JPH03295040A - Optical information recording medium - Google Patents
Optical information recording mediumInfo
- Publication number
- JPH03295040A JPH03295040A JP2097161A JP9716190A JPH03295040A JP H03295040 A JPH03295040 A JP H03295040A JP 2097161 A JP2097161 A JP 2097161A JP 9716190 A JP9716190 A JP 9716190A JP H03295040 A JPH03295040 A JP H03295040A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- layer
- recording
- recording thin
- transparent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 54
- 239000010409 thin film Substances 0.000 claims abstract description 116
- 239000000463 material Substances 0.000 claims description 66
- 230000008859 change Effects 0.000 claims description 29
- 230000001681 protective effect Effects 0.000 claims description 19
- 238000010521 absorption reaction Methods 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 16
- 239000011521 glass Substances 0.000 abstract description 9
- 230000001678 irradiating effect Effects 0.000 abstract description 5
- 239000013078 crystal Substances 0.000 abstract description 4
- 230000007704 transition Effects 0.000 abstract description 4
- 230000006866 deterioration Effects 0.000 abstract description 3
- 150000004770 chalcogenides Chemical class 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910018321 SbTe Inorganic materials 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 91
- 239000010408 film Substances 0.000 description 24
- 239000011347 resin Substances 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 239000003989 dielectric material Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005191 phase separation Methods 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 229910052714 tellurium Inorganic materials 0.000 description 4
- 239000012300 argon atmosphere Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 241000219104 Cucurbitaceae Species 0.000 description 1
- -1 PbS Chemical class 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 150000001786 chalcogen compounds Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Optical Record Carriers And Manufacture Thereof (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は 光・熱等を用いて高速かつ高密度に情報を記
録再生する光学的情報記録媒体に関するものであム
従来の技術
レーザー光をレンズ系によって収束させると直径がその
光の波長のオーダーの小さな光スポットを作ることがで
きも したがって小さい出力の光源からでも単位面積あ
たりのエネルギー密度の高い光スポットを作ることが可
能であa したがって物質の微少な領域を変化させるこ
とが可能であり、またその微少領域の変化を読みだすこ
とも可能であも これを情報の記録・再生に利用したも
のが光学的情報記録媒体であム 以下、 「光記録媒体
」あるいは単に「媒体」と記述すa光記録媒体の基本的
な構造は表面が平坦な基材上にレーザースポット光照射
によって何らかの状態が変化する記録薄膜層を設けたも
のである。信号の記録・再生は以下のような方法を用い
る。すなわ板 平板状の媒体を例えばモーター等による
回転手段や並進手段により移動させ、この媒体の記録薄
膜面上にレーザー光を収束し照射すも 記録薄膜はレー
ザー光を吸収し昇温すも レーザー光の出力をある閾値
以上に大きくすると記録薄膜の状態が変化して情報が記
録されも この閾値は記録薄膜自体の特性の他に基材の
熱的な特性・媒体の光スポットに対する相対速度等に依
存する量であも 記録された情報は記録部に前記閾値よ
りも十分低い出力のレーザー光スポットを照射しその透
過光強胆 反射光強度あるいはそれらの偏光方向等何ら
かの光学的特性が記録部と未記録部で異なることを検出
して再生すム
したがって、小さいレーザーパワーで状態が変化し 大
きな光学的変化を示す材料および構造が望まれも
記録薄膜としてはB1、Teあるいはこれらを主成分と
する金属薄罠 Teを含む化合物薄膜が知られていも
これらはレーザー光照射により薄膜が溶融あるいは蒸発
し小孔を形成するいわゆる穴開は型の記録を行(\ こ
の記録部とその周辺部からの反射光あるいは透過光の位
相が異なるため干渉で打ち消しあって、あるいは回折さ
れて検出系に至る反射光量あるいは透過光量が変化する
ことを検出して再生を行う。また 他に相変化型と呼ば
れ数 形状の変化を伴わずに記録薄膜材料の結晶構造の
変化により光学的な変化をする記録媒体がある。材料と
してはアモルファスカルコゲン化物薄罠 テルルおよび
酸化テルルからなるTe−T e 02を主成分とする
酸化物系薄膜がある(特公昭、54−3725号公報)
。まt=Te−TeO2−Pdを主成分とする薄膜も知
られている(特開昭61−68296号公報)。これら
はレーザー光照射により薄膜の消衰係数あるいは屈折率
のうち少なくともいずれか1つが変化して記録を行しX
、この部分で透過光あるいは反射光の振幅が変化し そ
の結果検出系に至る透過光量あるいは反射光量が変化す
ることを検出して信号を再生すム 相変化型の媒体は形
状の変化を伴わないため可逆的に状態変化が可能であれ
ば 記録した信号を消去・書き換えが可能であ4 この
ように可逆的に相変化が可能な材料としてGe−Te−
3b−s系材料(特公昭47−26897号公報)、T
e−0−Ge−8b系材料(特開昭59−185048
号公報)、Te−〇−Ge−3b−Au系材料(特開昭
61−2594号公報)、Ge5b−Te系材料(特開
昭62−209742号公報)などが知られていも こ
れらはいずれも可逆的に変化する2つの状態としてアモ
ルファス状態(あるいはガラス状風 無定形状態)と結
晶状態が安定に存在すム −船釣には記録・消去は次の
ような方法で実現すも すなわちアモルファス化はレー
ザー光照射により薄膜を加熱昇温して熔融しレーザー光
照射終了時に冷却される過程において急冷されアモルフ
ァス状態となることにより実現する。結晶化は同様にレ
ーザー光照射による加熱により薄膜を融点以下で結晶化
に十分な温度に昇温し実現すも また融点以上に昇温し
た場合でも冷却時に十分な急冷条件が得られず徐冷され
た場合にも結晶化が実現する。アモルファス状態と結晶
状態をそれぞれ情報の記録状態と消去状態として使用す
る力\ 逆にそれぞれを消去状態と記録状態として使用
するかは任意である力丈 アモルファス状態を記録状態
として使用するのが一般的であるので以下では代表とし
てそのような対応で説明をす4
一般的に光ディスクにはレーザー光により記録および再
生を行なうた数 光学的な特性が要求されも 使用する
レーザー光の波長においてレーザー光の吸収が大きいこ
と、記録状態と消去状態C未記録状態)の間の光学的な
状態差すなわち変化量が大きいことが必要であ4
書き換え型相変化記録媒体は上述のように記録薄膜を融
点以上に昇温するた八 記録消去時に記録薄膜および基
材の変形・破壊を防ぐために第2図のように記録薄膜を
無機誘電体等からなる透明な層ではさんで保護すること
が一般的であム 誘電体等の保護層(以下、透明層と記
述する)にはこの保護の機能の他に前記の光学的な特性
を制御する機能や薄膜の昇温冷却条件を制御する機能も
あわせて持たせることも行なわれていも 前者では透明
層の光学定数(屈折率)と厚さが後者では熱定数(比肱
熱伝導風 密度)と厚さがパラメータとなって特性を
左右する。したがって透明層はこれらすべての特性をそ
の目的に応じて最適化されるように選ぶ必要があも
さらに透明層ではさむだけでは十分な光学的特性が得ら
れない場合には第3図のように透明層の上に金属等の反
射層を設けて光学的特性を向上することも提案されてい
も
また 第2図・第3図に示すように基材上に透明層 記
録薄膜層 反射層からなる薄膜構造の全体的な機械的保
護のための保護材を設けることも任意である。この保護
材は例えば樹脂板を接着剤で張り付けるあるいは溶剤に
とかした樹脂をスピンコード法により塗布したのち乾燥
することにより形成することができも
発明が解決しようとする課題
相変化型の光記録媒体は前述のようにアモルファス化の
ためには記録薄膜材料を融点以上に過熱昇温しで熔融し
たのち急冷することにより得られる。[Detailed description of the invention] Industrial field of application The present invention relates to an optical information recording medium that records and reproduces information at high speed and high density using light, heat, etc. When converged by It is possible to change a minute area, and it is also possible to read out changes in that minute area, but optical information recording media are those that utilize this for recording and reproducing information. The basic structure of an optical recording medium (referred to as "optical recording medium" or simply "medium") is that a recording thin film layer whose state changes in some way by laser spot light irradiation is provided on a base material with a flat surface. The following methods are used to record and reproduce signals. In other words, a plate-shaped medium is moved by a rotating means such as a motor or a translation means, and a laser beam is focused and irradiated onto the recording thin film surface of this medium.The recording thin film absorbs the laser beam and heats up.Laser If the light output is increased above a certain threshold, the state of the recording thin film changes and information is recorded.This threshold value is determined by factors such as the characteristics of the recording thin film itself, the thermal characteristics of the substrate, the relative speed of the medium to the light spot, etc. Even if the amount of recorded information depends on Therefore, it is desirable to have a material and structure that changes its state with a small laser power and exhibits a large optical change. Although compound thin films containing Te are known,
These so-called holes are recorded when the thin film is melted or evaporated by laser light irradiation to form small holes (\ The reflected or transmitted light from this recording area and the surrounding area have different phases, so they are canceled out by interference. Reproduction is performed by detecting changes in the amount of reflected light or transmitted light that reaches the detection system after being reflected or diffracted.Also called phase change type, the crystal of the recording thin film material does not change shape. There are recording media that undergo optical changes due to structural changes.The materials include oxide thin films whose main components are amorphous chalcogenide thin trap tellurium and Te-T e 02 consisting of tellurium oxide (Tokukosho, 54). -3725 publication)
. A thin film containing t=Te-TeO2-Pd as a main component is also known (Japanese Unexamined Patent Publication No. 68296/1983). These are recorded by changing at least one of the extinction coefficient or refractive index of the thin film by laser light irradiation.
In this part, the amplitude of the transmitted light or reflected light changes, and as a result, the amount of transmitted light or reflected light that reaches the detection system changes, which is detected and the signal is reproduced.Phase change media do not involve changes in shape. Therefore, if a reversible state change is possible, recorded signals can be erased and rewritten.4 Ge-Te-
3b-s material (Japanese Patent Publication No. 47-26897), T
e-0-Ge-8b material (JP-A-59-185048
Although there are known materials such as Te-〇-Ge-3b-Au based material (JP-A-61-2594), Ge5b-Te-based material (JP-A-62-209742), etc. There are two states that can change reversibly, an amorphous state (or a glassy amorphous state) and a crystalline state, which stably exist. This is achieved by heating the thin film with laser light irradiation to raise its temperature, melt it, and then rapidly cool it to an amorphous state during the cooling process when the laser light irradiation ends. Crystallization is similarly achieved by heating the thin film with laser light irradiation to raise the temperature below the melting point to a temperature sufficient for crystallization, but even when the temperature is raised above the melting point, sufficient rapid cooling conditions cannot be obtained during cooling, so it is slowly cooled. Crystallization is also achieved when The ability to use the amorphous state and the crystalline state as information recording and erasing states, respectively \ On the other hand, it is optional whether to use each as the erasing state and the recording state.Length It is common to use the amorphous state as the recording state. Therefore, the explanation below will be based on such correspondence as a representative example.4 Generally speaking, optical discs are recorded and reproduced using laser light.Although optical characteristics are required, the wavelength of the laser light used It is necessary for the absorption to be large, and for the optical state difference (i.e., the amount of change) between the recorded state and the erased state (C unrecorded state) to be large. In order to prevent the recording thin film and the base material from being deformed or destroyed when erasing records, it is common to protect the recording thin film by sandwiching it between transparent layers made of inorganic dielectric material, etc., as shown in Figure 2. In addition to this protective function, a protective layer such as a dielectric material (hereinafter referred to as a transparent layer) also has the function of controlling the optical properties mentioned above and the function of controlling the heating and cooling conditions of the thin film. In the former case, the optical constant (refractive index) and thickness of the transparent layer, and in the latter case, the thermal constant (density of thermal conduction wind) and thickness are the parameters that influence the characteristics. Therefore, the transparent layer must be selected so that all of these properties are optimized according to the purpose.If sufficient optical properties cannot be obtained just by sandwiching the transparent layer, as shown in Figure 3, Although it has been proposed to provide a reflective layer made of metal or the like on the transparent layer to improve optical properties, it is also possible to improve the optical characteristics by providing a reflective layer made of metal or the like on the transparent layer. It is also optional to provide a protective material for overall mechanical protection of the thin film structure. This protective material can be formed, for example, by pasting a resin plate with an adhesive or by applying a resin dissolved in a solvent using a spin cord method and then drying it.The problem to be solved by the invention is phase-change optical recording. As described above, the medium can be made amorphous by heating the recording thin film material above its melting point to melt it and then rapidly cooling it.
したがって、媒体を構成する各層 なかでも記録薄膜層
・透明層は記録・消去のためのレーザー光照射時に高温
になり熱サイクルによる劣化を生ずへ その結果媒体特
性の劣化すなわち変化量の減退 繰り返し性の劣イし
またはノイズ原因の増加などが発生する。この劣化の原
因は複数のメカニズムが介在していて完全に解明されて
いるとはいえないが 考えられる主なものを次に示す。Therefore, each layer that makes up the medium, especially the recording thin film layer and the transparent layer, becomes high temperature when irradiated with laser light for recording and erasing, and does not deteriorate due to thermal cycles.As a result, the medium characteristics deteriorate, that is, the amount of change decreases.Repeatability inferior to
Or an increase in noise causes may occur. The causes of this deterioration involve multiple mechanisms and have not been completely elucidated, but the main possible causes are listed below.
ひとつはレーサー光照射により昇温しで記録薄膜か熔融
した場合に温度分布により組成の偏析・相分離にが生じ
可逆的な相変化の特性が失われる現象がある。また記録
薄膜自身の熱膨張や蒸気圧の上昇による変形・ピンホー
ルの生成などの物理的な破壊現象もある。さらに透明層
を構成する誘電体材料の熱的な劣化 例えば結晶構造の
変化による変形や光学定数の変4’l 記録薄膜層の
変形に追随しておきる変形等の物理的破壊などかあムこ
のような現象を抑える対策として構成する材料組成を選
択するこ七はもちろんであるが媒体の構造面での対策も
考えられる。記録薄膜材料の偏析・相分離を抑えるため
には記録薄膜の膜厚を小さくすることが有効である。記
録膜厚かレーサー照射により熔融する面積に比べて十分
小さければ偏析・相分離は少なし見 これは透明層の界
面が物質の移動を抑える効果があり膜厚が小さいと記録
薄膜材料の熔融体積に比べて界面の面積が大きくなるた
めその効果が大きくなるからと考えられる。One is a phenomenon in which when the recording thin film is melted by heating up due to laser light irradiation, compositional segregation and phase separation occur due to temperature distribution, resulting in loss of reversible phase change characteristics. There are also physical destruction phenomena such as deformation and pinhole formation due to thermal expansion and increased vapor pressure of the recording thin film itself. Furthermore, thermal deterioration of the dielectric material constituting the transparent layer, such as deformation due to changes in the crystal structure and changes in optical constants, and physical destruction such as deformation that follows the deformation of the recording thin film layer. As a countermeasure to suppress such a phenomenon, it goes without saying that selecting the composition of the constituent materials, but also measures in terms of the structure of the medium can be considered. In order to suppress segregation and phase separation of the recording thin film material, it is effective to reduce the thickness of the recording thin film. If the recording film thickness is sufficiently small compared to the area melted by laser irradiation, there will be little segregation or phase separation.This is because the interface of the transparent layer has the effect of suppressing the movement of substances, and if the film thickness is small, the melted volume of the recording thin film material This is thought to be due to the fact that the area of the interface is larger compared to , so the effect is larger.
また 膜厚が小さいと熔融部の冷却速度が大きくなるこ
とや膜厚方向の温度勾配が小さくなることなどか収 偏
析・相分離が抑えられることも考えられも
しかしながら記録薄膜層厚を小さくすると光学的な特性
が十分得られないという課題があ4 第2図のような記
録薄膜層を透明層ではさんだ構成の場合、記録薄膜層を
小さくするとひとつはレーザー光の吸収量が減少し感度
が悪くなム また光学的な変化量が得られなくなり再生
信号が小さくなるという弊害がある。In addition, if the film thickness is small, the cooling rate of the molten part increases and the temperature gradient in the film thickness direction becomes small, which may suppress segregation and phase separation. In the case of a structure in which a recording thin film layer is sandwiched between transparent layers as shown in Figure 2, one problem is that the amount of laser light absorbed decreases when the recording thin film layer is made smaller, resulting in poor sensitivity. There is also the disadvantage that the amount of optical change cannot be obtained and the reproduced signal becomes smaller.
また第3図のような反射層を用いた構造では記録薄膜層
の膜厚を小さくした場合2つの透明層の膜厚を選ぶこと
によってかなりの程度まで光学的な特性を維持すること
は可能であるが透明層の膜厚の余裕度が小さく高精度な
膜厚制御を要し製造コストが増大するという課題があム
また反射層を必要とするため製造工程が増えコスト高
であり、信頼性の面からも異質の材料を積層させること
は問題が多t、Xo さらにこの反射層を有する構造
では反射層側からレーザー光で記録再生はできないとい
う課題もあも
本発明は上記課題を解決する光学的情報記録媒体を提供
することを目的とす4
課題を解決するための手段
上記の課題を解決するために基材上に レーザー光照射
によって光学的に検知し得る変化を生じる記録薄膜層を
設けた光学的情報記録媒体として、基材上に第1の透明
層 第1の記録薄膜層 第2の透明層 第2の記録薄膜
層および第3の透明層をそれぞれ順次設置す、第1およ
び第2の記録薄膜層がレーザー光照射による相変化によ
って光学的に検知し得る変化を生じる材料からなる構成
を用いも
作用
上記のような構成を用いると記録薄膜層の厚さが十分小
さい場合でも透明層の厚さを選ぶことによって光学的な
特性を維持することができる。Furthermore, in a structure using a reflective layer as shown in Figure 3, when the thickness of the recording thin film layer is reduced, it is possible to maintain optical characteristics to a considerable extent by selecting the thicknesses of the two transparent layers. However, there is a problem that the margin for the thickness of the transparent layer is small and high-precision film thickness control is required, which increases manufacturing costs.Also, since a reflective layer is required, the manufacturing process increases, resulting in high costs and reliability. There are many problems in laminating different materials from the viewpoint of this.Furthermore, in the structure having this reflective layer, there is also the problem that recording and reproduction cannot be performed with a laser beam from the reflective layer side.The present invention solves the above problems. The purpose of the present invention is to provide an optical information recording medium.4 Means for Solving the Problems In order to solve the above problems, a recording thin film layer that causes an optically detectable change when irradiated with a laser beam is provided on a substrate. The provided optical information recording medium includes a first transparent layer, a first recording thin film layer, a second transparent layer, a second recording thin film layer, and a third transparent layer, each of which is sequentially provided on a base material. If the second recording thin film layer is made of a material that undergoes an optically detectable phase change due to laser beam irradiation, the above-mentioned structure can be used, even if the thickness of the recording thin film layer is sufficiently small. Optical properties can be maintained by selecting the thickness of the transparent layer.
つぎに 詳細な作用を具体的な実施例を使って説明をす
る。Next, detailed effects will be explained using specific examples.
実施例
記録媒体の構成としては第1図に示すように基材1上に
透明な誘電体等の透明層2、記録薄膜層3、第2の透明
な誘電体等の透明層4、第2の記録薄膜層5、第3の透
明な誘電体等の透明層6を順次膜けも さらにその上に
透明な密着した保護材7を設ける。この他に図には示さ
ないが保護材を施さない構成でもよ1.% この場合
は保護林7のかわりに空気(屈折率1.0)を考えると
光学的には同等であり同じ効果が得られも
これらの記録薄膜の厚さt2、 t4、透明層の厚さt
l、 t3およびt5を適当に選ぶことによって光学特
性をコントロールすることかできる。As shown in FIG. 1, the structure of the recording medium of the embodiment includes a transparent layer 2 such as a transparent dielectric material on a base material 1, a recording thin film layer 3, a second transparent layer 4 such as a transparent dielectric material, and a second transparent layer 4 such as a transparent dielectric material. A recording thin film layer 5 and a transparent layer 6 such as a third transparent dielectric material are sequentially coated.Furthermore, a transparent protective material 7 is provided thereon. In addition to this, although not shown in the figure, it is also possible to use a configuration in which no protective material is applied.1. % In this case, if we consider air (refractive index 1.0) instead of the protected forest 7, it is optically equivalent and the same effect can be obtained. t
The optical properties can be controlled by appropriately selecting l, t3 and t5.
この場合、透明層2には基材1と屈折率の異なる材質を
用いることが望ましl、Xo 透明層2の屈折率が基
材lの屈折率と等しいと光学的には基材l上にに直接記
録薄膜層3を設けた場合と等価になり透明層2は光学特
性のコントロールに寄与しなくなム
基材1としてはガラス・樹脂等の透明で平滑な平板を用
いも また基材表面にトラッキングガイド用の溝状の凹
凸があってもよt、%
保護材7としては樹脂を溶剤に溶かして塗布・乾燥した
ものや樹脂板を接着剤で接着したもの等が使えも
記録薄膜層3、5に用いる記録薄膜材料としてはアモル
ファス・結晶間の相変化をする材料、例えば5bTeK
InTe& GeTeSn&5bSeX、Te5
eSbK 5nTeSeiInSeK TeGe5
nOK TeGe5nAuK TeGe5nSbi
TeGeSb等のカルコゲン化合物を用いる。また
結晶・結晶間の相転移をするAgZnX InSb
系等の金属、化合物も使える。In this case, it is desirable to use a material with a different refractive index from the base material 1 for the transparent layer 2, and if the refractive index of the transparent layer 2 is equal to that of the base material l, optically This is equivalent to the case where the recording thin film layer 3 is provided directly on the substrate, and the transparent layer 2 no longer contributes to controlling the optical properties.Also, a transparent and smooth flat plate made of glass, resin, etc. may be used as the substrate 1. There may be groove-like irregularities on the surface for tracking guides.As the protective material 7, a material prepared by dissolving resin in a solvent and applying and drying it, or a material made by bonding a resin plate with adhesive, etc. can be used, but the recording thin film can be used. The recording thin film material used for layers 3 and 5 is a material that undergoes a phase change between amorphous and crystalline, such as 5bTeK.
InTe & GeTeSn & 5bSeX, Te5
eSbK 5nTeSeiInSeK TeGe5
nOK TeGe5nAuK TeGe5nSbi
A chalcogen compound such as TeGeSb is used. Also, AgZnX InSb undergoes a phase transition between crystals.
Other metals and compounds can also be used.
透明層2、4、6としては5102、S10、TlO2
、MgO1Ge○2等の酸化塩 5iaN4、BN、A
IN等の窒化¥IJ、ZnS、 Zn5e、ZnTe
、PbS等の硫化物あるいはこれらの混合物が使える。Transparent layers 2, 4, and 6 are 5102, S10, TlO2
, MgO1Ge○2 etc. 5iaN4, BN, A
Nitriding such as IN¥IJ, ZnS, Zn5e, ZnTe
, sulfides such as PbS, or a mixture thereof can be used.
これらの薄膜層を作る方法としては多元蒸着源を用いた
真空蒸着法やモザイク状の複合ターゲットを用いたスパ
ッタリング法その他が使える。As a method for forming these thin film layers, a vacuum evaporation method using a multi-source evaporation source, a sputtering method using a mosaic composite target, or the like can be used.
実施例1
記録薄膜として相変化材料であるGe2Sb2Te6の
組成を持つゲルマニラへ アンチモンおよびテルルの3
元化合物を用いる。形成法としてGe、Sb、Teの3
つの蒸発源を用いた電子ビーム蒸着法を用いも 記録薄
膜はアモルファス状態で形成されも ガラス板上に上記
組成のGe2SbaTesだけを蒸着したアモルファス
状態の光学定数を測定したとこへ 波長830nmにお
いて複素屈折率n+k iが4. 8+1. 3iであ
ったこれを不活性雰囲気中で300℃で5分間熱処理し
て結晶状態にすると5. 8+3. 6iに変化すも
本発明の1実施例として第1図に示すように基材1とし
てポリカーボネート樹脂板(Pα 屈折率1.58(波
長830nmF、 以下同様))上に透明層2として
硫化亜鉛(ZnS、屈折率2゜20)をエレクトロンビ
ーム蒸着法で厚さt1蒸着したうえに記録薄膜層3とし
て前述のGe2Sb2Te6を実施例1と前述の方法で
厚さt2形成しさらに透明層4としてZnSを厚さt3
同様に蒸着し さらに記録薄膜層5として同様に前述の
Ge2Sb2’I’esを厚さt4蒸着しさらに透明層
6としてZnSを厚さt5蒸着すム さらに保護材7と
して基材と同じ屈折率の材質の樹脂をコーティングすも
このような構成の場合の熱処理前後すなわちアモルファ
ス状態と結晶状態での反射率(振幅反射率)をそれぞれ
Rw、Rdとしその差△R(=Rw−Rd)、それぞれ
の状態での記録薄膜層2の吸収率Aw2、Ad2、記録
薄膜層4の吸収率Aw4、Ad4を各層の膜厚t1、
t2、 t3、 t4、 t5を変化させて計算した
反射率および吸収の計算には各層の複素屈折率と膜厚か
らマトリックス法で計算しf−(たとえば 久保田広著
「波動光学」岩波書忠 1971年 第3章参照)また
基材1と密着保護材7は無限大の膜厚をもつものとし
て(基材−空気界匣密着保護材一空気界面の効果を無視
)、反射率Rは基材から入射した光の基材中に出射して
くる比率としてもとめ九
その条件と計算結果を第1表に示す。第1表には代表的
なものとして2つの記録薄膜層の厚さが等しい条件(t
2=t4)で5nm刻みで計算した結果のうち各記録薄
膜層の膜厚で最も反射率変化△Rか大きい透明層厚t1
、 t3、 t4の組み合わせの計算結果を示してあム
第1表
第1表に示すように膜厚t2、 t4が15nm以上で
は2つ、の記録薄膜層の吸収が異なるが10nm以下で
はほぼ等しいことがわかも 各記録薄膜層の吸収は多層
構造全体の多重反射の結果である力丈 記録薄膜層とく
にレーサー光入射側の記録薄膜層の厚さが大きいと他の
配縁薄膜層に到達するレーザー光量の絶対値か小さくな
り2つの記録薄膜層の吸収を等しくすることが不可能に
なる。Example 1 To gel manila with the composition of Ge2Sb2Te6 which is a phase change material as a recording thin film Antimony and tellurium 3
Use the original compound. Formation methods include Ge, Sb, and Te.
Although the recording thin film is formed in an amorphous state even when using the electron beam evaporation method using two evaporation sources, the optical constants of the amorphous state obtained by depositing only Ge2SbaTes with the above composition on a glass plate are as follows: Complex refractive index at a wavelength of 830 nm n+k i is 4. 8+1. 3i was heat-treated at 300°C for 5 minutes in an inert atmosphere to make it into a crystalline state.5. 8+3. As an example of the present invention, as shown in FIG. ZnS (with a refractive index of 2° 20) was deposited to a thickness of t1 by electron beam evaporation, and then Ge2Sb2Te6 was formed to a thickness of t2 as the recording thin film layer 3 by the method described in Example 1, and ZnS was further deposited as a transparent layer 4. Thickness t3
Similarly, the above-mentioned Ge2Sb2'I'es is deposited to a thickness of t4 as a recording thin film layer 5, and ZnS is deposited to a thickness of t5 as a transparent layer 6. The reflectance (amplitude reflectance) before and after heat treatment, that is, in the amorphous state and in the crystalline state, is Rw and Rd, respectively, and the difference △R (=Rw - Rd) is calculated as follows: The absorption coefficients Aw2 and Ad2 of the recording thin film layer 2 and the absorption coefficients Aw4 and Ad4 of the recording thin film layer 4 in the state are expressed as the film thickness t1 of each layer,
Reflectance and absorption calculated by changing t2, t3, t4, and t5 are calculated using the matrix method from the complex refractive index and film thickness of each layer. (See Chapter 3) Also, assuming that the base material 1 and adhesive protective material 7 have infinite film thickness (ignoring the effect of the base material-air field adhesive protective material-air interface), the reflectance R is Table 1 shows the conditions and calculation results for the ratio of light incident on the base material that exits into the base material. Table 1 shows a typical condition where the thickness of the two recording thin film layers is equal (t
2=t4), the transparent layer thickness t1 has the largest reflectance change △R among the thicknesses of each recording thin film layer.
Table 1 shows the calculation results for the combinations of , t3, and t4.As shown in Table 1, the absorption of the two recording thin film layers differs when the film thicknesses t2 and t4 are 15 nm or more, but they are almost equal when the film thicknesses are 10 nm or less. It is also known that the absorption of each recording thin film layer is the result of multiple reflections of the entire multilayer structure.If the thickness of the recording thin film layer, especially the recording thin film layer on the side where the laser light enters, is large, the absorption of the recording thin film layer will reach other alignment thin film layers. The absolute value of the amount of laser light becomes small, making it impossible to equalize the absorption of the two recording thin film layers.
前述の相変化記録薄膜に用いられる他の材料の場合でも
その光学定数からみておおむね15ないし20nm以下
の膜厚であることが必要である。この吸収が異なると記
録に際して2つの層の記録状態の大きさが異なり所望の
再生信号が得られなくなる。したがって両者は略々等し
いことが望ましくt
さらに 各透明層厚が光学長でλ/32、この場合は約
12nm程度変化しても特性に大きな変化はなく膜厚の
余裕がおおきいことも計算の結果わかっな 例えば記録
薄膜層厚t2=t4=5nmのとき透明層厚tlは16
5〜189nm、 t3は165〜189nrrK
t5は1l30−165nの範囲でも反射率変化△Rは
17%以上あり、記録薄膜層厚t2=t4=10nmの
とき透明層厚tlは141〜165nm、、t3は16
5〜189n瓜 t5は130〜153nmの範囲でも
反射率変化△Rは22%以上とれることがわかった
これらの膜厚範囲のなかで透明層2と透明層6の膜厚t
1とt5が等しい組み合わせが可能であも その場合は
記録薄膜層3と5の材質が等しく膜厚も等しくt2=
t4であり透明層2、4.6の材質が尋しくかつ基材と
保護材の屈折率が等しいた八 全体の膜厚構成が膜厚方
向に対称となも したがって基材側から見ても保護材側
から見ても光学特性は等しくなム この場合前述のよう
に記録薄膜層 透明層の厚さは光学長で約λ/32の余
裕が有るのでそれぞれの厚さはその範囲内で略々等しけ
ればよしち また記録薄膜層厚が5nmと10%mの場
合で透明層厚の最適値は大きくは変わらないことから記
録薄膜層厚の余裕もこの膜厚領域では大きく記録薄膜層
厚t2、 t4も略々等しければよしも さらに基材と
保護材の光学的な厚さが等しければ基材側から記録ある
いは再生をしても保護材側から記録あるいは再生をして
も同等な特性が得られも
以上の結果から各層の厚さを適当に選ぶことによって記
録薄膜層が20%m以下の十分薄い場合でも反射率変化
の大きい構成を得ることがわかもこの計算をもとに以下
の実験を行った
基材にあらかじめ幅0. 6μm・深さ65%mの溝ト
ラツクを形成した厚さ1. 2mm・直径200mmの
PC樹脂円板を用いこれを真空中で回転させながら上記
の方法でZnS薄膜を177%m蒸着し さらに記録薄
膜Ge2Sb2Tesを同様に5nmの膜厚でアモルフ
ァス状態で蒸着しさらにZnS薄膜を厚さ177%m蒸
着し さらに記録薄膜としてGe2Sb2Teaを同様
に5nmの膜厚でアモルファス状態で形成し さらにZ
nS薄膜を厚さ153%m蒸着した また同じ構成の多
層薄膜を18x18mm厚さ0.2mmのガラス基材上
にも形成し丸 さらに樹脂円盤上に成膜したものは同じ
PC樹脂円盤を紫外線硬化性の接着材で張り付けて密着
した保護材を設け光記録媒体を形成した
ガラス基材上に形成したサンプルを300℃で5分間ア
ルゴン雰囲気中で加熱して全面を結晶化し結晶化前後で
基材側からの反射率を測定したところ熱処理前は8瓢
熱処理後は26%で反射率変化18%が得られた
この媒体を回転させ線速度10m/secの線速度で波
長830 nmの半導体レーザー光を開口数0.5のレ
ンズ系で絞って基材側から記録薄膜上に公知の焦点制御
手段で焦点をあわせ、溝トラツクに公知のトラッキング
制御手段でトラッキングしながら照射し九 記録薄膜面
上で8mWの出力で連続的に照射したところ照射部の記
録薄膜が結晶化し丸 さらに同様に16の出力で単一周
波数5MHzデユーティ−50%で変調した光を照射し
て記録薄膜を部分的にアモルファス化させて記録を行1
.X、 1mWの連続出力を照射してその反射光をフォ
トディテクターで検出して再生を行ったとこへ 再生信
号振幅が観測さh CN比53dB(帯域分解能30
kH2)が得られ丸 さらニレーサー光出力を8mWと
16mWの2つのレベルの間で変調して単一周波数5M
Hzと2MH2(ともにデユーティ50%)の2つの波
長で交互に同一トラック上に照射し信号の重ね書きを行
なったところ104回記録後にも再生信号のCN比50
dBが得られ良好な記録が行なわれていることが確S忍
されtも
実施例2
基材にあらかじめ幅0. 6μm・深さ65%mの溝ト
ラツクを形成した厚さ1゜ 2mm・直径200mmの
PC樹脂円板を用いこれを真空中で回転させながら実施
例1と同様の方法でZnS薄膜を153nrn蒸着し
さらに記録薄膜としてGe2Sb2Teaを実施例1と
同様に10%mの膜厚でアモルファス状態で蒸着し さ
らにZnS薄膜を厚さ17 ? nm蒸着し さらに記
録薄膜としてGe2Sb2Teaを同様に10%mの膜
厚でアモルファス状態で形成し さらにZnS薄膜を厚
さ141%m蒸着し九 また同じ構成の多層薄膜を18
x18mm厚さ0.2mmのガラス基材上にも形成しん
さらに樹脂円盤上に成膜したものは同じPC樹脂円盤
を紫外線硬化性の接着材で張り付けて密着した保護材を
設け光記録媒体を形成し九
ガラス基材上に形成したサンプルを300℃で5分間ア
ルゴン雰囲気中で加熱して全面を結晶化し結晶化前後で
基材側からの反射率を測定したところ熱処理前は18%
熱処理後は42%で反射率変化24%が得られ九
この媒体を回転させ線速度10m/seeの線速度で波
長830 nmの半導体レーザー光を開口数0.5のレ
ンズ系で絞って実施例1と同様に基材側から照射した
記録薄膜面上で7mWの出力で連続的に照射したところ
照射部の記録薄膜が結晶化した さらに同様に15の出
力で単一周波数5MHzデユーティ−50%で変調した
光を照射して記録薄膜を部分的にアモルファス化させて
記録を行1.k1mWの連続出力を照射してその反射光
をフォトディテクターで検出して再生を行ったとこへ
再生信号振幅が観測さh CN比56dBが得られた
さらにレーザー光出力を7mWと15mWの2つのレ
ベルの間で変調して単一周波数5MHzと2MH2(と
もにデユーティ50%)の2つの波長で交互に同一トラ
ック上に照射し信号の重ね書きを行なったところ105
回記録後にも再生信号のCN比51dBが得られ良好な
記録が行なわれていることが確認され九
実施例3
基材にあらかじめ幅0. 6μm・深さ65nmの溝ト
ラツクを形成した厚さ1. 2mm・直径200mmの
PC樹脂円板を用いこれを真空中で回転させながら実施
例1、2と同様の方法でZnS薄膜を153nm蒸着し
さらに記録薄膜としてGeaSbaTesを実施例1
、2と同様にIonmの膜厚でアモルファス状態で蒸着
し さらにZnS薄膜を厚さ165nm蒸着し さらに
記録薄膜としてGe2s bpTesを同様に1(ln
mの膜厚でアモルファス状態で形成し さらにZnS薄
膜を厚さ153nm蒸着した また同じ構成の多層薄膜
を18X18mm厚さ0.2mmのガラス基材上にも形
成した さらに樹脂円盤上に成膜したものはPC樹脂製
円盤を紫外線硬化性の接着材で張り付けて密着した保護
材を総厚1.2mmになるように設け光記録媒体を形成
し九
ガラス基村上に形成したサンプルを300℃で5分間ア
ルゴン雰囲気中で加熱して全面を結晶化し結晶化前後で
基材側からの反射率を測定したところ熱処理前は16%
、熱処理後は39%で反射率変化23%が得られ九
この媒体を回転させ線速度10m/secの線速度で波
長830 nmの半導体レーザー光を開口数0.5のレ
ンズ系で絞って実施例1、2と同様に基材側から照射し
九 記録薄膜面上で6.5mWの出力で連続的に照射し
たところ照射部の記録薄膜が結晶化しtも さらに同
様に15の出力で単一周波数5MHzデユーティ−50
%で変調した光を照射して記録薄膜を部分的にアモルフ
ァス化させて記録を行(\ 1mWの連続出力を照射し
てその反射光をフォトディテクターで検出して再生を行
ったとこへ 再生信号振幅が観測さh CN比55d
Bが得られk また同様に保護材側から記録・再生を行
なったところ同等の特性を得ることができた
発明の効果
本発明によれば記録薄膜層が薄いため繰り返し記録を行
なっても劣化しにくく、かつ光学的な特性の良好な書き
換え可能な相変化型の光記録媒体得ることができる。Even in the case of other materials used in the above-mentioned phase change recording thin film, it is necessary that the film thickness be approximately 15 to 20 nm or less in view of its optical constants. If this absorption differs, the magnitude of the recorded state of the two layers differs during recording, making it impossible to obtain a desired reproduction signal. Therefore, it is desirable that the two be approximately equal.Furthermore, the calculation results show that even if the thickness of each transparent layer changes by about λ/32 in optical length, in this case about 12 nm, there is no major change in the characteristics and there is a large margin in film thickness. I don't understand. For example, when the recording thin film layer thickness t2=t4=5 nm, the transparent layer thickness tl is 16
5-189nm, t3 is 165-189nrrK
Even when t5 is in the range of 1l30-165n, the reflectance change ΔR is 17% or more, and when the recording thin film layer thickness t2=t4=10 nm, the transparent layer thickness tl is 141-165 nm, and t3 is 16
It was found that the reflectance change ΔR could be 22% or more even in the range of 130 to 153 nm.Within these film thickness ranges, the film thickness t of transparent layer 2 and transparent layer 6 was
Even if a combination in which 1 and t5 are equal is possible, in that case, the recording thin film layers 3 and 5 are made of the same material and have the same thickness, t2=
t4, the materials of the transparent layers 2 and 4.6 are appropriate, and the refractive index of the base material and the protective material are equal.8 Therefore, the overall film thickness structure is symmetrical in the film thickness direction. Even when viewed from the protective material side, the optical properties are the same.In this case, as mentioned above, the thickness of the recording thin film layer and the transparent layer has an optical length of approximately λ/32, so the thickness of each layer should be approximately within that range. In addition, since the optimum value of the transparent layer thickness does not change greatly when the recording thin film layer thickness is 5 nm and 10% m, the margin for the recording thin film layer thickness is also large in this film thickness range. , t4 should be approximately equal.Furthermore, if the optical thickness of the base material and the protective material are equal, the characteristics will be the same whether recording or reproducing is performed from the base material side or from the protective material side. Based on the above results, it can be seen that by appropriately selecting the thickness of each layer, a configuration with a large change in reflectance can be obtained even when the recording thin film layer is sufficiently thin (less than 20% m).Based on this calculation, the following method is used. A width of 0. Thickness 1. Formed a groove track with a depth of 6 μm and a depth of 65% m. Using a PC resin disk of 2 mm in diameter and 200 mm in diameter, a ZnS thin film of 177% m was deposited using the above method while rotating it in a vacuum, and then a recording thin film of Ge2Sb2Tes was similarly deposited in an amorphous state with a film thickness of 5 nm. A thin film was deposited to a thickness of 177% m, and Ge2Sb2Tea was similarly formed as a recording thin film to a thickness of 5 nm in an amorphous state.
An nS thin film was deposited to a thickness of 153% m.A multilayer thin film with the same structure was also formed on a glass substrate of 18 x 18 mm and a thickness of 0.2 mm.Furthermore, a film was formed on a resin disk, and the same PC resin disk was cured with UV rays. A sample formed on a glass substrate with a protective material pasted with a transparent adhesive to form an optical recording medium was heated at 300°C for 5 minutes in an argon atmosphere to crystallize the entire surface. When I measured the reflectance from the side, it was 8 gourds before heat treatment.
After heat treatment, this medium with a reflectance change of 18% at 26% was rotated, and a semiconductor laser beam with a wavelength of 830 nm was focused at a linear velocity of 10 m/sec using a lens system with a numerical aperture of 0.5 to remove the substrate. The recording thin film was focused from the side using a known focus control means, and the groove track was irradiated while being tracked using a known tracking control means.9 When the surface of the recording thin film was continuously irradiated with an output of 8 mW, there was no recording of the irradiated area. The thin film crystallizes into a circle.Furthermore, the recording thin film is partially made amorphous by irradiating light modulated with a single frequency of 5 MHz and a duty of -50% using an output of 16, and recording is performed in row 1.
.. X, where 1 mW continuous output was irradiated and the reflected light was detected by a photodetector and played back, the playback signal amplitude was observedh CN ratio 53 dB (band resolution 30
kHz2) was obtained, and the laser light output was modulated between two levels of 8 mW and 16 mW to generate a single frequency 5M
When the same track was alternately irradiated with two wavelengths, Hz and 2MH2 (both with a duty of 50%), and the signals were overwritten, the CN ratio of the reproduced signal was 50 even after 104 recordings.
dB was obtained and that good recording was being performed. Using a PC resin disk with a thickness of 1° 2 mm and a diameter of 200 mm on which a groove track of 6 μm and a depth of 65% m was formed, a ZnS thin film of 153 nm was deposited in the same manner as in Example 1 while rotating it in a vacuum.
Further, as a recording thin film, Ge2Sb2Tea was deposited in an amorphous state to a thickness of 10% as in Example 1, and a ZnS thin film was further deposited to a thickness of 17?m. Further, as a recording thin film, Ge2Sb2Tea was similarly formed in an amorphous state with a thickness of 10% m, and a ZnS thin film was further deposited to a thickness of 141% m.
The film can also be formed on a glass substrate of 18 mm x 0.2 mm thick.Furthermore, when the film is formed on a resin disk, the same PC resin disk is pasted with an ultraviolet curable adhesive and a protective material that adheres is provided to form an optical recording medium. A sample formed on a glass substrate was heated at 300°C for 5 minutes in an argon atmosphere to crystallize the entire surface, and the reflectance from the substrate side was measured before and after crystallization. Before heat treatment, it was 18%.
After heat treatment, a reflectance change of 24% was obtained at 42%.9 This medium was rotated and a semiconductor laser beam with a wavelength of 830 nm was focused at a linear velocity of 10 m/see using a lens system with a numerical aperture of 0.5. Irradiated from the base material side as in 1.
When the surface of the recording thin film was continuously irradiated with an output of 7 mW, the recording thin film in the irradiated area was crystallized.Furthermore, the recording thin film was similarly irradiated with light modulated at a single frequency of 5 MHz and a duty of -50% at an output of 15. Line 1. Record partially amorphous. The place where the continuous output of k1mW was irradiated and the reflected light was detected with a photodetector and played back.
The reproduced signal amplitude was observed, and a CN ratio of 56 dB was obtained.Furthermore, the laser light output was modulated between two levels of 7 mW and 15 mW, and the single frequency was alternated between two wavelengths of 5 MHz and 2 MHz (both with a duty of 50%). When irradiating on the same track and overwriting the signals, 105
Even after recording twice, a CN ratio of 51 dB was obtained for the reproduced signal, confirming that good recording was being performed. A groove track with a thickness of 6 μm and a depth of 65 nm was formed. Using a PC resin disk of 2 mm in diameter and 200 mm in diameter, a ZnS thin film of 153 nm was deposited in the same manner as in Examples 1 and 2 while rotating it in a vacuum, and GeaSbaTes was further deposited as a recording thin film in Example 1.
, 2, a ZnS thin film was deposited in an amorphous state with a film thickness of 165 nm, and Ge2s bpTes was similarly deposited as a recording thin film.
A thin film of ZnS was formed in an amorphous state with a thickness of m, and a ZnS thin film was further deposited to a thickness of 153 nm.A multilayer thin film with the same structure was also formed on a glass substrate of 18 x 18 mm and a thickness of 0.2 mm.Further, the film was formed on a resin disk. An optical recording medium was formed by attaching a PC resin disk with an ultraviolet curable adhesive and a protective material with a total thickness of 1.2 mm.The sample formed on a glass substrate was heated at 300℃ for 5 minutes. The entire surface was crystallized by heating in an argon atmosphere, and the reflectance from the base material side was measured before and after crystallization. Before heat treatment, it was 16%.
After heat treatment, a reflectance change of 23% was obtained at 39%.The medium was rotated and a semiconductor laser beam with a wavelength of 830 nm was focused at a linear velocity of 10 m/sec using a lens system with a numerical aperture of 0.5. As in Examples 1 and 2, irradiation was performed from the substrate side.9 When the recording thin film surface was continuously irradiated with an output of 6.5 mW, the recording thin film in the irradiated area was crystallized, and t was similarly irradiated with an output of 15. Frequency: 5MHz Duty: 50
Recording is performed by irradiating light modulated by % to make the recording thin film partially amorphous. Amplitude observed h CN ratio 55d
When recording and reproducing were performed from the protective material side in the same manner, the same characteristics were obtained. Effects of the Invention According to the present invention, since the recording thin film layer is thin, it does not deteriorate even after repeated recording. It is possible to obtain a rewritable phase-change optical recording medium that is difficult to use and has good optical characteristics.
また各層の膜厚値の余裕が大きく製造が容易で低コスト
な光記録媒体を得ることができる。Further, it is possible to obtain an optical recording medium that is easy to manufacture and inexpensive, with a large margin in the film thickness of each layer.
また金属反射層を用いないため信頼性が高く、製造工程
か簡単で低コストの光記録媒体を得ることかできる。Furthermore, since no metal reflective layer is used, it is possible to obtain an optical recording medium with high reliability, a simple manufacturing process, and a low cost.
さらに記録薄膜層に対して基材側と保護材側のどちら側
からも同等な光学特性をも敷 どちら側からも記録再生
できる書き換え可能な相変化型の光記録媒体を得ること
ができもFurthermore, by applying the same optical properties to the recording thin film layer from both the substrate side and the protective material side, it is possible to obtain a rewritable phase-change optical recording medium that can be recorded and reproduced from either side.
第1図は本発明の1実施例の構成を示す断面模式@ 第
2図および第3図は比較のための従来例の構成を示す断
面模式図であム
1・・・・・・・・・基材
2.4.6・・・・・透明層
3、5・・・・・・・記録薄膜層
7・ ・・・・・・・反射層
8・ ・・・・・・・保護材Figure 1 is a schematic cross-sectional diagram showing the configuration of one embodiment of the present invention; Figures 2 and 3 are schematic cross-sectional diagrams showing the configuration of a conventional example for comparison.・Base material 2.4.6...Transparent layer 3, 5...Recording thin film layer 7...Reflective layer 8...Protective material
Claims (5)
得る変化を生じる記録薄膜層を設けた光学的情報記録媒
体であって、 前記基材上に第1の透明層、第1の記録薄膜層、第2の
透明層、第2の記録薄膜層および第3の透明層をそれぞ
れ順次設け、 前記第1および第2の記録薄膜層がレーザー光照射によ
る相変化によって光学的に検知し得る変化を生じる材料
からなることを特徴とする光学的情報記録媒体。(1) An optical information recording medium in which a recording thin film layer that causes an optically detectable change upon irradiation with a laser beam is provided on a base material, wherein a first transparent layer and a first recording layer are provided on the base material. A thin film layer, a second transparent layer, a second recording thin film layer and a third transparent layer are respectively provided in sequence, and the first and second recording thin film layers can be optically detected by a phase change caused by laser light irradiation. An optical information recording medium characterized by being made of a material that undergoes change.
0nm以下であることを特徴とする請求項1記載の光学
的情報記録媒体。(2) The thickness of the first and second recording thin film layers is 2
The optical information recording medium according to claim 1, wherein the optical information recording medium has a particle diameter of 0 nm or less.
光の吸収が略々等しいことを特徴とする請求項1記載の
光学的情報記録媒体。(3) The optical information recording medium according to claim 1, wherein the first recording thin film layer and the second recording thin film layer have approximately the same absorption of laser light.
得る変化を生じる記録薄膜層を設けた光学的情報記録媒
体であって、 前記基材上に第1の透明層、第1の記録薄膜層、第2の
透明層、第2の記録薄膜層、第3の透明層および保護材
をそれぞれ順次設け、 前記第1および第2の記録薄膜層が同一の材質からなり
、かつ前記第1、第2および第3の透明層が同一の材質
からなり、 前記第1の記録薄膜層厚と前記第2の記録薄膜層厚が略
々等しく、かつ前記第1の透明層の光学的厚さと前記第
3の透明層の光学的厚さが略々等しいことを特徴とする
光学的情報記録媒体。(4) An optical information recording medium comprising a recording thin film layer that causes an optically detectable change upon irradiation with a laser beam on a base material, wherein a first transparent layer and a first recording layer are provided on the base material. A thin film layer, a second transparent layer, a second recording thin film layer, a third transparent layer and a protective material are provided in sequence, and the first and second recording thin film layers are made of the same material, and the first and second recording thin film layers are made of the same material, and , the second and third transparent layers are made of the same material, the first recording thin film layer thickness and the second recording thin film layer thickness are approximately equal, and the optical thickness of the first transparent layer is approximately the same as the optical thickness of the first transparent layer. An optical information recording medium characterized in that the third transparent layer has substantially the same optical thickness.
得る変化を生じる記録薄膜層を設けた光学的情報記録媒
体であって、 前記記録薄膜層の基材とは反対側に透明な保護材を設け
保護材の光学的な厚さが前記基材の光学的な厚さと略々
等しいことを特徴とする光学的情報記録媒体。(5) An optical information recording medium comprising a recording thin film layer that causes an optically detectable change when irradiated with a laser beam on a base material, the recording thin film layer having a transparent protection on the side opposite to the base material. An optical information recording medium characterized in that the optical thickness of the protective material is approximately equal to the optical thickness of the base material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2097161A JP2782910B2 (en) | 1990-04-12 | 1990-04-12 | Optical information recording method, reproducing method and erasing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2097161A JP2782910B2 (en) | 1990-04-12 | 1990-04-12 | Optical information recording method, reproducing method and erasing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03295040A true JPH03295040A (en) | 1991-12-26 |
JP2782910B2 JP2782910B2 (en) | 1998-08-06 |
Family
ID=14184849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2097161A Expired - Fee Related JP2782910B2 (en) | 1990-04-12 | 1990-04-12 | Optical information recording method, reproducing method and erasing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2782910B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9542969B2 (en) | 2012-05-28 | 2017-01-10 | Hitachi, Ltd. | Optical recording medium and optical information playback method |
CN112363329A (en) * | 2020-12-07 | 2021-02-12 | 山东高等技术研究院 | Dull and stereotyped structure based on transmission characteristic can be regulated and control to phase change material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6144692A (en) * | 1984-08-09 | 1986-03-04 | Nippon Telegr & Teleph Corp <Ntt> | Laser beam recording member |
JPS6166696A (en) * | 1984-09-11 | 1986-04-05 | Nippon Telegr & Teleph Corp <Ntt> | Laser recording medium |
JPS61148645A (en) * | 1984-12-21 | 1986-07-07 | Victor Co Of Japan Ltd | Information recording medium |
JPS62102438A (en) * | 1985-10-28 | 1987-05-12 | Nippon Telegr & Teleph Corp <Ntt> | Member for optical recording |
JPS6383932A (en) * | 1986-09-29 | 1988-04-14 | Toshiba Corp | Optical recording medium |
-
1990
- 1990-04-12 JP JP2097161A patent/JP2782910B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6144692A (en) * | 1984-08-09 | 1986-03-04 | Nippon Telegr & Teleph Corp <Ntt> | Laser beam recording member |
JPS6166696A (en) * | 1984-09-11 | 1986-04-05 | Nippon Telegr & Teleph Corp <Ntt> | Laser recording medium |
JPS61148645A (en) * | 1984-12-21 | 1986-07-07 | Victor Co Of Japan Ltd | Information recording medium |
JPS62102438A (en) * | 1985-10-28 | 1987-05-12 | Nippon Telegr & Teleph Corp <Ntt> | Member for optical recording |
JPS6383932A (en) * | 1986-09-29 | 1988-04-14 | Toshiba Corp | Optical recording medium |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9542969B2 (en) | 2012-05-28 | 2017-01-10 | Hitachi, Ltd. | Optical recording medium and optical information playback method |
CN112363329A (en) * | 2020-12-07 | 2021-02-12 | 山东高等技术研究院 | Dull and stereotyped structure based on transmission characteristic can be regulated and control to phase change material |
Also Published As
Publication number | Publication date |
---|---|
JP2782910B2 (en) | 1998-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6469977B2 (en) | Optical information recording medium, method for producing the same, and method and apparatus for recording/reproducing information thereon | |
JP4145446B2 (en) | How to use optical recording media | |
US5249175A (en) | Optical information recording medium and information recording and reproducing method therefor | |
JP4339999B2 (en) | Optical information recording medium, manufacturing method thereof, recording / reproducing method, and recording / reproducing apparatus | |
US6660451B1 (en) | Optical information recording medium | |
KR100563882B1 (en) | Optical disc | |
US5811217A (en) | Optical information recording medium and optical information recording/reproducing method | |
JPH06282876A (en) | Optical recording medium | |
EP0360466B1 (en) | Optical information recording medium and information recording and reproducing method therefor | |
JP2000215516A (en) | Optical information recording medium and its production, recording and reproducing method for the same, and recording and reproducing device | |
JP2661293B2 (en) | Optical information recording medium | |
JPH04134643A (en) | Optical information recording medium | |
JPH03295040A (en) | Optical information recording medium | |
JPH07105063B2 (en) | Optical information recording medium | |
JPH02113451A (en) | Optical information recording medium | |
JP2001028148A (en) | Optical information recording medium, its manufacture, recording/reproducing method and recording/ reproducing device | |
JPH04119885A (en) | Optical recording medium and preparation thereof | |
JP2979620B2 (en) | Optical information recording medium and optical information recording / reproducing method | |
JP2972435B2 (en) | Information optical recording medium and recording / reproducing method thereof | |
JP2913759B2 (en) | Optical recording medium | |
JP2639174B2 (en) | Optical recording medium | |
JPH04119884A (en) | Optical recording medium and preparation thereof | |
JPS60160037A (en) | Information recording medium | |
JPH05144084A (en) | Optical recording medium and production thereof | |
JPH03241539A (en) | Optical information recording, reproducing and erasing member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |