferably from the viewpoint of paintability and the like. Is preferably contained in an amount of 65 to 90% by weight.
  • an additive (G) may be added to the coating composition of the present invention.
  • a conventionally well-known thing can be used as an additive (G).
  • the anti-sagging / sedimentation agent, silane coupling agent, and antifoaming agent include, but are not limited to.
  • the additive (G) can be used alone or in combination of two or more.
  • An anti-sagging / anti-settling agent imparts thixotropy to the coating composition of the present invention, and can improve the adhesion of the composition to an object to be coated.
  • the anti-sagging / precipitating agent is not particularly limited, and examples thereof include organic thixotropic agents and inorganic thixotropic agents.
  • the said anti-sagging and anti-settling agent may be used alone or in combination of two or more.
  • organic thixotropic agent examples include amide wax, hydrogenated castor oil type, polyethylene oxide type, vegetable oil polymerized oil type, surfactant type thixotropic agent, or a thixotropic agent using two or more of these in combination. Can be mentioned.
  • anti-sagging agents and anti-settling agents have been used in the past, and various compounds are known. It is preferable to use an amide wax from the viewpoint of being present.
  • the amide wax is not particularly limited, and examples thereof include amide wax synthesized from vegetable oil fatty acid and amine. Such an amide wax may be obtained by synthesis by a conventionally known method or may be a commercially available product. Examples of commercially available products include “Disparon A630-20X” and “Dispalon 6650” manufactured by Enomoto Kasei Co., Ltd., “ASA T-250F” manufactured by Ito Oil Co., Ltd., and the like.
  • Examples of the inorganic thixotropic agent include finely divided silica (usually, when measured by a scanning electron microscope observation method, the average particle diameter of primary particles is 40 nm or less, and the specific surface area is measured by the BET method. 50-410 m 2 / g silica), bentonite, silica treated with a silane compound, etc., bentonite treated with a quaternary ammonium salt (organic bentonite), ultrafine surface treated calcium carbonate, or , And mixtures thereof.
  • finely divided silica usually, when measured by a scanning electron microscope observation method, the average particle diameter of primary particles is 40 nm or less, and the specific surface area is measured by the BET method. 50-410 m 2 / g silica
  • bentonite silica treated with a silane compound, etc.
  • bentonite treated with a quaternary ammonium salt organic bentonite
  • ultrafine surface treated calcium carbonate or , And mixtures thereof
  • silica fine powder pulverized by a dry method for example, product name: Aerosil 300 manufactured by Nippon Aerosil Co., Ltd.
  • silica fine powder was modified with hexamethyldisilazane.
  • Fine powder for example, Nippon Aerosil Co., Ltd., trade name: Aerosil RX300
  • fine powder obtained by modifying silica fine powder with polydimethylsiloxane for example, Nippon Aerosil Co., Ltd., trade name: Aerosil RY300
  • fine powder silica Hydrophobic finely divided silica trade name: Aerosil R972, manufactured by Nippon Aerosil Co., Ltd.
  • organic bentonite trade name: Benton SD-2, manufactured by Elementis Specialties, Inc.
  • the surface is treated with silica treated with a silane compound or the like, a quaternary ammonium salt, or the like from the viewpoint of obtaining a coating composition having excellent adhesion to an object to be coated. It is preferable to use a bentonite treated with.
  • the anti-sag / anti-settling agent is obtained from the viewpoint of obtaining a composition having excellent coating viscosity, coating workability, and storage stability.
  • the blending amount (solid content) is preferably 0.1 to 5 parts by weight, more preferably 0.3 to 2 parts by weight with respect to 100 parts by weight of the nonvolatile content of the coating composition of the present invention.
  • the coating composition of the present invention preferably contains a silane coupling agent.
  • the said silane coupling agent may be used individually by 1 type, and may use 2 or more types.
  • the silane coupling agent is not particularly limited and conventionally known ones can be used.
  • the silane coupling agent has at least two functional groups in the same molecule, improves adhesion to the object to be coated, and increases the viscosity of the coating composition.
  • the compound can contribute to reduction, etc., and is represented by the formula: X—Si (OR) 3 [X is a functional group capable of reacting with an organic substance (eg, amino group, vinyl group, epoxy group, mercapto group, isocyanate) A methacryl group, a ureido group, a sulfur group or a hydrocarbon group containing these groups, etc.
  • an ether bond or the like may be present in this hydrocarbon group) or an alkyl group, and OR represents , A hydrolyzable group (eg, methoxy group, ethoxy group). It is more preferable that it is a compound represented by this.
  • preferable silane coupling agents include “KBM403” ( ⁇ -glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.), “Syra Ace S-510” (manufactured by JNC Corporation), and the like. Is mentioned.
  • the amount of the silane coupling agent is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the coating composition of the present invention. More preferably, it is 0.3 to 5 parts by weight.
  • the coating performance such as adhesion to the substrate is improved, and the viscosity of the coating composition of the present invention can be lowered. Will improve.
  • the article to be coated (C) it can be used without particular limitation as long as it is a subject of painting, but is preferably an article that satisfies the above (II) and (ii).
  • the article to be coated (C) may be a place where it is desired to paint, and the composition of the top coat is usually adjusted so as to satisfy the above (II) and (ii). Since the coating composition of the present invention satisfies the requirement (II) or (ii), it is not limited by the properties of the surface of the object to be coated, and the film thickness of the coating film can be easily measured.
  • Examples of the article to be coated (C) include ships, marine structures, bridges, buildings, plant equipment, steel structures, concrete structures, and transportation machines such as automobiles. Moreover, as a material of to-be-coated article (C), a metal, wood, a synthetic resin, a natural resin, concrete etc. are mentioned, for example.
  • the article to be coated (C) may be the structure as it is (the surface thereof is untreated), or a coating film, rust, oil or fat, moisture, which may be present on the surface of the structure, Dust, slime, salt, etc. may be partially or completely cleaned and removed, or a coating film formed from a paint such as an undercoat paint (anticorrosion paint, etc.) on the surface of the structure. It may be present.
  • the undercoat paint a known paint can be appropriately changed according to the material and use of the substrate.
  • Specific examples of the undercoat paint include shop primers and anticorrosion paints.
  • the method for forming a coating film according to the present invention is a method for forming the dried coating film (A) on the article (C) to be coated, After coating the coating composition of the present invention satisfying the requirements (I) and (II) on the article (C) to be coated and drying, It is performed by determining whether or not the dry coating film has reached a desired film thickness by measuring the infrared reflection intensity with an infrared reflection intensity measuring device, or It is a method of forming the wet paint film (A ′) on the article to be coated (C), Applying the coating composition of the present invention satisfying the requirements (i) and (ii) on the article to be coated (C), It is performed by determining whether the wet coating film has reached a desired film thickness by measuring the infrared reflection intensity with an infrared reflection intensity measuring device.
  • the method for determining whether the dry coating film or the wet coating film has reached a desired film thickness by measuring the infrared reflection intensity is not particularly limited, but ⁇ the film thickness of the coating film by the infrared reflection intensity
  • the method specifically described in the section of “Method for Measuring Measure >> is preferred.
  • the method for applying the coating composition of the present invention on the article to be coated is not particularly limited, and a conventionally known method may be appropriately selected according to the desired article to be coated and the place of coating. For example, when painting on a large structure such as a ship, spray painting is employed. Further, the method for drying the applied coating composition is not particularly limited, and may be appropriately selected depending on the desired application and the coating composition to be used. For example, the drying temperature is about 10 to 40 ° C. The drying time is about 6 hours to 1 week. As drying conditions in winter, the drying temperature may be about ⁇ 5 to 10 ° C., and the drying time may be about 16 hours to 2 weeks.
  • composition of the undercoat used in the following tests is shown in Table 1, and the composition of the topcoat and the test results are shown in Tables 2 to 4. Details of the raw materials in Table 1 and Tables 2 to 4 are shown in Table 5.
  • the undercoat paint is a paint obtained by mixing each component with the composition shown in Table 1.
  • the top coating composition is prepared by mixing each material with the composition shown in Tables 2 to 4 to prepare the main component and the curing agent component, and mixing the obtained main component and the curing agent component immediately before use. It is the paint obtained in.
  • 400 ⁇ m equivalent reflectance in Table 5 refers to the infrared reflectance of the top coat film at a film thickness of 400 ⁇ m measured by the following method.
  • a test plate material: JIS G3101 SS-400
  • SP-BK black
  • Table 1 the undercoat paint SP-BK (black) in Table 1 so that the dry film thickness is about 10 ⁇ m and dried.
  • a top coating was applied using a BYK Gardner multi-applicator and dried at 60 ° C. for 24 hours.
  • the gap between the applicators was adjusted as appropriate (for example, 15 Mil or 30 Mil) to prepare test plates each having a dry coating film thickness of less than 400 ⁇ m or a top coating film of 400 ⁇ m or more.
  • the components and contents other than the pigment used in the top coat were in accordance with Table 2 top coat TC-1 (however, the content of the pigment in the solid content of the paint is 0.6% by volume).
  • the top coat TC-1 in Table 2 was used.
  • the film thicknesses of the top coat film on the two obtained test plates were measured with an electromagnetic film thickness meter (Kett LZ-990).
  • an ultraviolet-visible near-infrared spectrophotometer manufactured by Shimadzu Corporation, Solid Spec-3700, the same applies below was applied from the top coat film side of the obtained laminate. Infrared reflectivity was measured using this. Specifically, the wavelength range of 300 to 2600 nm was measured with a resolution of 1 nm, and the average value of reflectance at wavelengths of 900 to 1700 nm was taken as infrared reflectance. From the relationship (linear function) between the infrared reflectance and film thickness obtained using the two test plates, the infrared reflectance of the top coat film at a film thickness of 400 ⁇ m was determined.
  • the infrared transmittance of the top coat obtained from the top coat described in Tables 2 to 4 below was measured with an ultraviolet-visible near-infrared spectrophotometer. Specifically, the wavelength range of 300 to 2600 nm was measured with a resolution of 1 nm, and the infrared transmittance of the top coat film was measured in the infrared wavelength range of 900 to 1700 nm. The following infrared reflectance was also measured under the same apparatus and conditions.
  • the coating film used for infrared transmittance measurement was prepared as follows. Using a BYK Gardner multi-applicator, the top coating of Tables 2 to 4 was applied onto the silica paper. At this time, the gap of the applicator was set to 15 Mil or the gap of 30 Mil to form two types of wet coating films. The obtained wet coating film was dried at 60 ° C. for 24 hours, and then peeled off from the recycled paper to form a coating film (top coating film).
  • the film thickness of the top coat film was measured with a micrometer (MDC-25MJ, manufactured by Mitutoyo Corporation).
  • the film thickness of the obtained top coat film was less than 400 ⁇ m and 400 ⁇ m or more. It should be noted that, based on the Lambert-Beer law, the log transmittance and the film thickness are linearly related, and from the linear expression of the film thickness and log transmittance of the two types of coating films obtained, the coating at a film thickness of 400 ⁇ m is obtained.
  • the infrared transmittance of the film was defined as the infrared transmittance.
  • the film thickness of this laminate was measured with an electromagnetic film thickness meter (LZ-990), and the film thickness of the top coat film was calculated by subtracting the film thickness of the undercoat film from that value.
  • the infrared reflectance was measured with the ultraviolet visible near-infrared spectrophotometer from the side by which the top coat film was laminated
  • the dry film thickness of the top coat film is 400 ⁇ m or more, and the laminate including the coat film closest to 400 ⁇ m, and the dry film thickness of the top coat film is less than 400 ⁇ m, and
  • the relationship between the reflectance and the film thickness of the top coat film is obtained as a linear function for the laminate including the coating film closest to 400 ⁇ m, and the infrared reflectance at this film thickness of 400 ⁇ m is determined as the infrared reflectance Ra (% ).
  • the values of infrared reflectance Ra (%) in Tables 2 to 4 are the values of infrared reflectance Ra (%) at a film thickness of 400 ⁇ m.
  • the absolute value of the difference between the infrared reflectance of the object to be coated and the infrared reflectance measured from the side of the laminate comprising the object to be coated and the topcoat film, on which the topcoat film is laminated Calculated from Ra and Rc.
  • the film thickness and the difference in infrared reflectance show a positive correlation, it is considered that the film thickness can be measured within the range of film thickness indicating this relationship.
  • Undercoat paints of Tables 2 to 4 were applied onto a steel plate in the same manner as in the above ⁇ Method for measuring infrared reflectance of article to be coated> and dried to form an undercoat paint film.
  • a top coat of Tables 2 to 4 on the undercoat film of this steel sheet with a base coat film and using a multi-applicator manufactured by BYK Gardner and drying at room temperature for 1 week, the steel sheet with the top coat film and the base coat film is coated.
  • a plurality of steel sheets with topcoat and undercoat films different in thickness of the topcoat film were obtained (hereinafter also referred to as “test plates”).
  • the film thickness of the top coating film of each of the obtained test plates was measured with an electromagnetic film thickness meter (LZ-990), and then the infrared reflection intensity measured from the top coating film side of the test plate was measured using the apparatus 1 And measured.
  • the film thickness of the top coating film measured with an electromagnetic film thickness meter is plotted on the horizontal axis of the graph, and the energy level (digital level), which is the infrared reflection intensity detected by the apparatus 1, is plotted on the vertical axis of the graph. Whether the film thickness of a 1000 ⁇ m coating film can be measured was evaluated according to the following evaluation criteria.
  • LED / KEDE1452H (2.8 mW, emission wavelength 1200 to 1600 nm) manufactured by Kyosemi Co., Ltd. as a light source capable of irradiating infrared rays, and detecting the reflected light intensity in the infrared region reflected when irradiating the object with infrared rays.
  • a long wavelength InGaAs photodiode KPDE086S detection wavelength 900-1700 nm
  • a reflection intensity measuring device 2 (hereinafter also referred to as “device 2”) was prepared.
  • the thickness of the top coat film on the test plate was measured in the same manner as the measurement of the infrared reflection intensity using the device 1 except that the infrared reflection strength of the test plate was measured by the device 2 instead of the device 1.
  • the infrared reflection intensity measured from the top coating film side of the test plate was measured.
  • the film thickness of the top coating film measured with an electromagnetic film thickness meter is plotted on the horizontal axis of the graph, and the photodiode voltage, which is the infrared reflection intensity detected by the device 2, is plotted on the vertical axis of the graph. Whether the film thickness can be measured was evaluated according to the following evaluation criteria.
  • the film thickness and the infrared reflection intensity obtained by the apparatus 1 or 2 show a positive correlation, it is considered that the film thickness can be measured in the film thickness in the range showing this relationship.
  • Example 1 F-5 was used as the top coat and SP-BK was used as the base coat. Using these paints, ⁇ Measurement method of infrared reflectance of article to be coated>, ⁇ Measurement of infrared reflectance measured from the side of the laminate comprising the article to be coated and the coating film on which the coating film is laminated)
  • a graph plotting the relationship between the film thickness of the top coat obtained by the method described in ⁇ Method> and the difference in infrared reflectance (absolute value of the difference between Ra and Rc) is shown in FIG.
  • FIG. 3 shows a graph in which the photodiode voltage (unit: volt), which is the infrared reflection intensity, is plotted.
  • FIG. 2 and FIG. 3 show curves having almost the same shape, and the curves showed a positive correlation at least in the range of about 50 to 800 ⁇ m.
  • the topcoat film formed from the topcoat paint F-5 applied on the undercoat film formed from the undercoat paint SP-BK is obtained by the devices 1 and 2 which are non-contact type film thickness measuring devices using infrared rays.
  • the dry film thickness can be measured at least in the range of about 50 to 800 ⁇ m.
  • a coating film having a desired dry film thickness can be formed. Is possible.
  • the undercoat paint SP-BK was applied onto the steel plate in the same manner as described above and dried to form an undercoat paint film.
  • the top coat F-5 was spray-coated on the undercoat film of the steel sheet with the undercoat film, and the paint film was dried. This operation was performed until the infrared reflection intensity of the coating film obtained by drying reached a value corresponding to about 400 ⁇ m in FIG.
  • the dry film thickness of the laminate comprising the undercoat film film thickness of about 10 ⁇ m
  • the topcoat film was measured using an electromagnetic film thickness meter (LZ-990), and was about 410 ⁇ m. The same was true when the coating was performed until the value corresponding to about 400 ⁇ m in FIG.
  • the dry film thickness based on the infrared reflection intensity and the actually measured dry film thickness were approximately the same thickness.
  • the infrared transmittance of the dried coating film having a thickness of 400 ⁇ m, measured by the same method as described above, was 39.0%, and Ra-Rc was 22.3%.
  • the infrared reflection intensity reaches a value corresponding to about 50 ⁇ m or about 800 ⁇ m in FIG. 2 or FIG. 3, and the actual thickness of the obtained dry film thickness is measured with an electromagnetic film thickness meter (LZ-990). ),
  • the dry film thickness based on the infrared reflection intensity and the actually measured dry film thickness were substantially the same.
  • the infrared transmittance of the dry coating film having a film thickness of 50 ⁇ m measured by the same method as described above was 79.2%, Ra-Rc was 3.6%, and the dry coating film having a film thickness of 800 ⁇ m was used.
  • the infrared transmittance of the film was 17.3% and Ra-Rc was 29.9%.
  • the apparatus which is a non-contact type film thickness measuring device using infrared rays, is used for the top coat film formed from the top coat F-5 applied on the base coat formed from the base coat SP-BK. 1 and 2, it was found that the dry film thickness can be measured (determined) at least in the range of about 50 to 800 ⁇ m.
  • the lighting is repeatedly turned on and off, and the digital level is obtained under bright conditions (illuminance: 150 lux) and dark conditions (illuminance: 20 lux).
  • the film thickness can be measured under both the bright and dark conditions, and a coating film having a desired dry film thickness can be formed.
  • Undercoat paint SP-BK was applied onto a steel plate in the same manner as described above, and dried to form an undercoat paint film.
  • a steel plate with a wet top coat film was obtained by coating the top coat F-5 on the base coat film with this base coat film.
  • a plurality of steel sheets with wet top coat films having different wet top coat film thicknesses were obtained.
  • the film thickness of each wet top coat film of the obtained steel sheet was measured with a wet gauge (manufactured by Asahi Sunac Co., Ltd.), and then infrared reflection was performed from the wet top coat film side of the steel sheet using apparatus 1 or apparatus 2. The strength was measured.
  • FIG. 4 shows a graph in which the film thickness of the wet top coat film measured with the wet gauge and the digital level which is the infrared reflection intensity measured with the apparatus 1 are plotted.
  • the curve showed a positive correlation at least in the thickness range of about 50 to 1000 ⁇ m.
  • the wet topcoat film formed from the topcoat paint F-5 applied on the undercoat film formed from the undercoat paint SP-BK is applied to the apparatus 1 or 2 which is a non-contact type film thickness measuring device using infrared rays. It is possible to measure the wet film thickness at least in the range of about 50 to 1000 ⁇ m.
  • the infrared reflection intensity measured at the time of actual painting is the graph.
  • a coating film having a desired wet film thickness can be formed by terminating the coating when a predetermined value corresponding to the above desired wet film thickness is reached.
  • the film thickness of the dry coating film obtained from the wet coating film can be found even in the wet coating film state.
  • the relationship between the results based on the amount of solids contained in the coating composition and the film thickness of the dried coating film obtained from the wet coating film as measured with an electromagnetic film thickness meter was investigated. The values were almost consistent.
  • the film thickness of a predetermined dry coating film can be obtained by measuring the infrared reflection intensity in the state of the wet coating film during coating. It can be determined whether or not.
  • the undercoat paint SP-BK was applied onto the steel plate in the same manner as described above and dried to form an undercoat paint film.
  • the undercoat film F-5 is spray-coated on the undercoat film of the steel sheet with the undercoat film using the apparatus 1 while measuring the infrared reflection intensity, and the infrared reflection intensity has a value corresponding to about 460 ⁇ m in FIG.
  • I finished painting When finished, I finished painting.
  • the wet film thickness of the part where the coating was completed was measured with a wet gauge, the paint adhered to a peak of 450 ⁇ m. That is, the wet film thickness based on the infrared reflection intensity and the actually measured wet film thickness were substantially the same.
  • the infrared reflection intensity was measured using the apparatus 1 from the top coat film side of the sufficiently coated steel sheet with the top coat film. Based on FIG. 2, the infrared reflection intensity corresponds to a film thickness of 320 ⁇ m. I found out that Further, the film thickness of the laminate composed of the undercoat film (film thickness: about 10 ⁇ m) and the topcoat film was measured using an electromagnetic film thickness meter (LZ-990) to be 330 ⁇ m. That is, the dry film thickness based on the infrared reflection intensity and the actually measured dry film thickness were approximately the same thickness.
  • the top coating material F-5 has a solid content of about 70 vol%
  • the coating film having a wet film thickness of 460 ⁇ m obtained from the coating material is considered to have a dry film thickness of about 320 ⁇ m. Therefore, since the dry film thickness calculated from the wet film thickness based on the infrared reflection intensity based on the solid content of the paint and the actually measured dry film thickness are approximately the same, By applying the film while measuring the infrared reflection intensity of the film, a dry coating film having a predetermined film thickness can be obtained.
  • the top coat F-5 satisfies the requirements (i) and (ii) at least in the wet film thickness of 50 to 1000 ⁇ m. It was found that the top coating F-5 was a coating having almost no influence on the infrared reflection intensity by the solvent contained in the coating.
  • Example 1 the same evaluation as described above was performed using SP-GY, SP-LG, SP-BL, SP-BR, or SP-GN as an undercoat instead of SP-BK.
  • the results are shown in Table 2.
  • the same results as with the SP-BK are obtained, and the top coat film formed from the top coat F-5 is obtained by a non-contact type film thickness measuring device using infrared rays.
  • the apparatus 1 or 2 can measure the wet film thickness in the range of at least about 50 to 1000 ⁇ m and can measure the dry film thickness in the range of at least about 50 to 800 ⁇ m. It was possible.
  • Example 2 The test was conducted in the same manner as in Example 1 except that SP-BK was used as the undercoat and IR-U was used as the topcoat.
  • FIG. 5 is a graph plotting the relationship between the film thickness of the obtained top coat film and the difference in infrared reflectance, and the photodiode voltage, which is the film thickness of the obtained top coat film and the infrared reflection intensity measured by the apparatus 2. 6 was plotted in the same manner as in Example 1, and showed a positive correlation. Further, in Example 1, except that the apparatus 2 was used in place of the apparatus 1, the film thickness of the wet top coat film and the infrared reflection intensity measured by the apparatus 2 were measured in the same manner as in Example 1. A graph plotting the diode voltage is shown in FIG.
  • the top coat film formed from the top coat IR-U is at least about 50 to 1000 ⁇ m in thickness by the devices 1 and 2 which are non-contact type film thickness measuring devices using infrared rays.
  • the wet film thickness can be measured, and in the range of at least about 50 to 800 ⁇ m, the dry film thickness can be measured.
  • the infrared transmittance of the dried coating film having a film thickness of 50 ⁇ m, measured by the same method as described above, is 71.6%
  • Ra-Rc is 4.4%
  • the infrared transmittance of the film was 10.5%
  • Ra-Rc was 29.3%.
  • the undercoat paint SP-BK was applied onto the steel plate in the same manner as described above and dried to form an undercoat paint film.
  • the top coat IR-U is spray-coated on the undercoat film of the steel sheet with the undercoat film while measuring the infrared reflection intensity using the apparatus 2, and the infrared reflection intensity is a value corresponding to about 440 ⁇ m in FIG.
  • I finished painting When finished, I finished painting.
  • the wet film thickness of the part where the coating was completed was measured with a wet gauge, the paint adhered to the 400 ⁇ m peak. That is, the wet film thickness based on the infrared reflection intensity and the actually measured wet film thickness were substantially the same.
  • the infrared reflection intensity was measured using the apparatus 2 from the top coat film side of the sufficiently coated steel sheet with the top coat film. Based on FIG. 6, the infrared reflection intensity was about 320 ⁇ m. It turns out that it corresponds. Further, the film thickness of the laminate composed of the undercoat film (film thickness: about 10 ⁇ m) and the topcoat film was measured using an electromagnetic film thickness meter (LZ-990) to be 330 ⁇ m. That is, the dry film thickness based on the infrared reflection intensity and the actually measured dry film thickness were approximately the same thickness.
  • the top coating IR-U has a solid content of about 73 vol%, it is considered that the coating film having a wet film thickness of 440 ⁇ m obtained from the coating material has a dry film thickness of about 320 ⁇ m. Therefore, since the dry film thickness calculated from the wet film thickness based on the infrared reflection intensity based on the solid content of the paint and the actually measured dry film thickness are approximately the same, By applying the film while measuring the infrared reflection intensity of the film, a dry coating film having a predetermined film thickness can be obtained. As described above, the top coat IR-U satisfies the requirements (i) and (ii) at least in a wet film thickness of 50 to 1000 ⁇ m. Further, it was found that the top coating IR-U is a coating having almost no influence on the infrared reflection intensity by the solvent contained in the coating.
  • Examples 3 to 17 The test was performed in the same manner as in Examples 1 and 2 except that the paints in Tables 2 to 3 were used as the undercoat paint and the topcoat paint.
  • the graph which plotted the relationship between the film thickness of the obtained top coat film and the difference of infrared reflectance, and the digital level which is the film thickness of the obtained top coat film and the infrared reflection intensity measured with the apparatus 1 were plotted.
  • the graph and the graph plotting the film thickness of the obtained top coat film and the photodiode voltage, which is the infrared reflection intensity measured by the apparatus 2 have substantially the same shape as in Examples 1 and 2. A positive correlation was shown.
  • the top coating film formed from the top coating material used in each Example is a non-contact type film thickness measuring device using infrared rays.
  • the wet film thickness can be measured at least in the range of about 50 to 1000 ⁇ m, and the dry film thickness can be measured in the range of at least about 50 to 800 ⁇ m.
  • Example 1 The test was conducted in the same manner as in Example 1 except that SP-BK in Table 1 was used as the undercoat paint and F-6 in Table 4 was used as the topcoat paint. This paint F-6 did not satisfy the requirement (II) at a desired dry film thickness of 400 ⁇ m.
  • FIG. 11 A graph plotting the relationship between the film thickness of the obtained top coat film and the difference in infrared reflectance is shown in FIG. 11, and the digital level which is the film thickness of the obtained top coat film and the infrared reflection intensity measured by the apparatus 1
  • FIG. 12 shows a graph plotting the above.
  • FIG. 11 and FIG. 12 showed curves having substantially the same shape, but the infrared reflection intensity hardly changed with the change in the film thickness, so that the paint was applied on the undercoat film formed from the undercoat paint SP-BK.
  • the dry film thickness of the top coat film formed from the top coat F-6 was difficult to measure with the devices 1 and 2 which are non-contact type film thickness measuring devices using infrared rays.
  • Comparative Examples 2 to 4 The test was conducted in the same manner as in Comparative Example 1 except that the paints in Table 4 were used as the undercoat paint and the topcoat paint.
  • the top coat used in Comparative Examples 2 to 4 did not satisfy at least the requirement (II) at a desired dry film thickness of 400 ⁇ m.
  • Comparative Examples 2 to 4 the figures corresponding to FIG. 11 are shown as FIGS. 13 to 15, respectively, and the figures corresponding to FIG. 12 are shown as FIGS. 16 to 18, respectively. In each of Comparative Examples 2 to 4, these figures showed curves of almost the same shape. However, when the top coat of these comparative examples was used, a non-contact type film thickness measuring device using infrared rays It was difficult to measure the dry film thickness with the devices 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention relates to a coating composition for which it is possible to measure a dry film thickness or a wet film thickness using infrared ray reflection intensity, and a dry coating film or wet coating film formation method. This coating composition forms, on an object to be coated (C), a dry coating film (A) having a desired dry film thickness or a wet coating film (A') having a desired wet film thickness, said desired thicknesses being not less than 50 µm, wherein an infrared transmittance of the dry coating film (A) or the dry coating film (A) dried from the wet coating film (A') is not less than 2%, and the absolute value of the difference between the infrared reflection rate (Rc%) of the object to be coated (C) and the infrared reflection rate (Ra%) measured from a laminate side having the dry coating film (A) laminated thereon is not less than 2%, wherein the laminate includes the object to be coated (C) and the dry coating film (A).

Description

塗料組成物および塗膜の形成方法Coating composition and coating film forming method
 本発明は、例えば、船舶、海洋構造物、橋梁、建築物、プラント設備、鋼構造物、コンクリート構造物、自動車等の運送機械などに用いられる、50μm以上の所望厚さの塗膜を容易に形成可能な塗料組成物に関する。
 また、その塗料組成物を用いて、所望膜厚の塗膜を容易に形成可能な塗膜の形成方法に関する。
The present invention can easily form a coating film having a desired thickness of 50 μm or more used for, for example, a ship, an offshore structure, a bridge, a building, a plant facility, a steel structure, a concrete structure, a transportation machine such as an automobile. The present invention relates to a formable coating composition.
Moreover, it is related with the formation method of the coating film which can form the coating film of a desired film thickness easily using the coating composition.
 船舶構造物の内部などにおける膜厚の測定は、ウェット塗膜ではウェットゲージ、乾燥塗膜では電磁膜厚計を用いるのが通常であり、所望膜厚の塗膜を得るために、塗装現場では、様々な箇所で数多く膜厚を測定することが要求されている。 Measurement of film thickness inside ship structures is usually done using a wet gauge for wet coatings and an electromagnetic film thickness meter for dry coatings. Therefore, it is required to measure the film thickness at various locations.
 膜厚の測定方法としては、前記の方法以外に、非接触方式の膜厚測定方法があり、該方法の一つとして、赤外線を用いた膜厚測定方法がある(例えば、特許文献1~2)。
 船舶構造物等では、その防食性を確保するために、欠陥がなく、少なくとも数十μmの膜厚の塗膜を形成する必要があるが、前記特許文献1~2に記載の方法などの従来の赤外線を用いた膜厚測定方法では、このような用途にほとんど適用することができなかった。
As a method for measuring the film thickness, there is a non-contact type film thickness measuring method in addition to the above method, and one of the methods is a film thickness measuring method using infrared rays (for example, Patent Documents 1 and 2). ).
In ship structures and the like, it is necessary to form a coating film having no defect and a film thickness of at least several tens of μm in order to ensure the anticorrosion property. The film thickness measurement method using infrared rays could hardly be applied to such applications.
特開昭61-172002号公報JP-A-61-172002 特開2002-365213号公報JP 2002-365213 A
 前記のように、赤外線の反射光を塗膜の膜厚測定に利用した例は種々あるが、いずれも数μm程度までの薄膜を対象とした技術であり、50μm以上の膜厚を測定できる技術ではなかった。 As described above, there are various examples in which reflected infrared light is used for measuring the film thickness of the coating film, but all are techniques for thin films up to about several μm, and can measure a film thickness of 50 μm or more. It wasn't.
 さらに、従来の方法では、船舶構造物の内部などの暗所における膜厚測定が容易ではなく、特に、このような塗装現場では、膜厚測定のためだけに膨大な労力が投入されているのが現状である。 Furthermore, with the conventional method, it is not easy to measure the film thickness in a dark place such as the inside of a ship structure. Especially, in such a painting site, a great deal of effort is invested only for film thickness measurement. Is the current situation.
 本発明は、前記課題に鑑みてなされたものであり、赤外線反射強度に基づいて、塗膜の膜厚(50μm以上の厚膜)を容易に測定できる塗料組成物および該塗膜の膜厚を容易に測定する方法を提供することを課題とする。 This invention is made | formed in view of the said subject, Based on infrared reflective intensity, the coating composition which can measure the film thickness (50 micrometers or more thick film) of a coating film easily, and the film thickness of this coating film It is an object of the present invention to provide a method for easily measuring.
 本発明者らは、所定の赤外線透過率と所定の赤外線反射率とを示す塗膜を形成可能な塗料組成物によれば、前記課題を解決できることを見出し、本発明を完成した。本発明の構成例は以下のとおりである。 The present inventors have found that the above problems can be solved by a coating composition capable of forming a coating film exhibiting a predetermined infrared transmittance and a predetermined infrared reflectance, and have completed the present invention. A configuration example of the present invention is as follows.
 [1] 被塗物(C)上に、乾燥膜厚50μm以上の所望乾燥膜厚を有する乾燥塗膜(A)を形成する塗料組成物であって、
 (I)乾燥塗膜(A)の赤外線透過率が2%以上となり、かつ、
 (II)被塗物(C)の赤外線反射率Rc%と、被塗物(C)および乾燥塗膜(A)を含んでなる積層体の、該乾燥塗膜(A)が積層された側から測定した赤外線反射率Ra%との差の絶対値が2%以上となる、
 赤外線反射強度により乾燥膜厚の測定が可能な塗料組成物。
[1] A coating composition for forming a dry coating film (A) having a desired dry film thickness of 50 μm or more on an object to be coated (C),
(I) The infrared transmittance of the dried coating film (A) is 2% or more, and
(II) The infrared reflectance Rc% of the article to be coated (C) and the side of the laminate comprising the article to be coated (C) and the dried coating film (A) on which the dry coating film (A) is laminated. The absolute value of the difference from the infrared reflectance Ra% measured from is 2% or more,
A coating composition whose dry film thickness can be measured by infrared reflection intensity.
 [2] 被塗物(C)上に、厚み50μm以上の所望ウェット膜厚を有するウェット塗膜(A')を形成する塗料組成物であって、
 (i)ウェット塗膜(A')を乾燥させた乾燥塗膜(A)の赤外線透過率が2%以上となり、かつ、
 (ii)被塗物(C)の赤外線反射率Rc%と、被塗物(C)およびウェット塗膜(A')を乾燥させた乾燥塗膜(A)を含んでなる積層体の、該乾燥塗膜(A)が積層された側から測定した赤外線反射率Ra%との差の絶対値が2%以上となる、
 赤外線反射強度によりウェット膜厚の測定が可能な塗料組成物。
[2] A coating composition for forming a wet coating film (A ′) having a desired wet film thickness of 50 μm or more on an object to be coated (C),
(I) The infrared transmittance of the dried coating film (A) obtained by drying the wet coating film (A ′) is 2% or more, and
(Ii) Infrared reflectance Rc% of the object to be coated (C), and a laminate comprising the dried film (A) obtained by drying the object (C) and the wet film (A ′), The absolute value of the difference from the infrared reflectance Ra% measured from the side where the dry coating film (A) is laminated is 2% or more,
A coating composition capable of measuring wet film thickness by infrared reflection intensity.
 [3] 前記乾燥塗膜(A)の赤外線透過率が10%以上であり、かつ、RcとRaとの差の絶対値が3%以上である、[1]または[2]に記載の塗料組成物。 [3] The paint according to [1] or [2], wherein the infrared transmittance of the dried coating film (A) is 10% or more, and the absolute value of the difference between Rc and Ra is 3% or more. Composition.
 [4] 前記塗料組成物が、前記乾燥塗膜(A)100容量%に対し、赤外線反射顔料を0.03~3容量%となる量で含む、[1]~[3]のいずれかに記載の塗料組成物。
 [5] 前記赤外線反射顔料が、二酸化チタン、亜酸化銅、酸化亜鉛、弁柄、黄色弁柄、クロムグリーンブラックヘマタイト、マンガンビスマスブラック顔料、クロミウムアイアンオキサイド、ニッケルアンチモンチタニウムイエロールチル、クロムアンチモンチタニウムバフルチルおよびルチルスズ亜鉛からなる群より選ばれる少なくとも1種の顔料である、[4]に記載の塗料組成物。
[4] Any one of [1] to [3], wherein the coating composition contains 0.03 to 3% by volume of an infrared reflective pigment with respect to 100% by volume of the dried coating film (A). The coating composition as described.
[5] The infrared reflective pigment is titanium dioxide, cuprous oxide, zinc oxide, dial, yellow dial, chrome green black hematite, manganese bismuth black pigment, chromium iron oxide, nickel antimony titanium yellow rutile, chromium antimony titanium buff [4] The coating composition according to [4], which is at least one pigment selected from the group consisting of rutile and rutile tin zinc.
 [6] 被塗物(C)上に、乾燥膜厚50μm以上の所望乾燥膜厚を有する乾燥塗膜(A)を形成する方法であって、
 (I)乾燥塗膜(A)の赤外線透過率が2%以上となり、かつ、
 (II)被塗物(C)の赤外線反射率Rc%と、被塗物(C)および乾燥塗膜(A)を含んでなる積層体の、該乾燥塗膜(A)が積層された側から測定した赤外線反射率Ra%との差の絶対値が2%以上となる、
塗料組成物を被塗物(C)上に塗布し、乾燥させた後、
 赤外線反射強度測定装置により赤外線反射強度を測定することで、乾燥塗膜が所望の膜厚に達しているか否かを判断する、乾燥塗膜の形成方法。
[6] A method of forming a dry coating film (A) having a desired dry film thickness of 50 μm or more on an object to be coated (C),
(I) The infrared transmittance of the dried coating film (A) is 2% or more, and
(II) The infrared reflectance Rc% of the article to be coated (C) and the side of the laminate comprising the article to be coated (C) and the dried coating film (A) on which the dry coating film (A) is laminated. The absolute value of the difference from the infrared reflectance Ra% measured from is 2% or more,
After the coating composition is applied onto the article (C) and dried,
A method for forming a dried coating film, wherein the dried coating film is judged to have reached a desired film thickness by measuring the infrared reflection intensity with an infrared reflection intensity measuring device.
 [7] 被塗物(C)上に、厚み50μm以上の所望ウェット膜厚を有するウェット塗膜(A')を形成する方法であって、
 (i)ウェット塗膜(A')を乾燥させた乾燥塗膜(A)の赤外線透過率が2%以上となり、かつ、
 (ii)被塗物(C)の赤外線反射率Rc%と、被塗物(C)およびウェット塗膜(A')を乾燥させた乾燥塗膜(A)を含んでなる積層体の、該乾燥塗膜(A)が積層された側から測定した赤外線反射率Ra%との差の絶対値が2%以上となる、
塗料組成物を被塗物(C)上に塗布し、
 赤外線反射強度測定装置により赤外線反射強度を測定することで、ウェット塗膜が所望の厚みに達しているか否かを判断する、ウェット塗膜の形成方法。
[7] A method of forming a wet coating film (A ′) having a desired wet film thickness of 50 μm or more on an object to be coated (C),
(I) The infrared transmittance of the dried coating film (A) obtained by drying the wet coating film (A ′) is 2% or more, and
(Ii) Infrared reflectance Rc% of the object to be coated (C), and a laminate comprising the dried film (A) obtained by drying the object (C) and the wet film (A ′), The absolute value of the difference from the infrared reflectance Ra% measured from the side where the dry coating film (A) is laminated is 2% or more,
Apply the coating composition on the substrate (C),
A method for forming a wet paint film, wherein it is determined whether or not the wet paint film has reached a desired thickness by measuring the infrared light reflection intensity with an infrared reflection intensity measuring device.
 [8] 前記ウェット塗膜(A')を乾燥させた乾燥塗膜(A)の厚みが、所望の膜厚に達しているか否かを前記のウェット塗膜(A')の膜厚から判断する、[7]に記載の形成方法。 [8] Judging from the film thickness of the wet coating film (A ′) whether or not the thickness of the dry coating film (A) obtained by drying the wet coating film (A ′) has reached a desired film thickness. The forming method according to [7].
 [9] 前記乾燥塗膜(A)の赤外線透過率が10%以上であり、かつ、RcとRaとの差の絶対値が3%以上である、[6]~[8]のいずれかに記載の形成方法。 [9] The infrared transmittance of the dried coating film (A) is 10% or more, and the absolute value of the difference between Rc and Ra is 3% or more, [6] to [8] The forming method as described.
 [10] 前記塗料組成物が、前記乾燥塗膜(A)100容量%に対し、赤外線反射顔料を0.03~3容量%となる量で含む、[6]~[9]のいずれかに記載の形成方法。
 [11] 前記赤外線反射顔料が、二酸化チタン、亜酸化銅、酸化亜鉛、弁柄、黄色弁柄、クロムグリーンブラックヘマタイト、マンガンビスマスブラック顔料、クロミウムアイアンオキサイド、ニッケルアンチモンチタニウムイエロールチル、クロムアンチモンチタニウムバフルチルおよびルチルスズ亜鉛からなる群より選ばれる少なくとも1種の顔料である、[10]に記載の形成方法。
[10] The coating composition according to any one of [6] to [9], wherein the coating composition contains an infrared reflective pigment in an amount of 0.03 to 3% by volume with respect to 100% by volume of the dried coating film (A). The forming method as described.
[11] The infrared reflective pigment is titanium dioxide, cuprous oxide, zinc oxide, dial, yellow dial, chrome green black hematite, manganese bismuth black pigment, chromium iron oxide, nickel antimony titanium yellow rutile, chromium antimony titanium buff The forming method according to [10], which is at least one pigment selected from the group consisting of rutile and rutile tin zinc.
 [12] 前記赤外線反射強度測定装置が、赤外線を照射可能な光源と、赤外線を被塗物に照射したときに反射される赤外線強度を検出するセンサーと、該センサーが検知した赤外線反射強度を解析する装置とを含む、[6]~[11]のいずれかに記載の形成方法。 [12] The infrared reflection intensity measuring device analyzes a light source capable of emitting infrared rays, a sensor for detecting infrared intensity reflected when the object is irradiated with infrared rays, and an infrared reflection intensity detected by the sensor. A forming method according to any one of [6] to [11].
 本発明によれば、赤外線反射強度に基づいて、塗膜の膜厚(50μm以上の厚膜)を容易に測定できる塗料組成物および該塗膜の膜厚を容易に測定する方法を提供することができる。
 特に、本発明によれば、従来の赤外線を用いた方法では測定できなかった50μm以上の厚膜の膜厚測定が可能となるとともに、従来困難であった非接触方式による膜厚測定が可能となる。さらには、ウェット塗膜の状態における赤外線反射強度を測定することで、該塗膜が乾燥した後に得られる膜厚を判断することができる。
According to the present invention, it is possible to provide a coating composition capable of easily measuring the thickness of a coating film (thick film of 50 μm or more) based on infrared reflection intensity, and a method for easily measuring the thickness of the coating film. Can do.
In particular, according to the present invention, it becomes possible to measure a film thickness of a thick film of 50 μm or more, which could not be measured by a conventional method using infrared rays, and it is possible to measure a film thickness by a non-contact method which has been difficult in the past. Become. Furthermore, the film thickness obtained after the coating film is dried can be determined by measuring the infrared reflection intensity in the state of the wet coating film.
 本発明によれば、赤外線反射強度により膜厚を測定するため、十分な明るさがない塗装現場においても、問題なく膜厚を測定することができる。
 また、本発明によれば、非接触方式で膜厚を測定できるため、従来のウェットゲージや電磁膜厚計などの接触式膜厚計を用いた膜厚測定方法に比べ、迅速に膜厚を測定でき、作業効率の大幅な改善を期待することができる。接触式膜厚測定方法では、膜厚計等を塗膜に接触させるための足場を設ける必要があるが、塗装場所によっては、このような足場の設置が難しい箇所もある。本発明は非接触方式で膜厚を測定できるため、このような箇所においても膜厚の測定が可能である。
According to the present invention, since the film thickness is measured by the infrared reflection intensity, the film thickness can be measured without any problem even at a painting site where there is not sufficient brightness.
In addition, according to the present invention, since the film thickness can be measured by a non-contact method, the film thickness can be quickly increased as compared with a film thickness measuring method using a contact film thickness meter such as a conventional wet gauge or electromagnetic film thickness meter. It can be measured and a great improvement in work efficiency can be expected. In the contact-type film thickness measurement method, it is necessary to provide a scaffold for bringing a film thickness meter or the like into contact with the coating film. However, depending on the painting place, there are places where it is difficult to install such a scaffold. Since the present invention can measure the film thickness in a non-contact manner, the film thickness can be measured even in such a place.
 さらに、本発明によれば、特に、ウェット塗膜の膜厚管理を行うことができるため、被塗物に対し、所望の乾燥膜厚となる量を超える過剰量の塗料の塗装を防止でき、所望の乾燥膜厚を過剰に超えた膜厚の塗膜の形成を抑制できるため、クラックの発生等が起こりにくい乾燥塗膜を得ることができる。 Furthermore, according to the present invention, in particular, since it is possible to control the film thickness of the wet coating film, it is possible to prevent the coating of an excessive amount of paint exceeding the amount that achieves a desired dry film thickness, Since the formation of a coating film having a film thickness exceeding the desired dry film thickness can be suppressed, a dry coating film in which cracks or the like hardly occur can be obtained.
図1は、実施例1で得られた上塗り塗膜の膜厚と、赤外線反射率の差との関係をプロットしたグラフである。FIG. 1 is a graph plotting the relationship between the film thickness of the top coat film obtained in Example 1 and the difference in infrared reflectance. 図2は、実施例1で得られた上塗り塗膜の膜厚と、装置1で測定した赤外線反射強度であるデジタルレベルとをプロットしたグラフである。FIG. 2 is a graph in which the film thickness of the top coat film obtained in Example 1 and the digital level that is the infrared reflection intensity measured by the apparatus 1 are plotted. 図3は、実施例1で得られた上塗り塗膜の膜厚と、装置2で測定した赤外線反射強度であるフォトダイオード電圧とをプロットしたグラフである。FIG. 3 is a graph in which the film thickness of the top coat film obtained in Example 1 and the photodiode voltage, which is the infrared reflection intensity measured by the apparatus 2, are plotted. 図4は、実施例1で得られたウェット上塗り塗膜の膜厚と、装置1で測定した赤外線反射強度であるデジタルレベルとをプロットしたグラフである。FIG. 4 is a graph plotting the film thickness of the wet topcoat film obtained in Example 1 and the digital level, which is the infrared reflection intensity measured by the apparatus 1. 図5は、実施例2で得られた上塗り塗膜の膜厚と、赤外線反射率の差との関係をプロットしたグラフである。FIG. 5 is a graph plotting the relationship between the film thickness of the top coat film obtained in Example 2 and the difference in infrared reflectance. 図6は、実施例2で得られた上塗り塗膜の膜厚と、装置2で測定した赤外線反射強度であるフォトダイオード電圧とをプロットしたグラフである。FIG. 6 is a graph in which the film thickness of the top coat film obtained in Example 2 and the photodiode voltage, which is the infrared reflection intensity measured by the apparatus 2, are plotted. 図7は、実施例2で得られたウェット上塗り塗膜の膜厚と、装置2で測定した赤外線反射強度であるフォトダイオード電圧とをプロットしたグラフである。FIG. 7 is a graph plotting the film thickness of the wet topcoat film obtained in Example 2 and the photodiode voltage, which is the infrared reflection intensity measured by the apparatus 2. 図8は、下塗り塗料としてSP-BKを用いた場合の、実施例3で得られた上塗り塗膜の膜厚と、赤外線反射率の差との関係をプロットしたグラフである。FIG. 8 is a graph plotting the relationship between the film thickness of the top coat film obtained in Example 3 and the difference in infrared reflectance when SP-BK is used as the undercoat paint. 図9は、下塗り塗料としてSP-BKを用いた場合の、実施例3で得られた上塗り塗膜の膜厚と、装置1で測定した赤外線反射強度であるデジタルレベルとをプロットしたグラフである。FIG. 9 is a graph plotting the film thickness of the top coat film obtained in Example 3 and the digital level that is the infrared reflection intensity measured by the apparatus 1 when SP-BK is used as the undercoat paint. . 図10は、下塗り塗料としてSP-BKを用いた場合の、実施例3で得られた上塗り塗膜の膜厚と、装置2で測定した赤外線反射強度であるフォトダイオード電圧とをプロットしたグラフである。FIG. 10 is a graph plotting the film thickness of the top coat film obtained in Example 3 and the photodiode voltage as the infrared reflection intensity measured by the apparatus 2 when SP-BK is used as the undercoat paint. is there. 図11は、比較例1で得られた上塗り塗膜の膜厚と、赤外線反射率の差との関係をプロットしたグラフである。FIG. 11 is a graph plotting the relationship between the film thickness of the top coat film obtained in Comparative Example 1 and the difference in infrared reflectance. 図12は、比較例1で得られた上塗り塗膜の膜厚と、装置1で測定した赤外線反射強度であるデジタルレベルとをプロットしたグラフである。FIG. 12 is a graph in which the film thickness of the top coat film obtained in Comparative Example 1 and the digital level that is the infrared reflection intensity measured by the apparatus 1 are plotted. 図13は、比較例2で得られた上塗り塗膜の膜厚と、赤外線反射率の差との関係をプロットしたグラフである。FIG. 13 is a graph plotting the relationship between the film thickness of the top coat film obtained in Comparative Example 2 and the difference in infrared reflectance. 図14は、比較例3で得られた上塗り塗膜の膜厚と、赤外線反射率の差との関係をプロットしたグラフである。FIG. 14 is a graph plotting the relationship between the film thickness of the top coat film obtained in Comparative Example 3 and the difference in infrared reflectance. 図15は、比較例4で得られた上塗り塗膜の膜厚と、赤外線反射率の差との関係をプロットしたグラフである。FIG. 15 is a graph plotting the relationship between the film thickness of the top coat film obtained in Comparative Example 4 and the difference in infrared reflectance. 図16は、比較例2で得られた上塗り塗膜の膜厚と、装置1で測定した赤外線反射強度であるデジタルレベルとをプロットしたグラフである。FIG. 16 is a graph in which the film thickness of the top coat film obtained in Comparative Example 2 and the digital level that is the infrared reflection intensity measured by the apparatus 1 are plotted. 図17は、比較例3で得られた上塗り塗膜の膜厚と、装置1で測定した赤外線反射強度であるデジタルレベルとをプロットしたグラフである。FIG. 17 is a graph in which the film thickness of the top coat film obtained in Comparative Example 3 and the digital level that is the infrared reflection intensity measured by the apparatus 1 are plotted. 図18は、比較例4で得られた上塗り塗膜の膜厚と、装置1で測定した赤外線反射強度であるデジタルレベルとをプロットしたグラフである。FIG. 18 is a graph in which the film thickness of the top coat film obtained in Comparative Example 4 and the digital level that is the infrared reflection intensity measured by the apparatus 1 are plotted.
 ≪塗料組成物≫
 本発明にかかる塗料組成物(以下「上塗り塗料」ともいう。)は、被塗物(C)上に、乾燥膜厚50μm以上の所望乾燥膜厚を有する乾燥塗膜(A)を形成する、または、厚み50μm以上の所望ウェット膜厚を有するウェット塗膜(A')を形成する塗料組成物であり、下記要件(I)および(II)または(i)および(ii)を満たす、赤外線反射強度により乾燥膜厚またはウェット膜厚の測定が可能な塗料組成物である。
 (I)乾燥塗膜(A)の赤外線透過率が2%以上となる
 (II)被塗物(C)の赤外線反射率(被塗物(C)の乾燥塗膜(A)を形成する側から測定した赤外線反射率、以下同様)Rc%と、被塗物(C)および乾燥塗膜(A)を含んでなる積層体の、該乾燥塗膜(A)が積層された側から測定した赤外線反射率Ra%との差の絶対値が2%以上となる
 (i)ウェット塗膜(A')を乾燥させた乾燥塗膜(A)の赤外線透過率が2%以上となる
 (ii)被塗物(C)の赤外線反射率Rc%と、被塗物(C)およびウェット塗膜(A')を乾燥させた乾燥塗膜(A)を含んでなる積層体の、該乾燥塗膜(A)が積層された側から測定した赤外線反射率Ra%との差の絶対値が2%以上となる
≪Paint composition≫
The coating composition according to the present invention (hereinafter also referred to as “top coating”) forms a dry coating film (A) having a desired dry film thickness of 50 μm or more on the article (C) to be coated. Alternatively, it is a coating composition for forming a wet coating film (A ′) having a desired wet film thickness of 50 μm or more, and satisfies the following requirements (I) and (II) or (i) and (ii): It is a coating composition capable of measuring a dry film thickness or a wet film thickness depending on strength.
(I) The infrared transmittance of the dried coating film (A) is 2% or more. (II) The infrared reflectance of the article (C) to be coated (the side on which the dried coating film (A) of the article (C) is formed) Infrared reflectance measured from (same below) Measured from the side of the laminate comprising Rc% and the article (C) to be coated and the dried coating film (A) on which the dried coating film (A) was laminated. The absolute value of the difference from the infrared reflectance Ra% is 2% or more. (I) The infrared transmittance of the dried coating film (A) obtained by drying the wet coating film (A ′) is 2% or more. (Ii) The dry coating film of a laminate comprising the infrared reflectance Rc% of the article to be coated (C) and the dried film (A) obtained by drying the article to be coated (C) and the wet coating film (A ′). The absolute value of the difference from the infrared reflectance Ra% measured from the side where (A) is laminated is 2% or more.
 前記(I)および(II)または(i)および(ii)を満たすことで初めて、赤外線反射強度により塗膜(厚み50μm以上)の膜厚を測定することができる塗料組成物となる。 Only when the above (I) and (II) or (i) and (ii) are satisfied, a coating composition capable of measuring the thickness of a coating film (thickness of 50 μm or more) by infrared reflection intensity is obtained.
 なお、本発明において、乾燥塗膜とは、被塗物に塗料を塗布し、乾燥工程を経て得られる塗膜のことをいい、通常、該塗膜中の揮発成分(溶剤量)が、10重量%以下の塗膜のことをいう。一方、ウェット塗膜とは、被塗物上に形成された前記乾燥塗膜以外の塗膜のことをいう。
 本発明において、単に「塗膜」という用語は、乾燥塗膜およびウェット塗膜を含む意味で用いる。
In the present invention, the dry coating film refers to a coating film obtained by applying a coating to an object and passing through a drying process. Usually, the volatile component (solvent amount) in the coating film is 10 This refers to a coating film having a weight% or less. On the other hand, the wet coating film refers to a coating film other than the dry coating film formed on the object to be coated.
In the present invention, the term “coating film” is simply used to include a dry coating film and a wet coating film.
 また、所望ウェット膜厚を有するウェット塗膜(A')を乾燥させた乾燥塗膜は、該ウェット塗膜(A')から乾燥工程を経て得られる塗膜であれば特に制限されないが、通常、該ウェット塗膜(A')を乾燥させた乾燥塗膜は、所望乾燥膜厚を有する乾燥塗膜(A)であるため、便宜上、「乾燥塗膜(A)」と記載する。 Moreover, the dry coating film obtained by drying the wet coating film (A ′) having the desired wet film thickness is not particularly limited as long as it is a coating film obtained from the wet coating film (A ′) through a drying step, but usually Since the dry coating film obtained by drying the wet coating film (A ′) is a dry coating film (A) having a desired dry film thickness, it is described as “dry coating film (A)” for convenience.
 前記所望乾燥膜厚は、50μm以上であれば、特に制限されず、所望の用途に応じて適宜選択すればよいが、好ましくは100~1000μmであり、より好ましくは100~600μmである。
 また、前記所望ウェット膜厚も、50μm以上であれば、特に制限されず、所望の用途に応じて適宜選択すればよいが、ウェット塗膜を乾燥させた後の膜厚が前記範囲となるような膜厚であることが好ましい。このようなウェット塗膜の膜厚は好ましくは110~2000μmであり、より好ましくは110~800μmである。
The desired dry film thickness is not particularly limited as long as it is 50 μm or more, and may be appropriately selected according to the desired use, but is preferably 100 to 1000 μm, more preferably 100 to 600 μm.
Further, the desired wet film thickness is not particularly limited as long as it is 50 μm or more, and may be appropriately selected according to the desired application. However, the film thickness after drying the wet coating film falls within the above range. It is preferable that the film thickness is large. The film thickness of such a wet coating film is preferably 110 to 2000 μm, more preferably 110 to 800 μm.
 前記(I)および(i)における赤外線透過率は、2%以上であり、好ましくは10%以上である。
 前記(II)および(ii)におけるRaとRcとの差の絶対値は、2%以上であり、好ましくは3%以上である。
 なお、前記赤外線およびRaとRcの測定に用いる赤外線の波長領域は、好ましくは800nm~1000μmである。
Infrared transmittance in the (I) and (i) is 2% or more, preferably 10% or more.
The absolute value of the difference between Ra and Rc in (II) and (ii) is 2% or more, preferably 3% or more.
The wavelength range of infrared rays and infrared rays used for measurement of Ra and Rc is preferably 800 nm to 1000 μm.
 前記(I)および(II)または(i)および(ii)を満たす塗料組成物を用いることで、赤外線反射強度により塗膜の膜厚を測定することができ、上記効果を奏する塗料組成物となる。また、前記(I)および(II)または(i)および(ii)を満たす塗料組成物を用いることで、膜厚と赤外線反射強度との関係をプロットしたグラフは適度な傾きを有するグラフとなるため、このグラフに基づいて、実際の塗装下での膜厚を赤外線反射強度により測定することができる。さらに、前記(I)および(II)または(i)および(ii)を満たす塗料組成物を用いることで、溶剤による影響がほとんどなく、ウェット状態での膜厚管理が可能となる。 By using the coating composition satisfying the above (I) and (II) or (i) and (ii), the coating film thickness can be measured by infrared reflection intensity, Become. Moreover, the graph which plotted the relationship between a film thickness and infrared reflected intensity turns into a graph which has a moderate inclination by using the coating composition which satisfy | fills said (I) and (II) or (i) and (ii). Therefore, based on this graph, the film thickness under actual coating can be measured by infrared reflection intensity. Furthermore, by using the coating composition satisfying the above (I) and (II) or (i) and (ii), there is almost no influence by the solvent, and the film thickness can be controlled in a wet state.
 前記赤外線透過率および赤外線反射率は、具体的には、下記実施例に記載の方法で測定することができる。 The infrared transmittance and infrared reflectance can be specifically measured by the methods described in the following examples.
 本発明の塗料組成物は、赤外線反射強度により塗膜の膜厚の測定が可能な塗料組成物であるため、該塗料組成物および該組成物から得られる塗膜の色相は制限されない。
 赤外線の波長領域は、約800nm~1000μmであり、我々が目視により色相を認識する波長、約380~780nmとは無関係であるため、例えば、色相の変化で膜厚の確認ができない条件である、黒い下塗り塗膜の上に黒い上塗り塗料を塗装する条件下であっても、前記要件(I)および(II)または(i)および(ii)を満たせば、赤外線反射強度により正確に膜厚を測定することができる。
Since the coating composition of the present invention is a coating composition capable of measuring the film thickness of the coating film by infrared reflection intensity, the hue of the coating composition and the coating film obtained from the composition are not limited.
The infrared wavelength region is about 800 nm to 1000 μm, and is independent of the wavelength at which we visually recognize the hue, about 380 to 780 nm. For example, it is a condition where the film thickness cannot be confirmed due to a change in hue. Even under conditions in which a black top coat is applied on a black undercoat, the film thickness can be accurately determined by infrared reflection intensity if the above requirements (I) and (II) or (i) and (ii) are satisfied. Can be measured.
 <赤外線反射強度により塗膜の膜厚を測定する方法>
 本発明の塗料組成物から得られる塗膜の膜厚は、赤外線反射強度により測定される。
 赤外線反射強度により塗膜の膜厚を測定する方法としては、具体的には、用いる塗料組成物から形成される塗膜の膜厚と、その膜厚における赤外線反射強度(被塗物上に形成された塗膜の塗膜側から赤外線を照射し、測定された反射強度)を数点測定し、膜厚と赤外線反射強度との関係(曲線グラフ)を予め求めた上で、該関係に基づいて、実際の塗装の際に測定される赤外線反射強度から、現在の塗膜の厚みを測定する(導き出す)方法が好ましい。
<Method of measuring film thickness of coating film by infrared reflection intensity>
The film thickness of the coating film obtained from the coating composition of the present invention is measured by infrared reflection intensity.
Specifically, as a method of measuring the film thickness of the coating film by the infrared reflection intensity, the film thickness of the coating film formed from the coating composition to be used, and the infrared reflection intensity at the film thickness (formed on the object to be coated) Irradiate infrared rays from the coating film side of the coated film, measure several reflection strengths), determine the relationship between the film thickness and infrared reflection strength (curve graph) in advance, and based on this relationship Thus, a method of measuring (deriving) the current thickness of the coating film from the infrared reflection intensity measured during actual coating is preferable.
 このような方法によれば、塗装中の塗膜の厚みを容易に測定することができ、該塗膜としては、乾燥塗膜はもちろん、ウェット塗膜であっても、電磁膜厚計やウェットゲージ等で測定した膜厚と同程度の実際の膜厚に近い膜厚を測定することができる。また、赤外線反射強度により膜厚を測定するため、暗条件下(例えば20ルクス未満の環境)でも膜厚を非接触方式で測定することができる。 According to such a method, the thickness of the coating film during coating can be easily measured. As the coating film, a dry coating film as well as a wet coating film can be used. It is possible to measure a film thickness close to the actual film thickness that is about the same as the film thickness measured with a gauge or the like. Further, since the film thickness is measured by the infrared reflection intensity, the film thickness can be measured by a non-contact method even under dark conditions (for example, an environment of less than 20 lux).
 このような赤外線反射強度は、紫外可視近赤外分光光度計等の従来公知の装置を用いて測定できるが、赤外線を照射可能な光源と、赤外線を被塗物に照射したときに反射される赤外線強度を検出するセンサーと、該センサーが検知した赤外線反射強度を解析する装置とを含む赤外線反射強度測定装置を用いて測定することが好ましい。 Such infrared reflection intensity can be measured using a conventionally known apparatus such as an ultraviolet-visible-near-infrared spectrophotometer, etc., but is reflected when a light source capable of irradiating infrared rays and the object to be coated are irradiated with infrared rays. It is preferable to measure using an infrared reflection intensity measuring device including a sensor for detecting infrared intensity and a device for analyzing the infrared reflection intensity detected by the sensor.
 さらに、近赤外線領域から選ばれる1または2以上の波長の赤外線を利用する赤外線反射強度測定装置は、室温付近における温度の影響を受けにくく、また感度も良好であるため好ましい。 Furthermore, an infrared reflection intensity measuring device using infrared rays having one or two or more wavelengths selected from the near infrared region is preferable because it is hardly affected by the temperature near room temperature and has good sensitivity.
 前記光源としては、赤外線を照射できる光源であれば任意に選ぶことができ、例えば、ハロゲンランプ、写真撮影用のレフライト、LED、レーザー光、太陽光が挙げられる。 The light source may be arbitrarily selected as long as it is capable of emitting infrared rays, and examples thereof include a halogen lamp, a reflight for photographing, LED, laser light, and sunlight.
 前記赤外線反射強度を検出するセンサーとしては、赤外線領域に感度をもつセンサーであれば任意に選ぶことができ、例えば、PbS、InSbまたはInGaAs等からなる半導体素子を用いた検出器、光電子増倍管、これらを組み込んだ赤外線カメラが挙げられる。 As the sensor for detecting the infrared reflection intensity, any sensor having sensitivity in the infrared region can be arbitrarily selected. For example, a detector using a semiconductor element made of PbS, InSb, InGaAs, or the like, a photomultiplier tube And infrared cameras incorporating these.
 前記センサーが検知した赤外線反射強度を解析する装置としては、任意に選ぶことができ、例えば、解析用プログラム(Altair(製造元:FLIR Systems, Inc.)など)、オシロスコープ、電圧計が挙げられる。 The apparatus for analyzing the intensity of infrared reflection detected by the sensor can be arbitrarily selected, and examples thereof include an analysis program (such as Altair (manufacturer: FLIR Systems, Inc.)), an oscilloscope, and a voltmeter.
 前記赤外線反射強度測定装置としては、下記実施例で用いた、赤外線反射強度測定装置1および赤外線反射強度測定装置2が好ましい。 As the infrared reflection intensity measuring apparatus, the infrared reflection intensity measuring apparatus 1 and the infrared reflection intensity measuring apparatus 2 used in the following examples are preferable.
 <塗料組成物の原料>
 前記塗料組成物としては、前記要件(I)および(II)または(i)および(ii)を満たすような組成物であれば特に制限されない。
<Raw material of coating composition>
The coating composition is not particularly limited as long as the composition satisfies the requirements (I) and (II) or (i) and (ii).
 赤外線反射強度測定装置による赤外線反射強度は、顔料の種類と配合量にもっとも大きく依存する。
 この顔料として、前記塗料組成物が、赤外線反射顔料を含む場合、前記要件(I)および(II)または(i)および(ii)を満たす塗料組成物を容易に得ることができ、該顔料を用いることで他の成分の配合の自由度が大きくなるため好ましい。また、前記赤外線反射顔料を含む塗料組成物を用いることで、塗装直後のウェットの状態における塗膜の赤外線反射強度から導かれる乾燥塗膜の膜厚は、実際に得られる乾燥塗膜の膜厚に非常に近い値となるため好ましい。
The infrared reflection intensity measured by the infrared reflection intensity measuring device is most dependent on the type and amount of pigment.
When the coating composition contains an infrared reflective pigment as this pigment, a coating composition that satisfies the requirements (I) and (II) or (i) and (ii) can be easily obtained. Use is preferable because the degree of freedom in blending other components is increased. Moreover, by using the coating composition containing the infrared reflective pigment, the film thickness of the dry coating film derived from the infrared reflection intensity of the coating film in the wet state immediately after coating is the film thickness of the actually obtained dry coating film. It is preferable because the value is very close to.
 本発明において、「赤外線反射顔料」とは、下記表1の下塗り塗料SP-BKを乾燥膜厚が約10μmになるように塗装し乾燥させて形成した塗膜上に、塗料固形分中の顔料の含有量が0.6容量%となるような量で顔料を含む上塗り塗料を塗装し、60℃で24時間乾燥させることで上塗り塗膜を形成するとき、膜厚400μmにおける上塗り塗膜の赤外線反射率が15%以上になる顔料のことをいい、この顔料としては、該赤外線反射率が15~60%となる顔料であることが好ましい。
 前記膜厚400μmにおける上塗り塗膜の赤外線反射率は、具体的には下記実施例に記載の方法で求める。
In the present invention, the term “infrared reflective pigment” refers to a pigment in the solid content of a paint on a coating film formed by applying and drying an undercoat paint SP-BK of Table 1 below to a dry film thickness of about 10 μm. When an overcoating film is formed by applying a topcoating material containing a pigment in such an amount that the content is 0.6% by volume and drying at 60 ° C. for 24 hours, the infrared of the topcoating film at a film thickness of 400 μm is formed. This refers to a pigment having a reflectance of 15% or more, and the pigment is preferably a pigment having an infrared reflectance of 15 to 60%.
Specifically, the infrared reflectance of the top coat film at a film thickness of 400 μm is determined by the method described in the Examples below.
 前記赤外線反射顔料としては、特に制限されないが、例えば、二酸化チタン、亜酸化銅、酸化亜鉛、弁柄、黄色弁柄、クロムグリーンブラックヘマタイト、マンガンビスマスブラック顔料、クロミウムアイアンオキサイド、ニッケルアンチモンチタニウムイエロールチル、クロムアンチモンチタニウムバフルチルおよびルチルスズ亜鉛が挙げられる。 The infrared reflective pigment is not particularly limited, but for example, titanium dioxide, cuprous oxide, zinc oxide, petrol, yellow petrol, chrome green black hematite, manganese bismuth black pigment, chromium iron oxide, nickel antimony titanium yellow rutile. , Chromium antimony titanium baflutyl and rutile tin zinc.
 前記赤外線反射顔料の市販品としては、「Titone R-5N」(商品名)(堺化学工業(株)製、二酸化チタン)、「タイペークR-930」(商品名)(石原産業(株)製)、「月光BB」(商品名)(戸田ピグメント(株)製、酸化第二鉄(弁柄))、「NC-301」(商品名)(日進ケムコ(株)製、亜酸化銅)、「酸化亜鉛 3種」(商品名)(九州白水(株)製、酸化亜鉛)、「弁柄404」(森下弁柄工業(株)製、酸化第二鉄)、「TAROX LL-XLO」(商品名)(チタン工業(株)製、黄色系合成酸化鉄(α-オキシ水酸化鉄))、「ブラック 10C909A」(商品名)(Shepherd Color Company製、クロムグリーンブラックヘマタイト)、「ブラック 6301」(商品名)(アサヒ化成工業(株)製、マンガンビスマスブラック顔料)、「ブラック 411A」(商品名)(Shepherd Color Company製、クロミウムアイアンオキサイド)、「イエロー 10C112」(商品名)(Shepherd Color Company製、ニッケルアンチモンチタニウムイエロールチル)、「イエロー 10C242」(商品名)(Shepherd Color Company製、クロムアンチモンチタニウムバフルチル)、および「オレンジ 10P320」(Shepherd Color Company製、ルチルスズ亜鉛)等が挙げられる。 Commercially available infrared reflective pigments include “Titone R-5N” (trade name) (manufactured by Sakai Chemical Industry Co., Ltd., titanium dioxide), “Taipeke R-930” (trade name) (manufactured by Ishihara Sangyo Co., Ltd.) ), “Gekkou BB” (trade name) (manufactured by Toda Pigment Co., Ltd., ferric oxide (valve)), “NC-301” (trade name) (Nisshin Chemco Co., Ltd., cuprous oxide), “Zinc Oxide 3 types” (trade name) (Kyushu Hakusui Co., Ltd., Zinc Oxide), “Valent 404” (Morishita Bengal Kogyo Co., Ltd., ferric oxide), “TAROX LL-XLO” ( (Trade name) (made by Titanium Industry Co., Ltd., yellow synthetic iron oxide (α-iron oxyhydroxide)), “Black 10C909A” (trade name) (made by Shepherd® Color Company, chrome green black hematite), “Black 6301” (Product Name) (Made by Asahi Kasei Kogyo Co., Ltd. Nganbismuth black pigment), “Black 411A” (trade name) (Shepherd® Color® Company, chromium iron oxide), “Yellow 10C112” (trade name) (Shepherd® Color® Company, nickel anti-montitanium yellow rutile), “Yellow 10C242” (Product name) (Shepherd® Color® Company, Chrome Antimony Titanium Baffle), “Orange 10P320” (Shepherd® Color® Company, Rutile Tin Zinc), and the like.
 前記赤外線反射顔料の配合量は、少なすぎると、特に0.03容量%未満では、膜厚が増加しても赤外線領域の光の反射率の変化が少ないため、十分な感度を有する塗料組成物および塗膜を得ることができない場合がある。これとは逆に、前記赤外線反射顔料の配合量が多すぎる場合には、赤外線領域の光の透過率が減少するため、塗膜の深部にまで赤外線が届きにくく、特に3.0容量%を超えると、50μmを超えるような厚膜の膜厚測定が難しくなる傾向にある。 If the blending amount of the infrared reflecting pigment is too small, particularly less than 0.03% by volume, the change in the reflectance of light in the infrared region is small even when the film thickness is increased, so that the coating composition has sufficient sensitivity. In some cases, a coating film cannot be obtained. On the contrary, when the amount of the infrared reflecting pigment is too large, the light transmittance in the infrared region is reduced, so that it is difficult for infrared rays to reach the deep part of the coating film, particularly 3.0% by volume. If it exceeds, it tends to be difficult to measure the thickness of a thick film exceeding 50 μm.
 前記赤外線反射顔料は、1種単独で用いてもよく、2種以上を用いてもよい。2種以上を用いる場合には、それら複数種類の赤外線反射顔料の合計配合量が、前記配合量の範囲となるようにすることが好ましい。 The infrared reflective pigments may be used alone or in combination of two or more. When using 2 or more types, it is preferable to make the total compounding quantity of these several types of infrared reflective pigments become the range of the said compounding quantity.
 なお、前記赤外線反射顔料の中でも、特に赤外線領域の反射率が高く透過率の低い赤外線反射顔料、例えば、二酸化チタン、弁柄、黄色弁柄などを配合する場合には、前記(I)や(i)を満たす塗膜を得るために、例えば二酸化チタンを用いる場合、乾燥塗膜中2.0容量%を超えないよう配合することが望ましい。 Among the infrared reflective pigments, particularly when an infrared reflective pigment having a high reflectance in the infrared region and a low transmittance, for example, titanium dioxide, a petiole, a yellow petiole, etc., is blended (I) or ( In order to obtain a coating film that satisfies i), for example, when titanium dioxide is used, it is desirable to blend so as not to exceed 2.0% by volume in the dry coating film.
 本発明の塗料組成物には、従来の塗料に用いられる公知の各成分を本発明の効果を損なわない範囲で配合することができる。これら配合される各成分、具体的には溶剤や樹脂、添加剤などは、顔料成分と比べて、得られる塗膜の赤外線透過率と反射率に与える影響が少ないため、任意に選ぶことができる。 In the coating composition of the present invention, known components used in conventional coatings can be blended within a range that does not impair the effects of the present invention. These components to be blended, specifically solvents, resins, additives and the like, can be arbitrarily selected because they have less influence on the infrared transmittance and reflectance of the resulting coating film than pigment components. .
 (A)バインダー樹脂
 本発明の塗料組成物には、通常、バインダー樹脂が配合される。
 このようなバインダー樹脂としては特に制限されないが、エポキシ樹脂、ウレタン樹脂、アルキド樹脂、アクリル樹脂、塩化ビニル樹脂、塩素化オレフィン樹脂、塩化ゴム、酢酸ビニル樹脂などが挙げられる。これらの中では、特に、エポキシ樹脂が好ましい。
 前記バインダー樹脂は、1種単独でまたは2種以上を用いることができる。
(A) Binder resin The coating composition of the present invention usually contains a binder resin.
Such a binder resin is not particularly limited, and examples thereof include an epoxy resin, a urethane resin, an alkyd resin, an acrylic resin, a vinyl chloride resin, a chlorinated olefin resin, a chlorinated rubber, and a vinyl acetate resin. Among these, an epoxy resin is particularly preferable.
The binder resin can be used alone or in combination of two or more.
 エポキシ樹脂としては、特に制限されず、例えば、特開平11-343454号公報や特開平10-259351号公報に記載の非タール系エポキシ樹脂が挙げられる。 The epoxy resin is not particularly limited, and examples thereof include non-tar epoxy resins described in JP-A-11-343454 and JP-A-10-259351.
 エポキシ樹脂としては、分子内に2個以上のエポキシ基を含むポリマーあるいはオリゴマー、およびそのエポキシ基の開環反応によって生成するポリマーあるいはオリゴマー等が挙げられる。このようなエポキシ樹脂としては、ビスフェノール型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾール型エポキシ樹脂、ダイマー酸変性エポキシ樹脂、脂肪族エポキシ樹脂、脂環族エポキシ樹脂、エポキシ化油系エポキシ樹脂等が挙げられる。 Examples of the epoxy resin include a polymer or oligomer containing two or more epoxy groups in the molecule, and a polymer or oligomer generated by a ring-opening reaction of the epoxy group. Examples of such epoxy resins include bisphenol type epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, phenol novolac type epoxy resins, cresol type epoxy resins, dimer acid-modified epoxy resins, aliphatic epoxy resins, and alicyclic groups. An epoxy resin, an epoxidized oil type epoxy resin, etc. are mentioned.
 エポキシ樹脂は、従来公知の方法で合成して得てもよく、市販品でもよい。
 市販品としては、常温で液状のものとして、「E028」(大竹明新化学(株)製、ビスフェノールAジグリシジルエーテル樹脂、エポキシ当量180~190、粘度12,000~15,000mPa・s/25℃)、「jER-807」(三菱化学(株)製、ビスフェノールFジグリシジルエーテル樹脂、エポキシ当量160~175、粘度3,000~4,500mPa・s/25℃)、「フレップ60」(東レ・ファインケミカル(株)製、エポキシ当量約280、粘度約17,000mPa・s/25℃)、「E-028-90X」(大竹明新化学(株)製、ビスフェノールAジグリシジルエーテル樹脂のキシレン溶液(828タイプエポキシ樹脂溶液)、エポキシ当量約210)、「エポトートYD-128」(東都化成(株)製、ビスフェノールAジグリシジルエーテル樹脂、エポキシ当量184~194、粘度12,000~15,000cps/25℃)等が挙げられる。
The epoxy resin may be synthesized by a conventionally known method or may be a commercially available product.
As a commercially available product, “E028” (manufactured by Akira Ohtake Shin Chemical Co., Ltd., bisphenol A diglycidyl ether resin, epoxy equivalent of 180 to 190, viscosity of 12,000 to 15,000 mPa · s / 25 as a liquid at room temperature. ° C), “jER-807” (Mitsubishi Chemical Corporation, bisphenol F diglycidyl ether resin, epoxy equivalent 160-175, viscosity 3,000-4,500 mPa · s / 25 ° C.), “Flep 60” (Toray・ Fine Chemical Co., Ltd., epoxy equivalent of about 280, viscosity of about 17,000 mPa · s / 25 ° C., “E-028-90X” (Otake Akira Shin Chemical Co., Ltd., bisphenol A diglycidyl ether resin xylene solution (828 type epoxy resin solution), epoxy equivalent of about 210), “Epototo YD-128” (manufactured by Toto Kasei Co., Ltd.) Bisphenol A diglycidyl ether resin having an epoxy equivalent of 184-194, and a viscosity of 12,000 ~ 15,000cps / 25 ℃) or the like.
 常温で半固形状のものとして、「jER-834」(三菱化学(株)製、ビスフェノールA型エポキシ樹脂、エポキシ当量230~270)、「E-834-85X」(大竹明新化学(株)製、ビスフェノールA型エポキシ樹脂のキシレン溶液(834タイプエポキシ樹脂溶液)、エポキシ当量約300)等が挙げられる。 "JER-834" (Mitsubishi Chemical Corporation, bisphenol A type epoxy resin, epoxy equivalent 230-270), "E-834-85X" (Otake Akira Shin Chemical Co., Ltd.) And xylene solution of bisphenol A type epoxy resin (834 type epoxy resin solution, epoxy equivalent of about 300).
 常温で固形状のものとして、「jER1001」(三菱化学(株)製、ビスフェノールA型エポキシ樹脂、エポキシ当量450~500)、「E-001-75X」(大竹明新化学(株)製、ビスフェノールA型エポキシ樹脂のキシレン溶液(1001タイプエポキシ樹脂溶液)、エポキシ当量約630)、「エポキシ樹脂1001」(大竹明新化学(株)製、ビスフェノールA型固形エポキシ樹脂)等が挙げられる。 “JER1001” (Mitsubishi Chemical Corporation, bisphenol A type epoxy resin, epoxy equivalent 450-500), “E-001-75X” (Otake Akira Shin Chemical Co., Ltd., bisphenol) A xylene solution of type A epoxy resin (1001 type epoxy resin solution), epoxy equivalent of about 630), “epoxy resin 1001” (manufactured by Akira Otake Shin Chemical Co., Ltd., bisphenol A type solid epoxy resin) and the like.
 前記エポキシ樹脂は、1種単独でまたは2種以上を用いることができる。 The epoxy resin can be used alone or in combination of two or more.
 前記エポキシ樹脂としては、基材に対する密着性に優れる組成物が得られる等の点から、常温(15~25℃の温度、以下同様。)で液状または半固形状のものが好ましい。 The epoxy resin is preferably liquid or semi-solid at room temperature (temperature of 15 to 25 ° C., the same shall apply hereinafter) from the viewpoint of obtaining a composition having excellent adhesion to the substrate.
 前記エポキシ樹脂のエポキシ当量は、防食性等の点から、好ましくは150~1000、より好ましくは150~600、特に好ましくは180~500である。 The epoxy equivalent of the epoxy resin is preferably 150 to 1000, more preferably 150 to 600, and particularly preferably 180 to 500 from the viewpoint of corrosion resistance and the like.
 前記エポキシ樹脂のGPC(ゲルパーミエーションクロマトグラフ)で測定した重量平均分子量は、得られる組成物の塗装硬化条件(例:常乾塗装または焼付け塗装)などにもより、一概に決定されないが、好ましくは350~20,000である。 The weight average molecular weight measured by GPC (gel permeation chromatograph) of the epoxy resin is not generally determined depending on the coating curing conditions (eg, normal dry coating or baking coating) of the resulting composition, but preferably Is 350 to 20,000.
 前記バインダー樹脂は、本発明の塗料組成物中に、好ましくは5~70重量%、より好ましくは10~30重量%の量で含まれる。
 また、前記バインダー樹脂は、本発明の塗料組成物が主剤成分と硬化剤成分とからなる2成分型の組成物である場合、前記バインダー樹脂は主剤成分に含まれ、該主剤成分中に、好ましくは5~80重量%、より好ましくは5~50重量%の量で含まれていることが望ましい。
The binder resin is contained in the coating composition of the present invention in an amount of preferably 5 to 70% by weight, more preferably 10 to 30% by weight.
In addition, the binder resin, when the coating composition of the present invention is a two-component composition comprising a main component and a curing agent component, the binder resin is included in the main component, and preferably in the main component. Is preferably contained in an amount of 5 to 80% by weight, more preferably 5 to 50% by weight.
 (B)硬化剤
 本発明の塗料組成物には、硬化剤を配合してもよい。
 このような硬化剤としては、特に制限されないが、前記バインダー樹脂を硬化可能な化合物であることが好ましく、従来公知のものを使用できる。また、バインダー樹脂のみで硬化可能な場合は、硬化剤を使用しなくてもよい。
(B) Curing agent The coating composition of the present invention may contain a curing agent.
Although it does not restrict | limit especially as such a hardening | curing agent, It is preferable that it is a compound which can harden the said binder resin, and a conventionally well-known thing can be used. Moreover, when it can harden | cure only with binder resin, it is not necessary to use a hardening | curing agent.
 例えば、前記硬化剤として、ウレタン樹脂を得るために、イソシアネート系化合物を用いてもよい。
 また、前記エポキシ樹脂の硬化剤としては、特に制限されず、アミン硬化剤および酸無水物系硬化剤が挙げられるが、中でも、脂肪族系、脂環族系、芳香族系、複素環系などのアミン硬化剤が好ましい。
For example, an isocyanate compound may be used as the curing agent in order to obtain a urethane resin.
In addition, the epoxy resin curing agent is not particularly limited, and examples thereof include amine curing agents and acid anhydride curing agents. Among them, aliphatic, alicyclic, aromatic, heterocyclic, etc. The amine curing agent is preferred.
 その他のアミン硬化剤としては、例えば、特公昭49-48480号公報に記載のアミン類(アミン化合物)を使用することもでき、さらに、ジエチルアミノプロピルアミン、ポリエーテルジアミン等を使用することもできる。 As other amine curing agents, for example, amines (amine compounds) described in JP-B-49-48480 can be used, and diethylaminopropylamine, polyether diamine, and the like can also be used.
 前記アミン硬化剤としては、さらに、上述したアミン硬化剤の変性物、例えば、ポリアミド、ポリアミドアミン(ポリアミド樹脂)、エポキシ化合物とのアミンアダクト、マンニッヒ化合物(例:マンニッヒ変性ポリアミドアミン)、マイケル付加物、ケチミン、アルジミン、フェナルカミンなどが挙げられる。 Examples of the amine curing agent include a modified product of the above-described amine curing agent, such as polyamide, polyamide amine (polyamide resin), amine adduct with an epoxy compound, Mannich compound (eg, Mannich modified polyamide amine), and Michael adduct. , Ketimine, aldimine, phenalkamine and the like.
 前記アミン硬化剤の活性水素当量は、防食性などに優れる塗膜が得られる等の点から、好ましくは50~1000、より好ましくは80~400である。 The active hydrogen equivalent of the amine curing agent is preferably 50 to 1000, more preferably 80 to 400, from the viewpoint of obtaining a coating film having excellent anticorrosion properties.
 酸無水物系硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、3,6-エンドメチレンテトラヒドロ無水フタル酸、ヘキサクロルエンドメチレンテトラヒドロ無水フタル酸、メチル-3,6-エンドメチレンテトラヒドロ無水フタル酸等が挙げられる。 Examples of the acid anhydride curing agent include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, 3,6-endomethylenetetrahydrophthalic anhydride, hexachloroendomethylenetetrahydrophthalic anhydride, methyl-3,6- Examples include endomethylenetetrahydrophthalic anhydride.
 前記硬化剤は、従来公知の方法で合成して得てもよく、市販品でもよい。
 市販品としては、例えば、脂肪族ポリアミンである「ACIハードナーK-39」(PTIジャパン(株)製)、ポリアミドアミンである「PA-66」、「PA-23」および「PA-290(A)」(いずれも、大竹明新化学(株)製)、変性ポリアミンである「MAD-204(A)」(大竹明新化学(株)製)、マンニッヒ変性ポリアミドアミンである「アデカハードナーEH-342W3」((株)ADEKA製)、マンニッヒ変性脂肪族ポリアミンである「サンマイドCX-1154」(三和化学(株)製)、フェノルカミンアダクトである「カードライトNC556X80」(カードライト社製)が挙げられる。
The curing agent may be synthesized by a conventionally known method or may be a commercially available product.
Examples of commercially available products include aliphatic polyamines “ACI Hardener K-39” (manufactured by PTI Japan), polyamidoamines “PA-66”, “PA-23” and “PA-290 (A ”” (Both manufactured by Otake Akira Shin Chemical Co., Ltd.), modified polyamine “MAD-204 (A)” (produced by Otake Akira Shin Chemical Co., Ltd.), Mannich modified polyamidoamine “Adeka Hardener EH- 342W3 "(manufactured by ADEKA Co., Ltd.)," Sanmide CX-1154 "(manufactured by Sanwa Chemical Co., Ltd.), a Mannich-modified aliphatic polyamine, and" Cardlight NC556X80 "(manufactured by Cardlight), a phenorcamine adduct. Is mentioned.
 前記硬化剤は、1種単独でまたは2種以上を用いることができる。 The curing agent can be used alone or in combination of two or more.
 本発明の塗料組成物において、前記硬化剤と前記エポキシ樹脂とは、その当量比(硬化剤の使用量/活性水素当量)/(エポキシ樹脂の使用量/エポキシ当量)が、好ましくは0.3~1.5、より好ましくは0.5~1.0となるような量で用いることが望ましい。 In the coating composition of the present invention, the equivalent ratio of the curing agent and the epoxy resin (amount of curing agent used / active hydrogen equivalent) / (amount of epoxy resin used / epoxy equivalent) is preferably 0.3. It is desirable to use it in such an amount that it is ˜1.5, more preferably 0.5˜1.0.
 (C)顔料
 本発明の塗料組成物には、顔料(但し、前記赤外線反射顔料を除く)を配合してもよい。
 顔料としては、従来公知のものが挙げられ、例えば、「塗料原料便覧 第9版」(一般社団法人 日本塗料工業会発刊)、「有機顔料ハンドブック」(カラーオフィス編、橋本勲著)に記載の顔料を用いることができる。
 前記顔料(C)は、1種単独でまたは2種以上を用いることができる。
 本発明の塗料組成物に前記顔料を配合する場合には、該顔料の配合量は、本発明の塗料組成物の不揮発分100重量部に対し、好ましくは0.03~80重量部、より好ましくは5~70重量部である。
(C) Pigment A pigment (however, excluding the infrared reflection pigment) may be blended in the coating composition of the present invention.
Examples of pigments include conventionally known pigments, such as those described in “Paint Raw Material Handbook 9th Edition” (published by the Japan Paint Manufacturers Association) and “Organic Pigment Handbook” (Color Office, written by Isao Hashimoto). Pigments can be used.
The pigment (C) can be used alone or in combination of two or more.
When the pigment is blended in the coating composition of the present invention, the blending amount of the pigment is preferably 0.03 to 80 parts by weight, more preferably 100 parts by weight of the nonvolatile content of the coating composition of the present invention. Is 5 to 70 parts by weight.
 前記顔料の具体例としては、例えば、MIO(Micaceous Iron Oxide:雲母状酸化鉄)、アニリンブラック、チャンネルブラック、ファーネスブラック、導電性カーボンブラック、カーボンブラック、グラファイト、黒色弁柄、複合金属酸化物、ペリレンブラック、N,N'-ビス(2-フェニルエチル)-3,4,9,10-ペリレンビスカルボジイミド、ビクトリアピュアブルーB0レーキ、フタロシアニンブルーR、フタロシアニンブルーG、フタロシアニンブルーE、無金属フタロシアニンブルー、ファーストスカイブルー、紺青、コバルトブルー、群青、インダントロンブルー3R、Decachlorinated、縮合アゾブラウン、ベンズイミダゾロンブラウンHR、フタロシアニングリーン、クロムグリーン、酸化クロムグリーン、フタロシアニングリーン6Y、アルミ、アルペーストゴールド色、アルペースト(ノンリーフィング)、アルペースト(リーフィング)、亜鉛末、ジニトロアニリンオレンジ、ピラゾロンオレンジ、ジアニジジンオレンジ、カドミウムオレンジ、赤口黄鉛、ピラゾロンオレンジTMP、ベンズイミダゾロンオレンジ、ナフトールオレンジ(38)、ペリノンオレンジ、ピラントロンオレンジ(51)、イソインドリノンオレンジ(61)、ベンズイミダゾロンオレンジH5G、ピラゾロキナゾロンオレンジ、サンドリンオレンジ6RL、ジケトピロロピロール、パーマネントレッドFRR、パーマネントレッド4R、パーマネントレッドR、ナフトールカーミンFB、ナフトールレッドF4R、ナフトールレッドFRLL、ナフトールボルドーFRR、ナフトールボルドーFGR、ナフトールマルーン、ナフトールレッドM、不溶性モノアゾ、ブリリアントファーストスカーレット、ナフトールレッドRBS、ナフトールレッド RN、バルカンファーストレッド B、パーマネントレッド2B、バリウムリソールレッド、カルシウムリソールレッド、レーキレッドD、ボンレーキレッドC、レーキレッドC、ブリリアントカーミン6B、ボンマルーンL、ボルドー10B、ボンマルーンM、ローダミン6Gレーキ(PTMA)、マダーレーキ、チオインジゴボルドー、赤色弁柄、モリブデートオレンジ、鉛丹、カドミウムレッド、ナフトールレッドFGR、ブリリアントカーミンBS、キナクリドンマゼンタY、ペリレンバーミリオン、縮合アゾレッド、ナフトールカーミンFBB、ペリレンレッドBL、ナフトールカーミンHR、縮合アゾスカーレットR、ジブロモアンタントロンレッド、ナフトールレッドF5RK、ベンズイミダゾロンマルーンHFM、ベンズイミダゾロンレッドHFT、ジアントラキノニルレッド、ペリレンレッドGC、ペリレンマルーン、ナフトールルビンF6B、ベンズイミダゾロンカーミンHF4C、ナフトールレッドHF4B、ナフトールレッドHF3S、ペリノンレッドTG、キナクリドンマゼンタB、キナクリドンレッドスカーレット、ベンズイミダゾロンレッドHF2B、キナクリドンレッドY、ナフトールレッドF6RK、縮合アゾレッドB、ピラントロンレッドR、縮合アゾレッド2B、ペリレンレッドY、ピラントロンレッドY、縮合アゾスカーレット4RF、ピラゾロキナゾロンレッドG、ジケトピロロピロールレッド、ニッケルイソインドロンレッドバイオレット3RL、メチルバイオレットレーキ(PTMA)、メチルバイオレットタンニンレーキ、ウルトラマリンバイオレット、キナクリドンレッド、キナクリドンレッドβ型、キナクリドンレッドγ型、ジオキサジンバイオレット、ベンズイミダゾロンボルドーHF3R、ジオキサジンバイオレット(37)、ナフトールバイオレット(50)、鉛白、塩基性硫酸鉛、一酸化チタン、酸化アンチモン、軽質炭酸カルシウム、重質炭酸カルシウム、膠質炭酸カルシウム、カオリン、クレー、マイカ、沈降性硫酸バリウム、簸性硫酸バリウム、硫酸カルシウム、タルク、シリカ、リン酸亜鉛、ファーストイエローG、ファーストイエロー10G、ジスアゾイエローAAA、ジスアゾイエローAAMX、ジスアゾイエローAAOT、ジスアゾイエローNCG、ジスアゾイエローAAOA、フラバントロンイエロー、ストロンチウムクロメート、黄鉛、カドミウムジンクイエロー、クロム酸亜鉛、ジンククロメート(ZPC)、ジンククロメート(ZTO)、カドミウムイエロー、チタンイエロー、ジスアゾイエローAAPT、イルガライトイエローWSR、ファーストイエローRN、ファーストイエローGX、ファーストイエローGY、ジスアゾイエローH10G、ジスアゾイエローHR、縮合アゾイエロー3G、縮合アゾイエローGR、ファーストイエローFGL、アントラピリミジンイエロー、イソインドリノンイエローG、イソインドリノンイエローR、ファーストイエローER、銅アゾメチンイエロー、ベンズイミダゾロンイエローH2G、縮合アゾイエローGG、銅アゾメチンイエロー5G、モノアゾイエローAAA、アゾレーキ、キノフタロンイエロー、イソインドリノンイエロー、ベンズイミダゾロンイエローH4G、ジスアゾイエローYR、ニッケルジオキシンイエロー、ベンズイミダゾロンイエローH3G、サンドリンイエロー4G、モノアゾイエロー、モノアゾイエローレーキ、ジスアゾイエローFR、ベンズイミダゾロンイエローH6G、サンドリンイエローG、ビスマスバナデート、1:2クロム錯体、フタロシアニン、アンスラキノン、1:2コバルト錯体、アルミナ、カリ長石、クロム酸鉛、シアナミド亜鉛、シアナミド鉛、ストロンチウムクロメート、ソーダ長石、トリポリリン酸2水素アルミニウム、ドロマイト、ホウ酸亜鉛、メタホウ酸ストロンチウム、メタホウ酸バリウム、モリブデン酸カルシウム、モリブデン酸亜鉛、リンモリブデン酸アルミニウム、リン酸カルシウム、リン酸クロム、亜リン酸アルミニウム、亜リン酸カルシウム、亜リン酸亜鉛、亜リン酸亜鉛カリウム、亜リン酸亜鉛カルシウム、亜酸化鉛、塩基性硫酸マグネシウム、塩基性硫酸鉛が挙げられる。 Specific examples of the pigment include, for example, MIO (Micaceous Iron Oxide), aniline black, channel black, furnace black, conductive carbon black, carbon black, graphite, black petrol, composite metal oxide, Perylene black, N, N'-bis (2-phenylethyl) -3,4,9,10-perylenebiscarbodiimide, Victoria Pure Blue B0 Lake, Phthalocyanine Blue R, Phthalocyanine Blue G, Phthalocyanine Blue E, Metal-free Phthalocyanine Blue , First Sky Blue, Bituminous Blue, Cobalt Blue, Ultramarine Blue, Indantron Blue 3R, Decachlorinated, Condensed Azo Brown, Benzimidazolone Brown HR, Phthalocyanine Green, Chrome Green , Chromium oxide green, phthalocyanine green 6Y, aluminum, al paste gold color, al paste (non-leafing), al paste (leafing), zinc powder, dinitroaniline orange, pyrazolone orange, dianididine orange, cadmium orange, reddish yellow lead, Pyrazolone orange TMP, benzimidazolone orange, naphthol orange (38), perinone orange, pyranthrone orange (51), isoindolinone orange (61), benzimidazolone orange H5G, pyrazoloquinazolone orange, sandrin orange 6RL , Diketopyrrolopyrrole, permanent red FRR, permanent red 4R, permanent red R, naphthol carmine FB, naphthol red F4R, naphthol red FR L, naphthol bordeaux FRR, naphthol bordeaux FGR, naphthol maroon, naphthol red M, insoluble monoazo, brilliant first scarlet, naphthol red RBS, naphthol red RN, Vulcan fast red B, permanent red 2B, barium resol red, calcium resol red, lake Red D, Bon Lake Red C, Lake Red C, Brilliant Carmine 6B, Bon Maroon L, Bordeaux 10B, Bon Maroon M, Rhodamine 6G Lake (PTMA), Mader Lake, Thioindigo Bordeaux, Red Petite, Molybdate Orange, Red Plum , Cadmium red, naphthol red FGR, brilliant carmine BS, quinacridone magenta Y, perylene vermilion, condensed azo red, Phtholcarmine FBB, Perylene Red BL, Naphthol Carmine HR, Condensed Azo Scarlet R, Dibromoanthanthrone Red, Naphthol Red F5RK, Benzimidazolone Maroon HFM, Benzimidazolone Red HFT, Dianthraquinonyl Red, Perylene Red GC, Perylene Maroon , Naphthol rubin F6B, benzimidazolone carmine HF4C, naphthol red HF4B, naphthol red HF3S, perinone red TG, quinacridone magenta B, quinacridone red scarlet, benzimidazolone red HF2B, quinacridone red Y, naphthol red azotron red F6RK Red R, condensed azo red 2B, perylene red Y, pyrantron red Y, condensed azo scarlet 4RF, pyrazoloquinazolone red G, diketopyrrolopyrrole red, nickel isoindolone red violet 3RL, methyl violet lake (PTMA), methyl violet tannin lake, ultramarine violet, quinacridone red, quinacridone red β type, quinacridone red γ-type, dioxazine violet, benzimidazolone Bordeaux HF3R, dioxazine violet (37), naphthol violet (50), lead white, basic lead sulfate, titanium monoxide, antimony oxide, light calcium carbonate, heavy calcium carbonate, Collagen calcium carbonate, kaolin, clay, mica, precipitated barium sulfate, fertile barium sulfate, calcium sulfate, talc, silica, zinc phosphate, first yellow G, first yellow 10G, disazo yellow AAA, disazo yellow AAMX, disazo yellow AAOT, disazo yellow NCG, disazo yellow AAOA, flavantron yellow, strontium chromate, chrome lead, cadmium zinc yellow, zinc chromate, zinc chromate (ZPC), zinc chromate (ZTO) ), Cadmium yellow, Titanium yellow, Disazo yellow AAPT, Irgarite yellow WSR, First yellow RN, First yellow GX, First yellow GY, Disazo yellow H10G, Disazo yellow HR, Condensed azo yellow 3G, Condensed azo yellow GR, First yellow FGL , Anthrapyrimidine yellow, isoindolinone yellow G, isoindolinone yellow R, first yellow ER, copper azomethine yellow, benzimidazolone yellow H2G, condensed azo yellow GG, copper azomethine yellow 5G, monoazo yellow AAA, azo lake, quinophthalone yellow, isoindolinone yellow, benzimidazolone yellow H4G, disazo yellow YR, nickel dioxin yellow, Benzimidazolone Yellow H3G, Sandrin Yellow 4G, Monoazo Yellow, Monoazo Yellow Lake, Disazo Yellow FR, Benzimidazolone Yellow H6G, Sandrin Yellow G, Bismuth Vanadate, 1: 2 Chromium Complex, Phthalocyanine, Anthraquinone, 1: 2 Cobalt complex, alumina, potassium feldspar, lead chromate, zinc cyanamide, lead cyanamide, strontium chromate, soda feldspar, tripolyphosphate 2 water Aluminum, dolomite, zinc borate, strontium metaborate, barium metaborate, calcium molybdate, zinc molybdate, aluminum phosphomolybdate, calcium phosphate, chromium phosphate, aluminum phosphite, calcium phosphite, zinc phosphite, phosphorous Examples include zinc zinc oxide, zinc calcium phosphite, lead sulfite, basic magnesium sulfate, and basic lead sulfate.
 本発明の塗料組成物に、顔料として、赤外線領域における光の透過率が高い顔料であって反射率が低い顔料、例えばタルクや硫酸バリウムのような低反射顔料に属する顔料のみを用いる場合、得られる塗膜は、その膜厚が増加しても赤外線反射率が殆ど増加しない傾向にあるため、赤外線反射強度による塗膜の膜厚の測定が容易な塗料組成物を得にくい場合がある。従って、これらの赤外線領域における光の透過率が高い顔料であって反射率が低い顔料を使用する場合は、前記赤外線反射顔料から選ばれる少なくとも1種の顔料を併用することが好ましい。 When only a pigment having a high light transmittance in the infrared region and a low reflectance, for example, a pigment belonging to a low reflection pigment such as talc or barium sulfate, is used as the pigment in the coating composition of the present invention, Since the coating film to be formed has a tendency that the infrared reflectance hardly increases even when the film thickness is increased, it may be difficult to obtain a coating composition in which the coating film thickness can be easily measured by the infrared reflection intensity. Therefore, when using a pigment having a high light transmittance in these infrared regions and a low reflectance, it is preferable to use at least one pigment selected from the infrared reflective pigments in combination.
 また、赤外線領域において、光をほとんど透過も反射もしない顔料、例えばカーボンブラックなどを用いると、赤外線反射強度による塗膜の膜厚の測定が容易な塗料組成物を得にくい傾向がある。従って、赤外線領域において、光をほとんど透過も反射もしない顔料は配合しないことが望ましいが、配合する場合は、得られる乾燥塗膜中0.05容量%を超えないよう配合することが望ましい。 In the infrared region, when a pigment that hardly transmits or reflects light, such as carbon black, is used, it tends to be difficult to obtain a coating composition that can easily measure the film thickness of the coating film by infrared reflection intensity. Accordingly, it is desirable not to add a pigment that hardly transmits or reflects light in the infrared region. However, when blended, it is desirable to mix it so that it does not exceed 0.05% by volume in the resulting dried coating film.
 (D)可塑剤
 本発明の塗料組成物には、得られる塗膜の柔軟性および耐侯性などを向上させる等の点から、可塑剤を配合することも好ましい。
 前記可塑剤は、1種単独で用いてもよく、2種以上を用いてもよい。
(D) Plasticizer It is also preferable to mix | blend a plasticizer with the coating composition of this invention from points, such as improving the softness | flexibility of a coating film obtained, and weather resistance.
The said plasticizer may be used individually by 1 type, and may use 2 or more types.
 可塑剤としては、従来より公知のものを広く使用でき、塩素化パラフィン(CERECLOR S52など)、トリクレシルフォスフェイト、ジオクチルフタレート、ナフサを熱分解して得られる低沸点留分等の液状炭化水素樹脂、常温で固形の石油樹脂、キシレン樹脂、クマロンインデン樹脂等が挙げられる。具体的には、特開2006-342360号公報に記載の液状炭化水素樹脂および可撓性付与樹脂等が挙げられる。 As the plasticizer, conventionally known ones can be widely used, and liquid hydrocarbons such as low-boiling fractions obtained by thermal decomposition of chlorinated paraffin (CERECOLOR S52, etc.), tricresyl phosphate, dioctyl phthalate, and naphtha. Examples thereof include resins, petroleum resins that are solid at room temperature, xylene resins, and coumarone indene resins. Specific examples include liquid hydrocarbon resins and flexibility imparting resins described in JP-A-2006-342360.
 これらの中でも、エポキシ樹脂との相溶性がよい等の点から、液状炭化水素樹脂、ならびに、水酸基含有の、常温で固形の石油樹脂、キシレン樹脂およびクマロンインデン樹脂が好ましい。 Of these, liquid hydrocarbon resins and hydroxyl-containing solid petroleum resins, xylene resins and coumarone indene resins are preferred from the viewpoint of good compatibility with epoxy resins.
 前記液状炭化水素樹脂の市販品としては、「ネシレス EPX-L」、「ネシレス EPX-L2」(以上、NEVCIN社製/フェノール変性炭化水素樹脂)、「HIRENOL PL-1000S」(KOLONケミカル社製/液状炭化水素樹脂)、常温で固形の石油系樹脂の市販品としては、「ネオポリマー E-100」、「ネオポリマー K-2」、「ネオポリマー K3」(以上、新日本石油化学(株)製/C9系炭化水素樹脂)、クマロンインデン樹脂の市販品としては、「NOVARES CA 100」(Rutgers Chemicals AG社製)、キシレン樹脂の市販品としては「ニカノールY-51」(三菱ガス化学(株)製)等が挙げられる。 Commercially available liquid hydrocarbon resins include “Nesiles EPX-L”, “Nesiles EPX-L2” (hereinafter, NEVCIN / phenol-modified hydrocarbon resin), “HIRENOL PL-1000S” (manufactured by KOLON Chemical / Liquid hydrocarbon resins) and petroleum-based resins that are solid at room temperature include “Neopolymer E-100”, “Neopolymer K-2”, “Neopolymer K3” (Shin Nippon Petrochemical Co., Ltd.) (Manufactured by C9 series hydrocarbon resin) and coumarone indene resin are commercially available as “NOVARES CA 100” (Rutgers Chemicals AG), and as xylene resin as “Nicanol Y-51” (Mitsubishi Gas Chemical ( Etc.).
 本発明の塗料組成物に前記可塑剤を配合する場合には、耐候性および耐クラック性などに優れる塗膜が得られる等の点から、該可塑剤の配合量は、本発明の塗料組成物100重量部に対し、好ましくは1~50重量部、より好ましくは3~30重量部である。 In the case where the plasticizer is blended in the coating composition of the present invention, the blending amount of the plasticizer is determined from the viewpoint that a coating film having excellent weather resistance and crack resistance is obtained. The amount is preferably 1 to 50 parts by weight, more preferably 3 to 30 parts by weight with respect to 100 parts by weight.
 (E)硬化促進剤
 本発明の塗料組成物には、硬化速度の調整、特に促進に寄与できる硬化促進剤を配合することも好ましい。
 前記硬化促進剤としては、例えば、3級アミン類が挙げられる。
 前記硬化促進剤は、1種単独で用いてもよく、2種以上を用いてもよい。
(E) Curing accelerator It is also preferable to mix | blend the hardening accelerator which can contribute to adjustment of a cure rate, especially acceleration | stimulation in the coating composition of this invention.
Examples of the curing accelerator include tertiary amines.
The said hardening accelerator may be used individually by 1 type, and may use 2 or more types.
 硬化促進剤としては、例えば、トリエタノールアミン、ジアルキルアミノエタノール、トリエチレンジアミン[1,4-ジアザシクロ(2,2,2)オクタン]、2,4,6-トリ(ジメチルアミノメチル)フェノール(例:商品名「バーサミンEH30」(ヘンケル白水(株)製)、商品名「アンカミンK-54」(エアープロダクツジャパン(株)製))が挙げられる。
 これら硬化促進剤は、本発明の塗料組成物中に、好ましくは0.05~2.0重量%の量で配合される。
Examples of the curing accelerator include triethanolamine, dialkylaminoethanol, triethylenediamine [1,4-diazacyclo (2,2,2) octane], 2,4,6-tri (dimethylaminomethyl) phenol (example: The product name “Versamine EH30” (manufactured by Henkel Hakusui Co., Ltd.) and the product name “Ankamin K-54” (manufactured by Air Products Japan Co., Ltd.) can be mentioned.
These curing accelerators are preferably blended in the coating composition of the present invention in an amount of 0.05 to 2.0% by weight.
 (F)溶剤
 本発明の塗料組成物には、塗料組成物の調製容易性、塗装容易性等の点から溶剤を配合することが好ましい。
 溶剤としては、特に限定されず、従来より公知の溶媒が使用でき、例えば、キシレン、トルエン、メチルイソブチルケトン、メチルエチルケトン、酢酸ブチル、n-ブタノール、イソプロピルアルコール、PGM(プロピレングリコールモノメチルエーテル)、ブチルセロソルブ等が挙げられる。
 前記溶剤は、1種単独で用いてもよく、2種以上を用いてもよい。
(F) Solvent It is preferable to mix | blend a solvent with the coating composition of this invention from points, such as the ease of preparation of a coating composition, and coating ease.
The solvent is not particularly limited, and a conventionally known solvent can be used. For example, xylene, toluene, methyl isobutyl ketone, methyl ethyl ketone, butyl acetate, n-butanol, isopropyl alcohol, PGM (propylene glycol monomethyl ether), butyl cellosolve, etc. Is mentioned.
The said solvent may be used individually by 1 type, and may use 2 or more types.
 本発明の塗料組成物に前記溶剤を配合する場合、前記溶剤の配合量は特に制限されず、本発明の塗料組成物を塗装する際の塗装方法等に応じて適宜調整すればよいが、本発明の塗料組成物の塗装性などを考慮すると、本発明の塗料組成物の不揮発分の濃度が、好ましくは10~98重量%、より好ましくは65~95重量%となるような量で含まれることが望ましい。
 また、前記溶剤は、本発明の塗料組成物をスプレー塗装する場合には、塗装性等の点から、本発明の塗料組成物の不揮発分の濃度が、好ましくは20~95重量%、より好ましくは65~90重量%となるような量で含まれることが望ましい。
When blending the solvent in the coating composition of the present invention, the blending amount of the solvent is not particularly limited, and may be appropriately adjusted according to the coating method when the coating composition of the present invention is applied. Considering the paintability of the coating composition of the present invention, the non-volatile content of the coating composition of the present invention is contained in an amount such that it is preferably 10 to 98% by weight, more preferably 65 to 95% by weight. It is desirable.
In the case of spray coating the coating composition of the present invention, the solvent preferably has a non-volatile concentration of the coating composition of the present invention of 20 to 95% by weight, more preferably from the viewpoint of paintability and the like. Is preferably contained in an amount of 65 to 90% by weight.
 (G)添加剤
 本発明の塗料組成物には、前記(A)~(F)および赤外線反射顔料の他に、添加剤(G)を配合してもよい。
 添加剤(G)としては、従来公知のものが使用できる。例えば、タレ止め・沈降防止剤、シランカップリング剤、消泡剤などが挙げられるが、これらに限定されない。
 前記添加剤(G)は、1種単独でまたは2種以上を用いることができる。
(G) Additive In addition to the above (A) to (F) and the infrared reflective pigment, an additive (G) may be added to the coating composition of the present invention.
A conventionally well-known thing can be used as an additive (G). Examples of the anti-sagging / sedimentation agent, silane coupling agent, and antifoaming agent include, but are not limited to.
The additive (G) can be used alone or in combination of two or more.
 タレ止め・沈降防止剤は、本発明の塗料組成物に揺変性(チクソトロピー)を付与し、該組成物の被塗物への密着性を向上させることができる。
 前記タレ止め・沈降防止剤としては、特に制限されないが、有機系揺変剤および無機系揺変剤が挙げられる。
 前記タレ止め・沈降防止剤は、1種単独で用いてもよく、2種以上を用いてもよい。
An anti-sagging / anti-settling agent imparts thixotropy to the coating composition of the present invention, and can improve the adhesion of the composition to an object to be coated.
The anti-sagging / precipitating agent is not particularly limited, and examples thereof include organic thixotropic agents and inorganic thixotropic agents.
The said anti-sagging and anti-settling agent may be used alone or in combination of two or more.
 前記有機系揺変剤としては、例えば、アマイドワックス、水素添加ひまし油系、酸化ポリエチレン系、植物油重合油系、界面活性剤系の揺変剤、または、これらを2種以上併用した揺変剤が挙げられる。 Examples of the organic thixotropic agent include amide wax, hydrogenated castor oil type, polyethylene oxide type, vegetable oil polymerized oil type, surfactant type thixotropic agent, or a thixotropic agent using two or more of these in combination. Can be mentioned.
 塗料組成物の被塗物に対するタレ止めを向上させるために、従来からタレ止め剤・沈降防止剤(揺変剤)が用いられ、種々の化合物が知られているが、タレ止め効果に優れている等の点から、アマイドワックスを用いることが好ましい。 In order to improve the anti-sagging of the coating composition to the object to be coated, anti-sagging agents and anti-settling agents (thixotropic agents) have been used in the past, and various compounds are known. It is preferable to use an amide wax from the viewpoint of being present.
 前記アマイドワックスとしては、特に制限されないが、例えば、植物油脂肪酸とアミンより合成されるアマイドワックスが挙げられる。
 このようなアマイドワックスは、従来公知の方法で合成して得てもよく、市販品でもよい。市販品としては、楠本化成(株)製の「ディスパロンA630-20X」、「ディスパロン6650」、伊藤製油(株)製の「ASA T-250F」等が挙げられる。
The amide wax is not particularly limited, and examples thereof include amide wax synthesized from vegetable oil fatty acid and amine.
Such an amide wax may be obtained by synthesis by a conventionally known method or may be a commercially available product. Examples of commercially available products include “Disparon A630-20X” and “Dispalon 6650” manufactured by Enomoto Kasei Co., Ltd., “ASA T-250F” manufactured by Ito Oil Co., Ltd., and the like.
 また、前記無機系揺変剤としては、例えば、微粉化シリカ(通常、走査型電子顕微鏡観察法により測定した場合に、1次粒子の平均粒子径が40nm以下、比表面積はBET法で測定した場合に、50~410m2/gのシリカ)、ベントナイト、シラン化合物等で表面を処理したシリカ、第4級アンモニウム塩等で表面を処理したベントナイト(有機ベントナイト)、極微細表面処理炭酸カルシウム、または、これらの混合物が挙げられる。具体的には、無機系揺変剤としては、乾式法により微粉化したシリカ微粉末[例えば、日本アエロジル(株)製、商品名:アエロジル300]、シリカ微粉末をヘキサメチルジシラザンで変性した微粉末[例えば、日本アエロジル(株)製、商品名:アエロジルRX300]、シリカ微粉末をポリジメチルシロキサンで変性した微粉末[例えば、日本アエロジル(株)製、商品名:アエロジルRY300]、微粉シリカをジメチルジクロロシランで処理した疎水性微粉シリカ(日本アエロジル(株)製、商品名:アエロジルR972)、有機ベントナイト(Elementis Specialties, Inc 社製、商品名:ベントンSD-2)等が挙げられる。 Examples of the inorganic thixotropic agent include finely divided silica (usually, when measured by a scanning electron microscope observation method, the average particle diameter of primary particles is 40 nm or less, and the specific surface area is measured by the BET method. 50-410 m 2 / g silica), bentonite, silica treated with a silane compound, etc., bentonite treated with a quaternary ammonium salt (organic bentonite), ultrafine surface treated calcium carbonate, or , And mixtures thereof. Specifically, as an inorganic thixotropic agent, silica fine powder pulverized by a dry method [for example, product name: Aerosil 300 manufactured by Nippon Aerosil Co., Ltd.], silica fine powder was modified with hexamethyldisilazane. Fine powder [for example, Nippon Aerosil Co., Ltd., trade name: Aerosil RX300], fine powder obtained by modifying silica fine powder with polydimethylsiloxane [for example, Nippon Aerosil Co., Ltd., trade name: Aerosil RY300], fine powder silica Hydrophobic finely divided silica (trade name: Aerosil R972, manufactured by Nippon Aerosil Co., Ltd.), organic bentonite (trade name: Benton SD-2, manufactured by Elementis Specialties, Inc.) and the like.
 これら無機系揺変剤の中では、被塗物への密着性に優れる塗料組成物が得られる等の点から、シラン化合物等で表面を処理したシリカ、および、第4級アンモニウム塩等で表面を処理したベントナイトを併用することが好ましい。 Among these inorganic thixotropic agents, the surface is treated with silica treated with a silane compound or the like, a quaternary ammonium salt, or the like from the viewpoint of obtaining a coating composition having excellent adhesion to an object to be coated. It is preferable to use a bentonite treated with.
 本発明の塗料組成物に前記タレ止め・沈降防止剤を配合する場合には、塗料粘度、塗装作業性、貯蔵安定性に優れる組成物が得られる等の点から、該タレ止め・沈降防止剤の配合量(固形分)は、本発明の塗料組成物の不揮発分100重量部に対し、好ましくは0.1~5重量部、より好ましくは0.3~2重量部である。 In the case where the anti-sagging / anti-settling agent is added to the coating composition of the present invention, the anti-sag / anti-settling agent is obtained from the viewpoint of obtaining a composition having excellent coating viscosity, coating workability, and storage stability. The blending amount (solid content) is preferably 0.1 to 5 parts by weight, more preferably 0.3 to 2 parts by weight with respect to 100 parts by weight of the nonvolatile content of the coating composition of the present invention.
 前記シランカップリング剤を用いることで、得られる塗膜の被塗物への密着性をさらに向上させることができるため、本発明の塗料組成物はシランカップリング剤を含むことが好ましい。
 前記シランカップリング剤は、1種単独で用いてもよく、2種以上を用いてもよい。
By using the silane coupling agent, it is possible to further improve the adhesion of the resulting coating film to an object to be coated. Therefore, the coating composition of the present invention preferably contains a silane coupling agent.
The said silane coupling agent may be used individually by 1 type, and may use 2 or more types.
 シランカップリング剤としては、特に制限されず従来公知のものを用いることができるが、同一分子内に少なくとも2つの官能基を有し、被塗物に対する密着性の向上、塗料組成物の粘度の低下等に寄与できる化合物であることが好ましく、式:X-Si(OR)3[Xは、有機質との反応が可能な官能基(例:アミノ基、ビニル基、エポキシ基、メルカプト基、イソシアネート基、メタクリル基、ウレイド基、サルファー基またはこれらの基を含有する炭化水素基等。なお、この炭化水素基にはエーテル結合等が存在していてもよい。)またはアルキル基を示し、ORは、加水分解性基(例:メトキシ基、エトキシ基)を示す。]で表される化合物であることがより好ましい。 The silane coupling agent is not particularly limited and conventionally known ones can be used. However, the silane coupling agent has at least two functional groups in the same molecule, improves adhesion to the object to be coated, and increases the viscosity of the coating composition. Preferably, the compound can contribute to reduction, etc., and is represented by the formula: X—Si (OR) 3 [X is a functional group capable of reacting with an organic substance (eg, amino group, vinyl group, epoxy group, mercapto group, isocyanate) A methacryl group, a ureido group, a sulfur group or a hydrocarbon group containing these groups, etc. In addition, an ether bond or the like may be present in this hydrocarbon group) or an alkyl group, and OR represents , A hydrolyzable group (eg, methoxy group, ethoxy group). It is more preferable that it is a compound represented by this.
 好ましいシランカップリング剤としては、具体的には、「KBM403」(γ-グリシドキシプロピルトリメトキシシラン、信越化学工業(株)製)、「サイラエースS-510」(JNC(株)製)等が挙げられる。 Specific examples of preferable silane coupling agents include “KBM403” (γ-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.), “Syra Ace S-510” (manufactured by JNC Corporation), and the like. Is mentioned.
 本発明の塗料組成物に前記シランカップリング剤を配合する場合には、該シランカップリング剤の配合量は、本発明の塗料組成物100重量部に対し、好ましくは0.1~10重量部、より好ましくは0.3~5重量部である。このような量でシランカップリング剤を含む組成物を用いると、基材に対する密着性などの塗膜の性能が向上し、本発明の塗料組成物の粘度を下げることができるため、塗装作業性が向上する。 When the silane coupling agent is blended with the coating composition of the present invention, the amount of the silane coupling agent is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the coating composition of the present invention. More preferably, it is 0.3 to 5 parts by weight. When a composition containing a silane coupling agent in such an amount is used, the coating performance such as adhesion to the substrate is improved, and the viscosity of the coating composition of the present invention can be lowered. Will improve.
 <被塗物(C)>
 被塗物(C)としては、凡そ塗装対象となる限り、特に制限なく用いることができるが、好ましくは、前記(II)や(ii)を満たすような被塗物である。ただし、前記被塗物(C)は、塗装したい箇所であればよく、前記(II)や(ii)を満たすように、上塗り塗料の組成を調整するのが通常である。
 本発明の塗料組成物は、前記要件(II)または(ii)を満たすため、被塗物表面の性状等により制限されず、塗膜の膜厚を容易に測定できる。
<Coating object (C)>
As the article to be coated (C), it can be used without particular limitation as long as it is a subject of painting, but is preferably an article that satisfies the above (II) and (ii). However, the article to be coated (C) may be a place where it is desired to paint, and the composition of the top coat is usually adjusted so as to satisfy the above (II) and (ii).
Since the coating composition of the present invention satisfies the requirement (II) or (ii), it is not limited by the properties of the surface of the object to be coated, and the film thickness of the coating film can be easily measured.
 被塗物(C)としては、船舶、海洋構造物、橋梁、建築物、プラント設備、鋼構造物、コンクリート構造物、自動車等の運送機械等の構造物が挙げられる。
 また、被塗物(C)の材質としては、例えば、金属、木材、合成樹脂、天然樹脂、コンクリート等が挙げられる。
Examples of the article to be coated (C) include ships, marine structures, bridges, buildings, plant equipment, steel structures, concrete structures, and transportation machines such as automobiles.
Moreover, as a material of to-be-coated article (C), a metal, wood, a synthetic resin, a natural resin, concrete etc. are mentioned, for example.
 本発明において、被塗物(C)とは、前記構造物そのまま(それらの表面が未処理)であってもよいし、前記構造物の表面に存在しうる塗膜、錆、油脂、水分、塵埃、スライム、塩分などを、部分的、全面的に清掃・除去処理したものであってもよいし、前記構造物の表面に下塗り塗料(防食塗料等)などの塗料から形成された塗膜が存在しているものでもよい。 In the present invention, the article to be coated (C) may be the structure as it is (the surface thereof is untreated), or a coating film, rust, oil or fat, moisture, which may be present on the surface of the structure, Dust, slime, salt, etc. may be partially or completely cleaned and removed, or a coating film formed from a paint such as an undercoat paint (anticorrosion paint, etc.) on the surface of the structure. It may be present.
 前記下塗り塗料としては、公知の塗料を、基材の材質や用途に応じて適宜変更して用いることができる。
 前記下塗り塗料としては、具体的には、ショッププライマーや防食塗料等が挙げられる。
As the undercoat paint, a known paint can be appropriately changed according to the material and use of the substrate.
Specific examples of the undercoat paint include shop primers and anticorrosion paints.
 ≪塗膜の形成方法≫
 本発明に係る塗膜の形成方法は、前記被塗物(C)上に、前記乾燥塗膜(A)を形成する方法であり、
 前記要件(I)および(II)を満たす本発明の塗料組成物を被塗物(C)上に塗布し、乾燥させた後、
 赤外線反射強度測定装置により赤外線反射強度を測定することで、乾燥塗膜が所望の膜厚に達しているか否かを判断することにより行われる、または、
 前記被塗物(C)上に、前記ウェット塗膜(A')を形成する方法であり、
 前記要件(i)および(ii)を満たす本発明の塗料組成物を被塗物(C)上に塗布し、
 赤外線反射強度測定装置により赤外線反射強度を測定することで、ウェット塗膜が所望の膜厚に達しているか否かを判断することにより行われる。
≪Method for forming coating film≫
The method for forming a coating film according to the present invention is a method for forming the dried coating film (A) on the article (C) to be coated,
After coating the coating composition of the present invention satisfying the requirements (I) and (II) on the article (C) to be coated and drying,
It is performed by determining whether or not the dry coating film has reached a desired film thickness by measuring the infrared reflection intensity with an infrared reflection intensity measuring device, or
It is a method of forming the wet paint film (A ′) on the article to be coated (C),
Applying the coating composition of the present invention satisfying the requirements (i) and (ii) on the article to be coated (C),
It is performed by determining whether the wet coating film has reached a desired film thickness by measuring the infrared reflection intensity with an infrared reflection intensity measuring device.
 赤外線反射強度を測定することで、乾燥塗膜またはウェット塗膜が所望の膜厚に達しているか否かを判断する方法としては、特に制限されないが、前記<赤外線反射強度により塗膜の膜厚を測定する方法>の欄で具体的に説明した方法が好ましい。 The method for determining whether the dry coating film or the wet coating film has reached a desired film thickness by measuring the infrared reflection intensity is not particularly limited, but <the film thickness of the coating film by the infrared reflection intensity The method specifically described in the section of “Method for Measuring Measure >> is preferred.
 本発明の塗料組成物を被塗物上に塗布する方法としては、特に制限されず、所望の被塗物、塗装場所に応じて、従来公知の方法を適宜選択すればよい。例えば、船舶等の大型構造物に塗装する場合には、スプレー塗装が採用される。
 また、塗布された塗料組成物を乾燥させる方法も特に制限されず、所望の用途や用いる塗料組成物に応じて適宜選択すればよいが、例えば、乾燥温度は、10~40℃程度であり、乾燥時間は、6時間~1週間程度である。冬季の乾燥条件としては、乾燥温度が-5~10℃程度であり、乾燥時間が16時間~2週間程度であってもよい。
The method for applying the coating composition of the present invention on the article to be coated is not particularly limited, and a conventionally known method may be appropriately selected according to the desired article to be coated and the place of coating. For example, when painting on a large structure such as a ship, spray painting is employed.
Further, the method for drying the applied coating composition is not particularly limited, and may be appropriately selected depending on the desired application and the coating composition to be used. For example, the drying temperature is about 10 to 40 ° C. The drying time is about 6 hours to 1 week. As drying conditions in winter, the drying temperature may be about −5 to 10 ° C., and the drying time may be about 16 hours to 2 weeks.
 以下の試験で用いた、下塗り塗料の組成を表1に、上塗り塗料の組成および試験結果を表2~4に示す。また、表1および表2~4における原材料の詳細を表5に示す。 The composition of the undercoat used in the following tests is shown in Table 1, and the composition of the topcoat and the test results are shown in Tables 2 to 4. Details of the raw materials in Table 1 and Tables 2 to 4 are shown in Table 5.
 なお、下塗り塗料は、表1に示す組成で各成分を混合することで得た塗料である。また、上塗り塗料は、表2~4に示す組成で各材料を混合することで、主剤成分および硬化剤成分を調製し、使用直前に、得られた主剤成分と硬化剤成分とを混合することで得た塗料である。 The undercoat paint is a paint obtained by mixing each component with the composition shown in Table 1. In addition, the top coating composition is prepared by mixing each material with the composition shown in Tables 2 to 4 to prepare the main component and the curing agent component, and mixing the obtained main component and the curing agent component immediately before use. It is the paint obtained in.
 また、表5中の「400μm換算反射率」とは、以下の方法で測定した膜厚400μmにおける上塗り塗膜の赤外線反射率のことをいう。
 150mm×70mm×2.3mmのサンドブラストした試験板(材質:JIS G3101 SS-400)に、表1の下塗り塗料SP-BK(黒)を乾燥膜厚が約10μmになるように塗装し乾燥させて形成した塗膜上に、上塗り塗料をBYKガードナー製マルチアプリケーターを用いて塗装し、60℃で24時間乾燥させた。この際に、アプリケーターの隙間を適宜調整(例:15Milまたは30Mil)し、乾燥膜厚が400μm未満の上塗り塗膜または400μm以上の上塗り塗膜が形成された試験板をそれぞれ作成した。なお、前記上塗り塗料に用いる顔料以外の成分および含有量は、表2の上塗り塗料TC-1に準じた(ただし、塗料固形分中の顔料の含有量は0.6容量%である)。顔料が「Titone R-5N」の場合は、表2の上塗り塗料TC-1を用いた。
 得られた2つの試験板における上塗り塗膜の膜厚それぞれを電磁膜厚計(Kett社 LZ-990)で測定した。
 また、得られた2つの試験板それぞれにおける、得られた積層体の上塗り塗膜側から、紫外可視近赤外分光光度計((株)島津製作所製、Solid Spec-3700型、以下同様)を用いて赤外線反射率を測定した。具体的には、300~2600nmの波長範囲を1nmの分解能で測定し、波長900~1700nmにおける反射率の平均値を赤外線反射率とした。2つの試験板を用いて得られた赤外線反射率と膜厚との関係(一次関数)から、膜厚400μmにおける上塗り塗膜の赤外線反射率を求めた。
Further, “400 μm equivalent reflectance” in Table 5 refers to the infrared reflectance of the top coat film at a film thickness of 400 μm measured by the following method.
A test plate (material: JIS G3101 SS-400) sandblasted to 150 mm x 70 mm x 2.3 mm is coated with the undercoat paint SP-BK (black) in Table 1 so that the dry film thickness is about 10 μm and dried. On the formed coating film, a top coating was applied using a BYK Gardner multi-applicator and dried at 60 ° C. for 24 hours. At this time, the gap between the applicators was adjusted as appropriate (for example, 15 Mil or 30 Mil) to prepare test plates each having a dry coating film thickness of less than 400 μm or a top coating film of 400 μm or more. The components and contents other than the pigment used in the top coat were in accordance with Table 2 top coat TC-1 (however, the content of the pigment in the solid content of the paint is 0.6% by volume). When the pigment was “Titone R-5N”, the top coat TC-1 in Table 2 was used.
The film thicknesses of the top coat film on the two obtained test plates were measured with an electromagnetic film thickness meter (Kett LZ-990).
In addition, from each of the two obtained test plates, an ultraviolet-visible near-infrared spectrophotometer (manufactured by Shimadzu Corporation, Solid Spec-3700, the same applies below) was applied from the top coat film side of the obtained laminate. Infrared reflectivity was measured using this. Specifically, the wavelength range of 300 to 2600 nm was measured with a resolution of 1 nm, and the average value of reflectance at wavelengths of 900 to 1700 nm was taken as infrared reflectance. From the relationship (linear function) between the infrared reflectance and film thickness obtained using the two test plates, the infrared reflectance of the top coat film at a film thickness of 400 μm was determined.
 ≪試験方法≫
 <上塗り塗膜の赤外線透過率の測定方法>
 下記表2~4に記載の上塗り塗料から得られる上塗り塗膜の赤外線透過率は、紫外可視近赤外分光光度計で測定した。
 具体的には、300~2600nmの波長範囲を1nmの分解能で測定し、赤外線の波長範囲である900~1700nmにおける、上塗り塗膜の赤外線透過率を測定した。
 なお、下記赤外線反射率も同様の装置および条件下で測定した。
≪Test method≫
<Measurement method of infrared transmittance of top coat film>
The infrared transmittance of the top coat obtained from the top coat described in Tables 2 to 4 below was measured with an ultraviolet-visible near-infrared spectrophotometer.
Specifically, the wavelength range of 300 to 2600 nm was measured with a resolution of 1 nm, and the infrared transmittance of the top coat film was measured in the infrared wavelength range of 900 to 1700 nm.
The following infrared reflectance was also measured under the same apparatus and conditions.
 赤外線透過率測定に用いる塗膜は、以下のようにして作成した。
 BYKガードナー製マルチアプリケーターを用い、表2~4の上塗り塗料を、リケイ紙上に塗布した。この際に、アプリケーターの隙間を15Milまたは隙間30Milにし、2種類の厚みのウェット塗膜を形成した。得られたウェット塗膜を60℃で24時間乾燥させた後、リケイ紙から剥離することで塗膜(上塗り塗膜)を作成した。
The coating film used for infrared transmittance measurement was prepared as follows.
Using a BYK Gardner multi-applicator, the top coating of Tables 2 to 4 was applied onto the silica paper. At this time, the gap of the applicator was set to 15 Mil or the gap of 30 Mil to form two types of wet coating films. The obtained wet coating film was dried at 60 ° C. for 24 hours, and then peeled off from the recycled paper to form a coating film (top coating film).
 上塗り塗膜の膜厚はマイクロメーター((株)ミツトヨ製、MDC-25MJ)で測定した。得られた上塗り塗膜の膜厚は、400μm未満および400μm以上であった。
 なお、Lambert-Beerの法則からLog透過率と膜厚が直線関係になることを用いて、得られた2種類の塗膜の膜厚とLog透過率との一次式から、膜厚400μmにおける塗膜の赤外線透過率を前記赤外線透過率とした。
The film thickness of the top coat film was measured with a micrometer (MDC-25MJ, manufactured by Mitutoyo Corporation). The film thickness of the obtained top coat film was less than 400 μm and 400 μm or more.
It should be noted that, based on the Lambert-Beer law, the log transmittance and the film thickness are linearly related, and from the linear expression of the film thickness and log transmittance of the two types of coating films obtained, the coating at a film thickness of 400 μm is obtained. The infrared transmittance of the film was defined as the infrared transmittance.
 <被塗物の赤外線反射率の測定方法>
 鋼板(幅70mm×長さ150mm×厚み1.6mm、サンドブラスト処理(処理グレードSA2.5(ISO8501-1:2007))、以下同様)上に、表1の下塗り塗料を、約10μmの乾燥膜厚となるようにスプレー塗装し、室温で1週間乾燥させた。乾燥した塗膜(下塗り塗膜)付鋼板の塗膜側から測定した赤外線反射率Rc(%)を紫外可視近赤外分光光度計で測定した。結果を表1および表2~4に示す。また、下塗り塗膜の乾燥膜厚は、電磁膜厚計(Kett社製、LZ-990)で測定した。
<Measurement method of infrared reflectance of coated object>
On the steel sheet (width 70 mm × length 150 mm × thickness 1.6 mm, sand blasting treatment (treatment grade SA2.5 (ISO8501-1: 2007)), the same applies hereinafter), the undercoat paint of Table 1 is dried to a thickness of about 10 μm. It was spray-painted so that it became like, and it was made to dry at room temperature for 1 week. The infrared reflectance Rc (%) measured from the coating film side of the steel sheet with the dried coating film (undercoat coating film) was measured with an ultraviolet-visible-near infrared spectrophotometer. The results are shown in Table 1 and Tables 2-4. The dry film thickness of the undercoat film was measured with an electromagnetic film thickness meter (KET, LZ-990).
 <被塗物および塗膜を含んでなる積層体の、塗膜が積層された側から測定した赤外線反射率の測定方法>
 Rc(%)の測定を終えた下塗り塗膜付鋼板の下塗り塗膜上に、BYKガードナー製マルチアプリケーターを用い、表2~4の上塗り塗料を塗布した。この際に、アプリケーターの隙間を10Mil、15Mil、30Milまたは50Milにし、4種類の厚みのウェット塗膜を形成した。得られたウェット塗膜それぞれを60℃で24時間乾燥させ、膜厚が50~1000μmの範囲にある、下塗り塗膜と上塗り塗膜とを含む積層体を4種類得た。この積層体の膜厚を電磁膜厚計(LZ-990)で測定し、その値から下塗り塗膜の膜厚を引いて、上塗り塗膜の膜厚を算出した。この4種類の積層体について、上塗り塗膜が積層された側から、紫外可視近赤外分光光度計で赤外線反射率を測定した。
<Measurement Method of Infrared Reflectance Measured from the Side of the Laminate Containing the Coated Object and the Coated Film, from which the Coated Film is Laminated>
The top coat of Tables 2 to 4 was applied onto the undercoat film of the steel sheet with the undercoat film for which Rc (%) had been measured using a multi-applicator manufactured by BYK Gardner. At this time, the gap between the applicators was set to 10 Mil, 15 Mil, 30 Mil, or 50 Mil to form four types of wet coating films. Each of the obtained wet coating films was dried at 60 ° C. for 24 hours to obtain four types of laminates including a base coating film and a top coating film having a film thickness in the range of 50 to 1000 μm. The film thickness of this laminate was measured with an electromagnetic film thickness meter (LZ-990), and the film thickness of the top coat film was calculated by subtracting the film thickness of the undercoat film from that value. About these 4 types of laminated bodies, the infrared reflectance was measured with the ultraviolet visible near-infrared spectrophotometer from the side by which the top coat film was laminated | stacked.
 4種類の積層体の中で、上塗り塗膜の乾燥膜厚が400μm以上であり、かつ、400μmに最も近い塗膜を含む積層体と、上塗り塗膜の乾燥膜厚が400μm未満であり、かつ、400μmに最も近い塗膜を含む積層体について、反射率と上塗り塗膜の膜厚との関係を一次関数として求め、この関数の、膜厚400μmにおける赤外線反射率を前記赤外線反射率Ra(%)とした。表2~4における赤外線反射率Ra(%)の値は、この膜厚400μmにおける赤外線反射率Ra(%)の値である。 Among the four types of laminates, the dry film thickness of the top coat film is 400 μm or more, and the laminate including the coat film closest to 400 μm, and the dry film thickness of the top coat film is less than 400 μm, and The relationship between the reflectance and the film thickness of the top coat film is obtained as a linear function for the laminate including the coating film closest to 400 μm, and the infrared reflectance at this film thickness of 400 μm is determined as the infrared reflectance Ra (% ). The values of infrared reflectance Ra (%) in Tables 2 to 4 are the values of infrared reflectance Ra (%) at a film thickness of 400 μm.
 そして、被塗物の赤外線反射率と、被塗物および上塗り塗膜を含んでなる積層体の、該上塗り塗膜が積層された側から測定した赤外線反射率との差の絶対値を、前記RaとRcとから算出した。 And, the absolute value of the difference between the infrared reflectance of the object to be coated and the infrared reflectance measured from the side of the laminate comprising the object to be coated and the topcoat film, on which the topcoat film is laminated, Calculated from Ra and Rc.
 <膜厚と赤外線反射率の差(RaとRcの差の絶対値)との相関性の評価基準>
 以下の基準で、膜厚と赤外線反射率の差(RaとRcの差の絶対値)との相関性を評価した(分光光度計による評価)。結果を表2~4に示す。
 ○:膜厚50~1000μmの範囲において、膜厚と赤外線の反射率の差とが正の相関関係を示す
 ×:膜厚と赤外線反射率の差との間に相関関係が見られない
<Evaluation criteria for correlation between difference in film thickness and infrared reflectance (absolute value of difference between Ra and Rc)>
The correlation between the film thickness and the difference in infrared reflectance (the absolute value of the difference between Ra and Rc) was evaluated based on the following criteria (evaluation using a spectrophotometer). The results are shown in Tables 2-4.
○: A positive correlation exists between the film thickness and the infrared reflectance in the film thickness range of 50 to 1000 μm. ×: No correlation is found between the film thickness and the infrared reflectance difference.
 膜厚と赤外線の反射率の差とが正の相関関係を示すことで、この関係を示す範囲の膜厚において、膜厚測定が可能であると考えられる。 When the film thickness and the difference in infrared reflectance show a positive correlation, it is considered that the film thickness can be measured within the range of film thickness indicating this relationship.
 <赤外線反射強度測定装置1を用いた赤外線反射強度の測定>
 赤外線を照射可能な光源としてパナソニック(株)製のレフライト(写真撮影用、500W型散光タイプ)、赤外線を対象物に照射したときに反射される赤外線領域の反射光強度を検出するセンサーとしてFLIR社製の赤外線カメラSC2500-NIR、および、該センサーが検知した赤外線反射強度を解析する装置として赤外線カメラに付属の画像解析ソフトウェアAltair(FLIR Systems, Inc.製)を用いて、赤外線反射強度測定装置1(以下「装置1」ともいう。)を作成した。
<Measurement of infrared reflection intensity using infrared reflection intensity measuring apparatus 1>
Reflight manufactured by Panasonic as a light source that can irradiate infrared rays (for photography, 500W diffused type), FLIR as a sensor that detects the intensity of reflected light in the infrared region that is reflected when the object is irradiated with infrared rays An infrared reflection intensity measuring apparatus 1 using an infrared camera SC2500-NIR manufactured by the company and image analysis software Altair (manufactured by FLIR Systems, Inc.) attached to the infrared camera as an apparatus for analyzing the infrared reflection intensity detected by the sensor. (Hereinafter also referred to as “device 1”).
 表2~4の下塗り塗料を、前記<被塗物の赤外線反射率の測定方法>と同様に鋼板上に塗布し、乾燥させることで、下塗り塗膜を形成した。この下塗り塗膜付鋼板の下塗り塗膜上に、BYKガードナー製マルチアプリケーターを用い、表2~4の上塗り塗料を塗布し、室温で1週間乾燥させることで、上塗り塗膜および下塗り塗膜付鋼板を得た。この際に、アプリケーターの隙間を変化させることで、上塗り塗膜の膜厚が異なる、上塗りおよび下塗り塗膜付鋼板を複数枚得た(以下「試験板」ともいう。)。得られた試験板それぞれの上塗り塗膜の膜厚を、電磁膜厚計(LZ-990)で測定し、次いで、該試験板の上塗り塗膜側から測定した赤外線反射強度を、前記装置1を用いて測定した。
 電磁膜厚計で測定した上塗り塗膜の膜厚をグラフの横軸に、前記装置1が検出した赤外線反射強度であるエネルギーレベル(デジタルレベル)をグラフの縦軸にプロットし、膜厚50~1000μmの塗膜の膜厚の測定が可能か否かを下記評価基準に沿って評価した。
Undercoat paints of Tables 2 to 4 were applied onto a steel plate in the same manner as in the above <Method for measuring infrared reflectance of article to be coated> and dried to form an undercoat paint film. By applying a top coat of Tables 2 to 4 on the undercoat film of this steel sheet with a base coat film and using a multi-applicator manufactured by BYK Gardner and drying at room temperature for 1 week, the steel sheet with the top coat film and the base coat film is coated. Got. At this time, by changing the gap between the applicators, a plurality of steel sheets with topcoat and undercoat films different in thickness of the topcoat film were obtained (hereinafter also referred to as “test plates”). The film thickness of the top coating film of each of the obtained test plates was measured with an electromagnetic film thickness meter (LZ-990), and then the infrared reflection intensity measured from the top coating film side of the test plate was measured using the apparatus 1 And measured.
The film thickness of the top coating film measured with an electromagnetic film thickness meter is plotted on the horizontal axis of the graph, and the energy level (digital level), which is the infrared reflection intensity detected by the apparatus 1, is plotted on the vertical axis of the graph. Whether the film thickness of a 1000 μm coating film can be measured was evaluated according to the following evaluation criteria.
 <赤外線反射強度測定装置2を用いた赤外線反射強度の測定>
 赤外線を照射可能な光源として京セミ(株)製のLED・KEDE1452H(2.8mW、発光波長1200~1600nm)、赤外線を対象物に照射したときに反射される赤外線領域の反射光強度を検出するセンサーとして京セミ(株)製の長波長InGaAsフォトダイオード・KPDE086S(検出波長900~1700nm)、および、該センサーが検知した赤外線反射強度を解析する装置としてOWON製のオシロスコープ・PDS5022Tを用いて、赤外線反射強度測定装置2(以下「装置2」ともいう。)を作成した。
<Measurement of infrared reflection intensity using infrared reflection intensity measuring apparatus 2>
LED / KEDE1452H (2.8 mW, emission wavelength 1200 to 1600 nm) manufactured by Kyosemi Co., Ltd. as a light source capable of irradiating infrared rays, and detecting the reflected light intensity in the infrared region reflected when irradiating the object with infrared rays. A long wavelength InGaAs photodiode KPDE086S (detection wavelength 900-1700 nm) manufactured by Kyosemi Co., Ltd. is used as a sensor, and an oscilloscope PDS5022T manufactured by OWON is used as an apparatus for analyzing the infrared reflection intensity detected by the sensor. A reflection intensity measuring device 2 (hereinafter also referred to as “device 2”) was prepared.
 試験板の赤外線反射強度を、前記装置1の代わりに、前記装置2で測定した以外は、前記装置1を用いた赤外線反射強度の測定と同様にして、試験板上の上塗り塗膜の厚みと該試験板の上塗り塗膜側から測定した赤外線反射強度とを測定した。
 電磁膜厚計で測定した上塗り塗膜の膜厚をグラフの横軸に、前記装置2が検出した赤外線反射強度であるフォトダイオード電圧をグラフの縦軸にプロットし、膜厚50~1000μmの塗膜の膜厚の測定が可能か否かを下記評価基準に沿って評価した。
The thickness of the top coat film on the test plate was measured in the same manner as the measurement of the infrared reflection intensity using the device 1 except that the infrared reflection strength of the test plate was measured by the device 2 instead of the device 1. The infrared reflection intensity measured from the top coating film side of the test plate was measured.
The film thickness of the top coating film measured with an electromagnetic film thickness meter is plotted on the horizontal axis of the graph, and the photodiode voltage, which is the infrared reflection intensity detected by the device 2, is plotted on the vertical axis of the graph. Whether the film thickness can be measured was evaluated according to the following evaluation criteria.
 <膜厚と装置1または2で得られる赤外線反射強度との相関性の評価基準>
 以下の基準で、膜厚と装置1または2で得られる赤外線反射強度との相関性を評価した。結果を表2~4に示す。
 ○:膜厚50~1000μmの範囲において、膜厚と装置1または2で得られる赤外線反射強度とが正の相関関係を示す
 ×:膜厚と装置1または2で得られる赤外線反射強度との間に相関関係が見られない
<Evaluation criteria for correlation between film thickness and infrared reflection intensity obtained by apparatus 1 or 2>
The correlation between the film thickness and the infrared reflection intensity obtained by the apparatus 1 or 2 was evaluated based on the following criteria. The results are shown in Tables 2-4.
○: In the film thickness range of 50 to 1000 μm, the film thickness and the infrared reflection intensity obtained by the apparatus 1 or 2 show a positive correlation. ×: Between the film thickness and the infrared reflection intensity obtained by the apparatus 1 or 2 Is not correlated
 膜厚と装置1または2で得られる赤外線反射強度とが正の相関関係を示すことで、この関係を示す範囲の膜厚において、膜厚測定が可能であると考えられる。 When the film thickness and the infrared reflection intensity obtained by the apparatus 1 or 2 show a positive correlation, it is considered that the film thickness can be measured in the film thickness in the range showing this relationship.
 [実施例1]
 上塗り塗料としてF-5を用い、下塗り塗料としてSP-BKを用いた。これらの塗料を用い、前記<被塗物の赤外線反射率の測定方法>、<被塗物および塗膜を含んでなる積層体の、塗膜が積層された側から測定した赤外線反射率の測定方法>に記載の方法で得られた上塗り塗膜の膜厚と赤外線反射率の差(RaとRcの差の絶対値)との関係をプロットしたグラフを図1に示す。
 また、得られた上塗り塗膜の膜厚と装置1で測定した赤外線反射強度であるデジタルレベルとをプロットしたグラフを図2に示し、得られた上塗り塗膜の膜厚と装置2で測定した赤外線反射強度であるフォトダイオード電圧(単位:ボルト)とをプロットしたグラフを図3に示す。
[Example 1]
F-5 was used as the top coat and SP-BK was used as the base coat. Using these paints, <Measurement method of infrared reflectance of article to be coated>, <Measurement of infrared reflectance measured from the side of the laminate comprising the article to be coated and the coating film on which the coating film is laminated) A graph plotting the relationship between the film thickness of the top coat obtained by the method described in <Method> and the difference in infrared reflectance (absolute value of the difference between Ra and Rc) is shown in FIG.
Moreover, the graph which plotted the film thickness of the obtained top coat film and the digital level which is the infrared reflection intensity measured with the apparatus 1 is shown in FIG. FIG. 3 shows a graph in which the photodiode voltage (unit: volt), which is the infrared reflection intensity, is plotted.
 図1、図2および図3はほぼ同様の形状の曲線を示し、少なくとも膜厚約50~800μmの範囲において、該曲線は、正の相関関係を示した。
 下塗り塗料SP-BKから形成された下塗り塗膜上に塗装した上塗り塗料F-5から形成された上塗り塗膜は、赤外線を用いた非接触式膜厚計測装置である前記装置1や2により、少なくとも膜厚約50~800μmの範囲において、乾燥膜厚を測定することが可能である。
1, FIG. 2 and FIG. 3 show curves having almost the same shape, and the curves showed a positive correlation at least in the range of about 50 to 800 μm.
The topcoat film formed from the topcoat paint F-5 applied on the undercoat film formed from the undercoat paint SP-BK is obtained by the devices 1 and 2 which are non-contact type film thickness measuring devices using infrared rays. The dry film thickness can be measured at least in the range of about 50 to 800 μm.
 つまり、例えば、実際の塗装に用いる塗料を用いて所定の試験板を作成し、図1~3のようなグラフを作成しておくことにより、所望の乾燥膜厚の塗膜を形成することが可能である。 In other words, for example, by creating a predetermined test plate using a paint used for actual painting and creating graphs as shown in FIGS. 1 to 3, a coating film having a desired dry film thickness can be formed. Is possible.
 実際に、下塗り塗料SP-BKを、前記と同様に鋼板上に塗布し、乾燥させることで、下塗り塗膜を形成した。この下塗り塗膜付鋼板の下塗り塗膜上に、上塗り塗料F-5をスプレー塗装し、塗膜を乾燥させた。この操作を、乾燥させることで得られる塗膜の赤外線反射強度が図2において約400μmに相当する値になるまで行った。この時の、下塗り塗膜(膜厚約10μm)および上塗り塗膜からなる積層体の乾燥膜厚を電磁膜厚計(LZ-990)を用いて測定したところ、約410μmであった。図3において約400μmに相当する値になるまで塗装を行った場合も同様であった。つまり、赤外線反射強度に基づく乾燥膜厚と実際に測定した乾燥膜厚とは、ほぼ同程度の厚みであった。
 なお、この際の、前記と同様の方法で測定した膜厚400μmの乾燥塗膜の赤外線透過率は39.0%であり、Ra-Rcは22.3%であった。
Actually, the undercoat paint SP-BK was applied onto the steel plate in the same manner as described above and dried to form an undercoat paint film. The top coat F-5 was spray-coated on the undercoat film of the steel sheet with the undercoat film, and the paint film was dried. This operation was performed until the infrared reflection intensity of the coating film obtained by drying reached a value corresponding to about 400 μm in FIG. At this time, the dry film thickness of the laminate comprising the undercoat film (film thickness of about 10 μm) and the topcoat film was measured using an electromagnetic film thickness meter (LZ-990), and was about 410 μm. The same was true when the coating was performed until the value corresponding to about 400 μm in FIG. That is, the dry film thickness based on the infrared reflection intensity and the actually measured dry film thickness were approximately the same thickness.
At this time, the infrared transmittance of the dried coating film having a thickness of 400 μm, measured by the same method as described above, was 39.0%, and Ra-Rc was 22.3%.
 同様にして、赤外線反射強度が図2または図3において約50μmまたは約800μmに相当する値になるまで塗装を行い、得られた乾燥膜厚の実際の膜厚を電磁膜厚計(LZ-990)を用いて測定したところ、赤外線反射強度に基づく乾燥膜厚と実際に測定した乾燥膜厚とは、ほぼ同程度の厚みであった。なお、この際の、前記と同様の方法で測定した膜厚50μmの乾燥塗膜の赤外線透過率は79.2%であり、Ra-Rcは3.6%であり、膜厚800μmの乾燥塗膜の赤外線透過率は17.3%であり、Ra-Rcは29.9%であった。 Similarly, coating is performed until the infrared reflection intensity reaches a value corresponding to about 50 μm or about 800 μm in FIG. 2 or FIG. 3, and the actual thickness of the obtained dry film thickness is measured with an electromagnetic film thickness meter (LZ-990). ), The dry film thickness based on the infrared reflection intensity and the actually measured dry film thickness were substantially the same. At this time, the infrared transmittance of the dry coating film having a film thickness of 50 μm measured by the same method as described above was 79.2%, Ra-Rc was 3.6%, and the dry coating film having a film thickness of 800 μm was used. The infrared transmittance of the film was 17.3% and Ra-Rc was 29.9%.
 以上のことから、下塗り塗料SP-BKから形成された下塗り塗膜上に塗装した上塗り塗料F-5から形成された上塗り塗膜は、赤外線を用いた非接触式膜厚計測装置である前記装置1や2により、少なくとも膜厚約50~800μmの範囲において乾燥膜厚を測定(判断)することが可能であることが分かった。 In view of the above, the apparatus, which is a non-contact type film thickness measuring device using infrared rays, is used for the top coat film formed from the top coat F-5 applied on the base coat formed from the base coat SP-BK. 1 and 2, it was found that the dry film thickness can be measured (determined) at least in the range of about 50 to 800 μm.
 なお、装置1および2を用いて赤外線反射強度を測定する際に、照明の点灯と消灯を繰り返し、明条件下(照度:150ルクス)および暗条件下(照度:20ルクス)での、デジタルレベルおよびフォトダイオード電圧の変化の確認を行ったが、照明の点灯と消灯による測定値の変化はほとんど見られなかった。
 つまり、明条件下および暗条件下のいずれの条件下においても、本発明によれば膜厚を測定することができ、所望の乾燥膜厚の塗膜を形成することが可能である。
When measuring the intensity of infrared reflection using the devices 1 and 2, the lighting is repeatedly turned on and off, and the digital level is obtained under bright conditions (illuminance: 150 lux) and dark conditions (illuminance: 20 lux). In addition, although the change in the photodiode voltage was confirmed, there was almost no change in the measured value due to the lighting on and off.
In other words, according to the present invention, the film thickness can be measured under both the bright and dark conditions, and a coating film having a desired dry film thickness can be formed.
 下塗り塗料SP-BKを、前記と同様に鋼板上に塗布し、乾燥させることで、下塗り塗膜を形成した。この下塗り塗膜付鋼板の下塗り塗膜上に、上塗り塗料F-5を塗装することで、ウェット上塗り塗膜付鋼板を得た。この際に、塗装条件を変化させることで、ウェット上塗り塗膜の膜厚が異なる、ウェット上塗り塗膜付鋼板を複数枚得た。得られた鋼板それぞれのウェット上塗り塗膜の膜厚を、ウェットゲージ(旭サナック(株)製)で測定し、次いで、装置1または装置2を用いて該鋼板のウェット上塗り塗膜側から赤外線反射強度を測定した。
 ウェットゲージで測定したウェット上塗り塗膜の膜厚と、装置1で測定した赤外線反射強度であるデジタルレベルとをプロットしたグラフを図4に示す。
Undercoat paint SP-BK was applied onto a steel plate in the same manner as described above, and dried to form an undercoat paint film. A steel plate with a wet top coat film was obtained by coating the top coat F-5 on the base coat film with this base coat film. At this time, by changing the coating conditions, a plurality of steel sheets with wet top coat films having different wet top coat film thicknesses were obtained. The film thickness of each wet top coat film of the obtained steel sheet was measured with a wet gauge (manufactured by Asahi Sunac Co., Ltd.), and then infrared reflection was performed from the wet top coat film side of the steel sheet using apparatus 1 or apparatus 2. The strength was measured.
FIG. 4 shows a graph in which the film thickness of the wet top coat film measured with the wet gauge and the digital level which is the infrared reflection intensity measured with the apparatus 1 are plotted.
 図4から、少なくとも膜厚約50~1000μmの範囲において、該曲線は、正の相関関係を示した。
 下塗り塗料SP-BKから形成された下塗り塗膜上に塗装した上塗り塗料F-5から形成されたウェット上塗り塗膜は、赤外線を用いた非接触式膜厚計測装置である前記装置1や2により、少なくとも膜厚約50~1000μmの範囲において、ウェット膜厚を測定することが可能である。
From FIG. 4, the curve showed a positive correlation at least in the thickness range of about 50 to 1000 μm.
The wet topcoat film formed from the topcoat paint F-5 applied on the undercoat film formed from the undercoat paint SP-BK is applied to the apparatus 1 or 2 which is a non-contact type film thickness measuring device using infrared rays. It is possible to measure the wet film thickness at least in the range of about 50 to 1000 μm.
 つまり、例えば、実際の塗装に用いる塗料を用いて所定の塗装板を作成し、図4のようなグラフを作成しておくことにより、実際の塗装の際に測定される赤外線反射強度が該グラフ上の所望のウェット膜厚に相当する所定の値になった際に塗装を終了することで、所望のウェット膜厚の塗膜を形成することが可能である。さらに、塗料組成物中に含まれる固形分量に基づけば、ウェット塗膜の状態であっても、該ウェット塗膜から得られる乾燥塗膜の膜厚が分かる。念のため、この塗料組成物中に含まれる固形分量に基づく結果と、電磁膜厚計で測定した、ウェット塗膜から得られた乾燥塗膜の膜厚との関係を調べたが、これらの値はほぼ一致した。つまり、下塗り塗料SP-BKから形成された下塗り塗膜上に上塗り塗料F-5の塗膜を形成する際には、塗装中の塗膜をいったん乾燥させ、その膜厚を測定することで、所定の膜厚の塗膜が得られているか否かを確認することなく、塗装中のウェット塗膜の状態で赤外線反射強度を測定することで、所定の乾燥塗膜の膜厚が得られているか否かを判断することができる。 That is, for example, by preparing a predetermined coated plate using a paint used for actual painting and creating a graph as shown in FIG. 4, the infrared reflection intensity measured at the time of actual painting is the graph. A coating film having a desired wet film thickness can be formed by terminating the coating when a predetermined value corresponding to the above desired wet film thickness is reached. Furthermore, based on the solid content contained in the coating composition, the film thickness of the dry coating film obtained from the wet coating film can be found even in the wet coating film state. As a precaution, the relationship between the results based on the amount of solids contained in the coating composition and the film thickness of the dried coating film obtained from the wet coating film as measured with an electromagnetic film thickness meter was investigated. The values were almost consistent. In other words, when forming the coating film of the top coating F-5 on the undercoating film formed from the undercoating paint SP-BK, by drying the coating film during coating and measuring the film thickness, Without confirming whether a coating film with a predetermined film thickness is obtained, the film thickness of a predetermined dry coating film can be obtained by measuring the infrared reflection intensity in the state of the wet coating film during coating. It can be determined whether or not.
 実際に、下塗り塗料SP-BKを、前記と同様に鋼板上に塗布し、乾燥させることで、下塗り塗膜を形成した。この下塗り塗膜付鋼板の下塗り塗膜上に、装置1を用いて赤外線反射強度を測定しながら上塗り塗料F-5をスプレー塗装し、該赤外線反射強度が図4において約460μmに相当する値となった時に塗装を終了した。ウェットゲージで、塗装を終了した部分のウェット膜厚を測定したところ、450μmの山まで塗料が付着した。つまり、赤外線反射強度に基づくウェット膜厚と実際に測定したウェット膜厚とは、ほぼ同程度の厚みであった。 Actually, the undercoat paint SP-BK was applied onto the steel plate in the same manner as described above and dried to form an undercoat paint film. The undercoat film F-5 is spray-coated on the undercoat film of the steel sheet with the undercoat film using the apparatus 1 while measuring the infrared reflection intensity, and the infrared reflection intensity has a value corresponding to about 460 μm in FIG. When finished, I finished painting. When the wet film thickness of the part where the coating was completed was measured with a wet gauge, the paint adhered to a peak of 450 μm. That is, the wet film thickness based on the infrared reflection intensity and the actually measured wet film thickness were substantially the same.
 スプレー塗装から7日後、十分乾燥した上塗り塗膜付鋼板の上塗り塗膜側から装置1を用いて赤外線反射強度を測定したところ、図2に基づけば、該赤外線反射強度は、膜厚320μmに相当することが分かった。また、下塗り塗膜(膜厚約10μm)および上塗り塗膜からなる積層体の膜厚を電磁膜厚計(LZ-990)を用いて測定したところ、330μmであった。
 つまり、赤外線反射強度に基づく乾燥膜厚と実際に測定した乾燥膜厚とは、ほぼ同程度の厚みであった。また、上塗り塗料F-5は、固形分量が約70vol%であるため、該塗料から得られるウェット膜厚460μmの塗膜は、乾燥膜厚が約320μmになると考えられる。従って、赤外線反射強度に基づくウェット膜厚から塗料の固形分量に基づいて算出される乾燥膜厚と、実際に測定した乾燥膜厚とは、ほぼ同程度の厚みであるため、塗装中のウェット塗膜の赤外線反射強度を測定しながら塗装することで、所定の膜厚の乾燥塗膜を得ることができる。
 なお、上塗り塗料F-5は、前記のように、少なくともウェット膜厚50~1000μmにおいて前記要件(i)および(ii)を満たす。
 上塗り塗料F-5は、該塗料に含まれる溶剤が赤外線反射強度に与える影響がほとんどない塗料であるともいえることが分かった。
Seven days after spray coating, the infrared reflection intensity was measured using the apparatus 1 from the top coat film side of the sufficiently coated steel sheet with the top coat film. Based on FIG. 2, the infrared reflection intensity corresponds to a film thickness of 320 μm. I found out that Further, the film thickness of the laminate composed of the undercoat film (film thickness: about 10 μm) and the topcoat film was measured using an electromagnetic film thickness meter (LZ-990) to be 330 μm.
That is, the dry film thickness based on the infrared reflection intensity and the actually measured dry film thickness were approximately the same thickness. Further, since the top coating material F-5 has a solid content of about 70 vol%, the coating film having a wet film thickness of 460 μm obtained from the coating material is considered to have a dry film thickness of about 320 μm. Therefore, since the dry film thickness calculated from the wet film thickness based on the infrared reflection intensity based on the solid content of the paint and the actually measured dry film thickness are approximately the same, By applying the film while measuring the infrared reflection intensity of the film, a dry coating film having a predetermined film thickness can be obtained.
As described above, the top coat F-5 satisfies the requirements (i) and (ii) at least in the wet film thickness of 50 to 1000 μm.
It was found that the top coating F-5 was a coating having almost no influence on the infrared reflection intensity by the solvent contained in the coating.
 さらに、実施例1では、SP-BKの代わりに、下塗り塗料として、SP-GY、SP-LG、SP-BL、SP-BRまたはSP-GNを用いて、前記と同様の評価を行った。結果を表2に示す。
 これらの下塗り塗料を用いた場合も、前記SP-BKを用いた場合と同様の結果となり、上塗り塗料F-5から形成された上塗り塗膜は、赤外線を用いた非接触式膜厚計測装置である前記装置1や2により、少なくとも膜厚約50~1000μmの範囲において、ウェット膜厚を測定することが可能であり、少なくとも膜厚約50~800μmの範囲において、乾燥膜厚を測定することが可能であった。
Further, in Example 1, the same evaluation as described above was performed using SP-GY, SP-LG, SP-BL, SP-BR, or SP-GN as an undercoat instead of SP-BK. The results are shown in Table 2.
When these undercoat paints are used, the same results as with the SP-BK are obtained, and the top coat film formed from the top coat F-5 is obtained by a non-contact type film thickness measuring device using infrared rays. The apparatus 1 or 2 can measure the wet film thickness in the range of at least about 50 to 1000 μm and can measure the dry film thickness in the range of at least about 50 to 800 μm. It was possible.
 [実施例2]
 下塗り塗料としてSP-BKを用い、上塗り塗料としてIR-Uを用いた以外は実施例1と同様にして試験を行った。
 得られた上塗り塗膜の膜厚と赤外線反射率の差との関係をプロットしたグラフ図5と、得られた上塗り塗膜の膜厚と装置2で測定した赤外線反射強度であるフォトダイオード電圧とをプロットしたグラフ図6とは、実施例1と同様に、ほぼ同様の形状であり、正の相関関係を示した。
 また、実施例1において、装置1の代わりに装置2を用いた以外は、実施例1と同様にして測定した、ウェット上塗り塗膜の膜厚と、装置2で測定した赤外線反射強度であるフォトダイオード電圧とをプロットしたグラフを図7に示す。
[Example 2]
The test was conducted in the same manner as in Example 1 except that SP-BK was used as the undercoat and IR-U was used as the topcoat.
FIG. 5 is a graph plotting the relationship between the film thickness of the obtained top coat film and the difference in infrared reflectance, and the photodiode voltage, which is the film thickness of the obtained top coat film and the infrared reflection intensity measured by the apparatus 2. 6 was plotted in the same manner as in Example 1, and showed a positive correlation.
Further, in Example 1, except that the apparatus 2 was used in place of the apparatus 1, the film thickness of the wet top coat film and the infrared reflection intensity measured by the apparatus 2 were measured in the same manner as in Example 1. A graph plotting the diode voltage is shown in FIG.
 実施例1の結果と同様に、上塗り塗料IR-Uから形成された上塗り塗膜は、赤外線を用いた非接触式膜厚計測装置である前記装置1や2により、少なくとも膜厚約50~1000μmの範囲において、ウェット膜厚を測定することが可能であり、少なくとも膜厚約50~800μmの範囲において、乾燥膜厚を測定することが可能であった。
 なお、この際の、前記と同様の方法で測定した膜厚50μmの乾燥塗膜の赤外線透過率は71.6%であり、Ra-Rcは4.4%であり、膜厚800μmの乾燥塗膜の赤外線透過率は10.5%であり、Ra-Rcは29.3%であった。
Similar to the result of Example 1, the top coat film formed from the top coat IR-U is at least about 50 to 1000 μm in thickness by the devices 1 and 2 which are non-contact type film thickness measuring devices using infrared rays. In this range, the wet film thickness can be measured, and in the range of at least about 50 to 800 μm, the dry film thickness can be measured.
At this time, the infrared transmittance of the dried coating film having a film thickness of 50 μm, measured by the same method as described above, is 71.6%, Ra-Rc is 4.4%, and the dried coating film having a film thickness of 800 μm. The infrared transmittance of the film was 10.5%, and Ra-Rc was 29.3%.
 実際に、下塗り塗料SP-BKを、前記と同様に鋼板上に塗布し、乾燥させることで、下塗り塗膜を形成した。この下塗り塗膜付鋼板の下塗り塗膜上に、装置2を用いて赤外線反射強度を測定しながら上塗り塗料IR-Uをスプレー塗装し、該赤外線反射強度が図7において約440μmに相当する値となった時に塗装を終了した。ウェットゲージで、塗装を終了した部分のウェット膜厚を測定したところ、400μmの山まで塗料が付着した。
 つまり、赤外線反射強度に基づくウェット膜厚と実際に測定したウェット膜厚とは、ほぼ同程度の厚みであった。
Actually, the undercoat paint SP-BK was applied onto the steel plate in the same manner as described above and dried to form an undercoat paint film. The top coat IR-U is spray-coated on the undercoat film of the steel sheet with the undercoat film while measuring the infrared reflection intensity using the apparatus 2, and the infrared reflection intensity is a value corresponding to about 440 μm in FIG. When finished, I finished painting. When the wet film thickness of the part where the coating was completed was measured with a wet gauge, the paint adhered to the 400 μm peak.
That is, the wet film thickness based on the infrared reflection intensity and the actually measured wet film thickness were substantially the same.
 スプレー塗装から7日後、十分乾燥した上塗り塗膜付鋼板の上塗り塗膜側から装置2を用いて赤外線反射強度を測定したところ、図6に基づけば、該赤外線反射強度は、膜厚約320μmに相当することが分かった。また、下塗り塗膜(膜厚約10μm)および上塗り塗膜からなる積層体の膜厚を電磁膜厚計(LZ-990)を用いて測定したところ、330μmであった。つまり、赤外線反射強度に基づく乾燥膜厚と実際に測定した乾燥膜厚とは、ほぼ同程度の厚みであった。
 また、上塗り塗料IR-Uは、固形分量が約73vol%であるため、該塗料から得られるウェット膜厚440μmの塗膜は、乾燥膜厚が約320μmになると考えられる。従って、赤外線反射強度に基づくウェット膜厚から塗料の固形分量に基づいて算出される乾燥膜厚と、実際に測定した乾燥膜厚とは、ほぼ同程度の厚みであるため、塗装中のウェット塗膜の赤外線反射強度を測定しながら塗装することで、所定の膜厚の乾燥塗膜を得ることができる。
 なお、上塗り塗料IR-Uは、前記のように、少なくともウェット膜厚50~1000μmにおいて前記要件(i)および(ii)を満たす。また、上塗り塗料IR-Uは、該塗料に含まれる溶剤が赤外線反射強度に与える影響がほとんどない塗料であるともいえることが分かった。
Seven days after spray coating, the infrared reflection intensity was measured using the apparatus 2 from the top coat film side of the sufficiently coated steel sheet with the top coat film. Based on FIG. 6, the infrared reflection intensity was about 320 μm. It turns out that it corresponds. Further, the film thickness of the laminate composed of the undercoat film (film thickness: about 10 μm) and the topcoat film was measured using an electromagnetic film thickness meter (LZ-990) to be 330 μm. That is, the dry film thickness based on the infrared reflection intensity and the actually measured dry film thickness were approximately the same thickness.
Further, since the top coating IR-U has a solid content of about 73 vol%, it is considered that the coating film having a wet film thickness of 440 μm obtained from the coating material has a dry film thickness of about 320 μm. Therefore, since the dry film thickness calculated from the wet film thickness based on the infrared reflection intensity based on the solid content of the paint and the actually measured dry film thickness are approximately the same, By applying the film while measuring the infrared reflection intensity of the film, a dry coating film having a predetermined film thickness can be obtained.
As described above, the top coat IR-U satisfies the requirements (i) and (ii) at least in a wet film thickness of 50 to 1000 μm. Further, it was found that the top coating IR-U is a coating having almost no influence on the infrared reflection intensity by the solvent contained in the coating.
 [実施例3~17]
 下塗り塗料および上塗り塗料として表2~3の塗料を用いた以外は、実施例1および2と同様にして試験を行った。
 得られた上塗り塗膜の膜厚と赤外線反射率の差との関係をプロットしたグラフと、得られた上塗り塗膜の膜厚と装置1で測定した赤外線反射強度であるデジタルレベルとをプロットしたグラフと、得られた上塗り塗膜の膜厚と装置2で測定した赤外線反射強度であるフォトダイオード電圧とをプロットしたグラフとは、実施例1や2と同様に、ほぼ同様の形状であり、正の相関関係を示した。下塗り塗料としてSP-BKを用いた場合の、実施例3で得られたこれらのグラフを、それぞれ、図8~10として示す。
 また、実施例1や2の結果と同様に、各実施例で用いた上塗り塗料から形成された上塗り塗膜は、赤外線を用いた非接触式膜厚計測装置である前記装置1や2により、少なくとも膜厚約50~1000μmの範囲において、ウェット膜厚を測定することが可能であり、少なくとも膜厚約50~800μmの範囲において、乾燥膜厚を測定することが可能であった。
[Examples 3 to 17]
The test was performed in the same manner as in Examples 1 and 2 except that the paints in Tables 2 to 3 were used as the undercoat paint and the topcoat paint.
The graph which plotted the relationship between the film thickness of the obtained top coat film and the difference of infrared reflectance, and the digital level which is the film thickness of the obtained top coat film and the infrared reflection intensity measured with the apparatus 1 were plotted. The graph and the graph plotting the film thickness of the obtained top coat film and the photodiode voltage, which is the infrared reflection intensity measured by the apparatus 2, have substantially the same shape as in Examples 1 and 2. A positive correlation was shown. These graphs obtained in Example 3 when SP-BK is used as the undercoat paint are shown as FIGS. 8 to 10, respectively.
Further, similarly to the results of Examples 1 and 2, the top coating film formed from the top coating material used in each Example is a non-contact type film thickness measuring device using infrared rays. The wet film thickness can be measured at least in the range of about 50 to 1000 μm, and the dry film thickness can be measured in the range of at least about 50 to 800 μm.
 [比較例1]
 下塗り塗料として表1のSP-BKを用い、上塗り塗料として表4のF-6を用いた以外は、実施例1と同様にして試験を行った。
 この塗料F-6は、所望乾燥膜厚400μmにおいて、前記要件(II)を満たさなかった。
[Comparative Example 1]
The test was conducted in the same manner as in Example 1 except that SP-BK in Table 1 was used as the undercoat paint and F-6 in Table 4 was used as the topcoat paint.
This paint F-6 did not satisfy the requirement (II) at a desired dry film thickness of 400 μm.
 得られた上塗り塗膜の膜厚と赤外線反射率の差との関係をプロットしたグラフを図11に示し、得られた上塗り塗膜の膜厚と装置1で測定した赤外線反射強度であるデジタルレベルとをプロットしたグラフを図12に示す。
 図11と図12とはほぼ同様の形状の曲線を示したが、膜厚の変化に対し、赤外線反射強度がほとんど変化しないため、下塗り塗料SP-BKから形成された下塗り塗膜上に塗装した上塗り塗料F-6から形成された上塗り塗膜の乾燥膜厚は、赤外線を用いた非接触式膜厚計測装置である前記装置1や2により測定することが困難であった。
A graph plotting the relationship between the film thickness of the obtained top coat film and the difference in infrared reflectance is shown in FIG. 11, and the digital level which is the film thickness of the obtained top coat film and the infrared reflection intensity measured by the apparatus 1 FIG. 12 shows a graph plotting the above.
FIG. 11 and FIG. 12 showed curves having substantially the same shape, but the infrared reflection intensity hardly changed with the change in the film thickness, so that the paint was applied on the undercoat film formed from the undercoat paint SP-BK. The dry film thickness of the top coat film formed from the top coat F-6 was difficult to measure with the devices 1 and 2 which are non-contact type film thickness measuring devices using infrared rays.
 [比較例2~4]
 下塗り塗料および上塗り塗料として表4の塗料を用いた以外は、比較例1と同様にして試験を行った。
 比較例2~4で用いた上塗り塗料は、所望乾燥膜厚400μmにおいて、少なくとも前記要件(II)を満たさなかった。
[Comparative Examples 2 to 4]
The test was conducted in the same manner as in Comparative Example 1 except that the paints in Table 4 were used as the undercoat paint and the topcoat paint.
The top coat used in Comparative Examples 2 to 4 did not satisfy at least the requirement (II) at a desired dry film thickness of 400 μm.
 比較例2~4において、前記図11に相当する図を、それぞれ図13~15として示し、前記図12に相当する図を、それぞれ図16~18として示す。
 比較例2~4それぞれにおいて、これらの各図同士はほぼ同様の形状の曲線を示したが、これらの比較例の上塗り塗料を用いた場合には、赤外線を用いた非接触式膜厚計測装置である前記装置1や2により、乾燥膜厚を測定することが困難であった。
In Comparative Examples 2 to 4, the figures corresponding to FIG. 11 are shown as FIGS. 13 to 15, respectively, and the figures corresponding to FIG. 12 are shown as FIGS. 16 to 18, respectively.
In each of Comparative Examples 2 to 4, these figures showed curves of almost the same shape. However, when the top coat of these comparative examples was used, a non-contact type film thickness measuring device using infrared rays It was difficult to measure the dry film thickness with the devices 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (12)

  1.  被塗物(C)上に、乾燥膜厚50μm以上の所望乾燥膜厚を有する乾燥塗膜(A)を形成する塗料組成物であって、
     (I)乾燥塗膜(A)の赤外線透過率が2%以上となり、かつ、
     (II)被塗物(C)の赤外線反射率Rc%と、被塗物(C)および乾燥塗膜(A)を含んでなる積層体の、該乾燥塗膜(A)が積層された側から測定した赤外線反射率Ra%との差の絶対値が2%以上となる、
     赤外線反射強度により乾燥膜厚の測定が可能な塗料組成物。
    A coating composition for forming a dry coating film (A) having a desired dry film thickness of 50 μm or more on an object to be coated (C),
    (I) The infrared transmittance of the dried coating film (A) is 2% or more, and
    (II) The infrared reflectance Rc% of the article to be coated (C) and the side of the laminate comprising the article to be coated (C) and the dried coating film (A) on which the dry coating film (A) is laminated. The absolute value of the difference from the infrared reflectance Ra% measured from is 2% or more,
    A coating composition whose dry film thickness can be measured by infrared reflection intensity.
  2.  被塗物(C)上に、厚み50μm以上の所望ウェット膜厚を有するウェット塗膜(A')を形成する塗料組成物であって、
     (i)ウェット塗膜(A')を乾燥させた乾燥塗膜(A)の赤外線透過率が2%以上となり、かつ、
     (ii)被塗物(C)の赤外線反射率Rc%と、被塗物(C)およびウェット塗膜(A')を乾燥させた乾燥塗膜(A)を含んでなる積層体の、該乾燥塗膜(A)が積層された側から測定した赤外線反射率Ra%との差の絶対値が2%以上となる、
     赤外線反射強度によりウェット膜厚の測定が可能な塗料組成物。
    A coating composition for forming a wet coating film (A ′) having a desired wet film thickness of 50 μm or more on an object to be coated (C),
    (I) The infrared transmittance of the dried coating film (A) obtained by drying the wet coating film (A ′) is 2% or more, and
    (Ii) Infrared reflectance Rc% of the object to be coated (C), and a laminate comprising the dried film (A) obtained by drying the object (C) and the wet film (A ′), The absolute value of the difference from the infrared reflectance Ra% measured from the side where the dry coating film (A) is laminated is 2% or more,
    A coating composition capable of measuring wet film thickness by infrared reflection intensity.
  3.  前記乾燥塗膜(A)の赤外線透過率が10%以上であり、かつ、RcとRaとの差の絶対値が3%以上である、請求項1または2に記載の塗料組成物。 The coating composition according to claim 1 or 2, wherein the infrared transmittance of the dry coating film (A) is 10% or more, and the absolute value of the difference between Rc and Ra is 3% or more.
  4.  前記塗料組成物が、前記乾燥塗膜(A)100容量%に対し、赤外線反射顔料を0.03~3容量%となる量で含む、請求項1~3のいずれか1項に記載の塗料組成物。 The paint according to any one of claims 1 to 3, wherein the paint composition contains an infrared reflective pigment in an amount of 0.03 to 3% by volume with respect to 100% by volume of the dried coating film (A). Composition.
  5.  前記赤外線反射顔料が、二酸化チタン、亜酸化銅、酸化亜鉛、弁柄、黄色弁柄、クロムグリーンブラックヘマタイト、マンガンビスマスブラック顔料、クロミウムアイアンオキサイド、ニッケルアンチモンチタニウムイエロールチル、クロムアンチモンチタニウムバフルチルおよびルチルスズ亜鉛からなる群より選ばれる少なくとも1種の顔料である、請求項4に記載の塗料組成物。 The infrared reflective pigment is titanium dioxide, cuprous oxide, zinc oxide, dial, yellow dial, chrome green black hematite, manganese bismuth black pigment, chromium iron oxide, nickel antimony titanium yellow rutile, chromium antimony titanium bafurtil and rutile tin The coating composition according to claim 4, which is at least one pigment selected from the group consisting of zinc.
  6.  被塗物(C)上に、乾燥膜厚50μm以上の所望乾燥膜厚を有する乾燥塗膜(A)を形成する方法であって、
     (I)乾燥塗膜(A)の赤外線透過率が2%以上となり、かつ、
     (II)被塗物(C)の赤外線反射率Rc%と、被塗物(C)および乾燥塗膜(A)を含んでなる積層体の、該乾燥塗膜(A)が積層された側から測定した赤外線反射率Ra%との差の絶対値が2%以上となる、
    塗料組成物を被塗物(C)上に塗布し、乾燥させた後、
     赤外線反射強度測定装置により赤外線反射強度を測定することで、乾燥塗膜が所望の膜厚に達しているか否かを判断する、乾燥塗膜の形成方法。
    A method of forming a dry coating film (A) having a desired dry film thickness of 50 μm or more on an object to be coated (C),
    (I) The infrared transmittance of the dried coating film (A) is 2% or more, and
    (II) The infrared reflectance Rc% of the article to be coated (C) and the side of the laminate comprising the article to be coated (C) and the dried coating film (A) on which the dry coating film (A) is laminated. The absolute value of the difference from the infrared reflectance Ra% measured from is 2% or more,
    After the coating composition is applied onto the article (C) and dried,
    A method for forming a dried coating film, wherein the dried coating film is judged to have reached a desired film thickness by measuring the infrared reflection intensity with an infrared reflection intensity measuring device.
  7.  被塗物(C)上に、厚み50μm以上の所望ウェット膜厚を有するウェット塗膜(A')を形成する方法であって、
     (i)ウェット塗膜(A')を乾燥させた乾燥塗膜(A)の赤外線透過率が2%以上となり、かつ、
     (ii)被塗物(C)の赤外線反射率Rc%と、被塗物(C)およびウェット塗膜(A')を乾燥させた乾燥塗膜(A)を含んでなる積層体の、該乾燥塗膜(A)が積層された側から測定した赤外線反射率Ra%との差の絶対値が2%以上となる、
    塗料組成物を被塗物(C)上に塗布し、
     赤外線反射強度測定装置により赤外線反射強度を測定することで、ウェット塗膜が所望の厚みに達しているか否かを判断する、ウェット塗膜の形成方法。
    A method of forming a wet coating film (A ′) having a desired wet film thickness of 50 μm or more on an object to be coated (C),
    (I) The infrared transmittance of the dried coating film (A) obtained by drying the wet coating film (A ′) is 2% or more, and
    (Ii) Infrared reflectance Rc% of the object to be coated (C), and a laminate comprising the dried film (A) obtained by drying the object (C) and the wet film (A ′), The absolute value of the difference from the infrared reflectance Ra% measured from the side where the dry coating film (A) is laminated is 2% or more,
    Apply the coating composition on the substrate (C),
    A method for forming a wet paint film, wherein it is determined whether or not the wet paint film has reached a desired thickness by measuring the infrared light reflection intensity with an infrared reflection intensity measuring device.
  8.  前記ウェット塗膜(A')を乾燥させた乾燥塗膜(A)の厚みが、所望の膜厚に達しているか否かを前記のウェット塗膜(A')の膜厚から判断する、請求項7に記載の形成方法。 The thickness of the dry paint film (A) obtained by drying the wet paint film (A ′) is judged from the film thickness of the wet paint film (A ′) to determine whether or not the desired film thickness has been reached. Item 8. The forming method according to Item 7.
  9.  前記乾燥塗膜(A)の赤外線透過率が10%以上であり、かつ、RcとRaとの差の絶対値が3%以上である、請求項6~8のいずれか1項に記載の形成方法。 The formation according to any one of Claims 6 to 8, wherein the infrared transmittance of the dry coating film (A) is 10% or more, and the absolute value of the difference between Rc and Ra is 3% or more. Method.
  10.  前記塗料組成物が、前記乾燥塗膜(A)100容量%に対し、赤外線反射顔料を0.03~3容量%となる量で含む、請求項6~9のいずれか1項に記載の形成方法。 The formation according to any one of claims 6 to 9, wherein the coating composition contains an infrared reflective pigment in an amount of 0.03 to 3% by volume with respect to 100% by volume of the dry coating film (A). Method.
  11.  前記赤外線反射顔料が、二酸化チタン、亜酸化銅、酸化亜鉛、弁柄、黄色弁柄、クロムグリーンブラックヘマタイト、マンガンビスマスブラック顔料、クロミウムアイアンオキサイド、ニッケルアンチモンチタニウムイエロールチル、クロムアンチモンチタニウムバフルチルおよびルチルスズ亜鉛からなる群より選ばれる少なくとも1種の顔料である、請求項10に記載の形成方法。 The infrared reflective pigment is titanium dioxide, cuprous oxide, zinc oxide, dial, yellow dial, chrome green black hematite, manganese bismuth black pigment, chromium iron oxide, nickel antimony titanium yellow rutile, chromium antimony titanium bafurtil and rutile tin The forming method according to claim 10, wherein the forming method is at least one pigment selected from the group consisting of zinc.
  12.  前記赤外線反射強度測定装置が、赤外線を照射可能な光源と、赤外線を被塗物に照射したときに反射される赤外線強度を検出するセンサーと、該センサーが検知した赤外線反射強度を解析する装置とを含む、請求項6~11のいずれか1項に記載の形成方法。 The infrared reflection intensity measuring device includes a light source capable of emitting infrared rays, a sensor for detecting infrared intensity reflected when the object is irradiated with infrared rays, and an apparatus for analyzing the infrared reflection intensity detected by the sensor; The forming method according to any one of claims 6 to 11, comprising:
PCT/JP2015/066373 2014-07-10 2015-06-05 Coating composition and coating film formation method WO2016006374A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-142537 2014-07-10
JP2014142537A JP6456615B2 (en) 2014-07-10 2014-07-10 Coating composition and coating film forming method

Publications (1)

Publication Number Publication Date
WO2016006374A1 true WO2016006374A1 (en) 2016-01-14

Family

ID=55064016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066373 WO2016006374A1 (en) 2014-07-10 2015-06-05 Coating composition and coating film formation method

Country Status (2)

Country Link
JP (1) JP6456615B2 (en)
WO (1) WO2016006374A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105675526A (en) * 2016-03-10 2016-06-15 福建中烟工业有限责任公司 Method and device for detecting spreading rate of papermaking-method reconstituted tobacco product
CN114112930A (en) * 2020-08-26 2022-03-01 立邦涂料(中国)有限公司 Testing device and testing method for contrast ratio of paint wet film
US11339829B2 (en) * 2018-06-08 2022-05-24 Mahle International Gmbh Sliding element comprising a pigment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10058542B1 (en) 2014-09-12 2018-08-28 Thioredoxin Systems Ab Composition comprising selenazol or thiazolone derivatives and silver and method of treatment therewith
TW201934653A (en) * 2018-01-12 2019-09-01 日商捷恩智股份有限公司 Composition for heat-dissipation member, heat-dissipation member, electronic apparatus, and production method for heat-dissipation member
JP7346025B2 (en) 2018-12-25 2023-09-19 キヤノン株式会社 Robot system, control method for robot system, method for manufacturing articles using robot system, power transmission module, power supply method, wireless power supply module, program and recording medium
KR20230092063A (en) * 2021-12-16 2023-06-26 씨큐브 주식회사 Effect pigment with near-infrared reflection function, paint and panel using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172002A (en) * 1985-01-25 1986-08-02 Nippon Steel Corp Infrared ray type coating film thickness measuring device
JPH03295407A (en) * 1990-04-13 1991-12-26 Kawasaki Steel Corp Measuring method for resin film thickness of conductive composite metallic plate
JPH10216621A (en) * 1996-10-31 1998-08-18 Nippon Paint Marine Kk Formation of coating film
JP2002066445A (en) * 2000-09-01 2002-03-05 Nippon Paint Marine Kk Coating film forming method
JP2002080787A (en) * 2000-09-06 2002-03-19 Nippon Paint Co Ltd Coating composition for determining film thickness and method for producing multilayer coating film
JP2011184638A (en) * 2010-03-10 2011-09-22 Kictec Inc Heat-insulating coating composition
WO2013006602A1 (en) * 2011-07-07 2013-01-10 The Shepherd Color Company Low-loading titanate inorganic pigments for use in infrared reflective colors
WO2013020261A1 (en) * 2011-08-05 2013-02-14 Construction Research & Technology Gmbh Water-proof coating system for reflecting solar radiation and water-borne coating for forming decorative and reflective layer in coating system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172002A (en) * 1985-01-25 1986-08-02 Nippon Steel Corp Infrared ray type coating film thickness measuring device
JPH03295407A (en) * 1990-04-13 1991-12-26 Kawasaki Steel Corp Measuring method for resin film thickness of conductive composite metallic plate
JPH10216621A (en) * 1996-10-31 1998-08-18 Nippon Paint Marine Kk Formation of coating film
JP2002066445A (en) * 2000-09-01 2002-03-05 Nippon Paint Marine Kk Coating film forming method
JP2002080787A (en) * 2000-09-06 2002-03-19 Nippon Paint Co Ltd Coating composition for determining film thickness and method for producing multilayer coating film
JP2011184638A (en) * 2010-03-10 2011-09-22 Kictec Inc Heat-insulating coating composition
WO2013006602A1 (en) * 2011-07-07 2013-01-10 The Shepherd Color Company Low-loading titanate inorganic pigments for use in infrared reflective colors
WO2013020261A1 (en) * 2011-08-05 2013-02-14 Construction Research & Technology Gmbh Water-proof coating system for reflecting solar radiation and water-borne coating for forming decorative and reflective layer in coating system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105675526A (en) * 2016-03-10 2016-06-15 福建中烟工业有限责任公司 Method and device for detecting spreading rate of papermaking-method reconstituted tobacco product
CN105675526B (en) * 2016-03-10 2018-07-31 福建中烟工业有限责任公司 Method and apparatus for detecting papermaking-method reconstituted tobaccos product spreading rate
US11339829B2 (en) * 2018-06-08 2022-05-24 Mahle International Gmbh Sliding element comprising a pigment
CN114112930A (en) * 2020-08-26 2022-03-01 立邦涂料(中国)有限公司 Testing device and testing method for contrast ratio of paint wet film
CN114112930B (en) * 2020-08-26 2023-06-27 立邦涂料(中国)有限公司 Paint wet film contrast ratio testing device and testing method

Also Published As

Publication number Publication date
JP2016017164A (en) 2016-02-01
JP6456615B2 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP6456615B2 (en) Coating composition and coating film forming method
JP6033399B6 (en) Anticorrosion paint composition, anticorrosion coating film, and method for anticorrosion of substrate
US8597749B2 (en) High-solid anticorrosive coating composition
CN105925124B (en) Anticorrosive coating composition, coating film thereof, substrate having the coating film, and process for producing the substrate
AU2012268098B2 (en) Coating compositions including magnesium hydroxide and related coated substrates
EP3044267B1 (en) Compositions comprising magnesium oxide and amino acid
JPWO2014136752A6 (en) Anticorrosion paint composition, anticorrosion coating film, and method for anticorrosion of substrate
CN103987799B (en) Corrosion-resistant, chip resistance and resistance to fuel composition
WO2017085970A1 (en) Anticorrosion paint composition and method for forming dried coating film
JP7189298B2 (en) Low-VOC anticorrosion paint composition, anticorrosion coating film, substrate with coating film, and method for producing substrate with coating film
JP5579967B2 (en) Epoxy resin coating composition, coating film forming method, and coated article
WO2017138168A1 (en) Anticorrosive coating composition and method for forming dry coating film
JP7141317B2 (en) Anticorrosive paint composition
JP2003164803A (en) Method of forming coating film
JP2019026843A (en) Coating composition, coated film, substrate with coated film and manufacturing method of substrate with coated film
KR101388836B1 (en) Super weather- and ammonia resistant teflon top coating composition
JP2013202488A (en) Water-based anticorrosive painting method and painted body
JP7011556B2 (en) Coating composition and method for forming a multi-layer coating film
JP6703831B2 (en) Method for producing coating film with target film thickness, coating composition, coating film, substrate with coating film, and inspection method for film thickness
JP4353410B2 (en) Functional coating formation method
KR20210084569A (en) Coating Compositions Containing Phosphoric Acid Functional Polyol Polymers and Coatings Formed Therefrom
CN111094472A (en) Low VOC anionic electrodepositable coating compositions
JP4353411B2 (en) Method for forming functional coating
US11851573B2 (en) Solvent-borne coating compositions, coatings formed therefrom, and methods of forming such coatings
JP2004231853A (en) Coating composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15819467

Country of ref document: EP

Kind code of ref document: A1