JPS60160037A - Information recording medium - Google Patents

Information recording medium

Info

Publication number
JPS60160037A
JPS60160037A JP59015463A JP1546384A JPS60160037A JP S60160037 A JPS60160037 A JP S60160037A JP 59015463 A JP59015463 A JP 59015463A JP 1546384 A JP1546384 A JP 1546384A JP S60160037 A JPS60160037 A JP S60160037A
Authority
JP
Japan
Prior art keywords
layer
recording
recording layer
transition
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59015463A
Other languages
Japanese (ja)
Inventor
Susumu Sakamoto
進 坂本
Junichi Akamatsu
赤松 順一
Kenjiro Watanabe
健次郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59015463A priority Critical patent/JPS60160037A/en
Publication of JPS60160037A publication Critical patent/JPS60160037A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25706Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing transition metal elements (Zn, Fe, Co, Ni, Pt)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To enable recording, reading and erasion with laser light by forming a phase transition recording layer of a material enabling reverside transition from an amorphous phase to a crystalline phase on a substrate and a layer of a material having a higher m.p. than the material of the recording layer and causing no reaction with the material of the recording layer even at the m.p. or above on the recording layer. CONSTITUTION:A recording layer 2 is formed on the surface of a substrate 1 of glass, acrylic resin or the like by vacuum-depositing a material which records information by transition from a crystalline phase to an amorphous phase by rapid heating and rapid cooling and can erase the information by reverse phase transition by removal of heat. The material includes Sb2Se3. A layer 3 of a material having a higher m.p. than the material of the layer 2 by >=300 deg.C and causing no reaction with the material of the layer 2 even at the m.p. or above is then formed on the layer 2 by vacuum deposition with electron beams or other method. The material of the layer 3 includes Mo. The thickness of the recording layer 2 can be reduced, and an optical information recording medium enabling sure recording and erasion with high sensitivity and small power at high speed is obtd. The medium is fit for repeated recording.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ光等の集束エネルギービームによって、
光学的に情報を記録する情報記録媒体、特に消去書き換
え可能な光学式情報記録媒体に係わる◎ 背景技術とその問題点 記録消去、書き換え可能な光学式情報記録媒体としては
、光磁気記録媒体が知られている。しかしながらこのよ
うな光磁気媒体にあっては、その情報記録、即ち磁化の
向きを光の偏光を用いて読み出すものであるために、光
学系が複雑となる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides for
Related to information recording media that optically record information, especially erasable and rewritable optical information recording media ◎ Background technology and its problems Magneto-optical recording media are known as erasable and rewritable optical information recording media. It is being However, in such a magneto-optical medium, the optical system is complicated because information is recorded, that is, the direction of magnetization is read out using polarized light.

また、その消去は外部磁界によってなすものであるため
に装置が複雑となる。
Furthermore, since the erasure is performed using an external magnetic field, the device becomes complicated.

これに比し磁気記録によらない非晶質から結晶質へ、ま
た結晶質から非晶質への可逆的相転移を利用して、急熱
、急冷による結晶質から非晶質への相転移を行って例え
ば情報の記録をなし、楡熱によって非晶質から結晶質へ
の相転移を行って例えば消去をなし非晶質状態と結晶質
状態における反射率R1透過率τの変化によって信号の
再生を行う方法が提案された。例えば特開昭55−28
530号公報にはreox(o<x<2)等の低酸化物
を用いた情報記録材料、或いは特開昭52−13814
5号公報に開示されたAs −To−Qa系の情報記録
材料が提案されている。このような相転移によって情報
の記録、消去、書き換えを行う方法による場合、レーザ
ー光量及び照射時間によって結晶質ヰ非晶質の相転移を
行わしめて記録及び消去を行うので光学系が簡素化され
るという利点を有する。またこの相転移による記録方法
はその再生信号量が前述した光磁気材料による再生信号
量に比して極めて大きいものであってコントラスト比の
大きな記録ができるという利点を有している。
In contrast, by utilizing reversible phase transition from amorphous to crystalline and from crystalline to amorphous that does not rely on magnetic recording, phase transition from crystalline to amorphous by rapid heating and cooling is possible. For example, information is recorded by performing a phase transition from amorphous to crystalline using elm heat, and erasing is performed, for example, and the signal is A method of regeneration was proposed. For example, JP-A-55-28
No. 530 discloses information recording materials using low oxides such as reox (o<x<2), or JP-A-52-13814.
An As-To-Qa-based information recording material disclosed in Publication No. 5 has been proposed. In the case of a method of recording, erasing, and rewriting information through such a phase transition, the optical system is simplified because the recording and erasing are performed by making a phase transition between crystalline and amorphous depending on the amount of laser light and the irradiation time. It has the advantage of Further, this recording method using phase transition has the advantage that the amount of reproduced signals is much larger than the amount of reproduced signals using the above-mentioned magneto-optical material, and recording with a high contrast ratio can be performed.

このように相転移によって情報の記録、消去。In this way, information is recorded and erased through phase transition.

書き換えを行う情報記録媒体においては、その結晶状態
から非晶質状態への相転移、例えば記録にあたっては急
冷を要することから、できるだけ記録層の熱容量は小さ
いことが要求され、更に非晶質状態から結晶質への転移
による例えば消去時においては、この記録層をその融点
以上に高温に刃口熱する必要があることからその熱効率
をできるだけ高めて照射光のパワーの低減化乃至は照射
光と情報記録媒体との相対的走行速度例えばディスクに
おける回転速度を早め得るようにするために記録層の厚
さはできるだけこれが薄く形成されることが要求される
。ところがこの相転移を利用した情報記録を行う情報記
録媒体においてこれを単層膜で実現しようとする場合、
記録前後の光学定数の変化即ち大きな変調度がとれる最
小膜厚が100OX程度に決まってしまう。第1図は、
ガラス基板上にS b y o S @ 3oよシなる
記録層を蒸着して得た情報記録媒体に対してその基体側
から半導体レーザー元(波長83011m)を照射した
場合の反射率を示すもので、同図中実線曲線は記録層の
蒸着状態即ち非晶質状態の場合、破線曲線は加熱徐冷に
よってこの記録層を結晶化した場合でここに非晶質状態
における複屈折率育= 4.4−1.5 t 、結晶質
状態ではW= 4.9−2.8 tである。これよシ明
らかなように記録前後における最大の反射率差即ち最大
の変調度を得ることのできる最小膜厚は1000X程度
である。
In information recording media that are rewritten, the phase transition from a crystalline state to an amorphous state, for example, requires rapid cooling for recording, so the heat capacity of the recording layer is required to be as small as possible. For example, when erasing due to the transition to a crystalline state, it is necessary to heat this recording layer to a temperature higher than its melting point. Therefore, the thermal efficiency is increased as much as possible to reduce the power of the irradiated light or to reduce the power of the irradiated light and information. In order to increase the relative running speed with the recording medium, such as the rotational speed of the disk, the recording layer is required to be formed as thin as possible. However, when trying to realize this with a single layer film in an information recording medium that records information using this phase transition,
The minimum film thickness that allows a change in optical constants before and after recording, that is, a large degree of modulation, is determined to be about 100 OX. Figure 1 shows
This shows the reflectance when a semiconductor laser source (wavelength 83011 m) is irradiated from the substrate side of an information recording medium obtained by depositing a recording layer such as SbyoS@3o on a glass substrate. In the same figure, the solid line curve represents the case where the recording layer is in the vapor deposition state, that is, the amorphous state, and the broken line curve represents the case where the recording layer is crystallized by heating and slow cooling, where the birefringence growth in the amorphous state = 4. 4-1.5 t, and in the crystalline state W = 4.9-2.8 t. As is clear from this, the minimum film thickness that can obtain the maximum reflectance difference before and after recording, that is, the maximum modulation degree, is about 1000X.

発明の目的 本発明は上述した相転移による情報記録媒体において、
情報記録層の厚さを充分薄くすることができるようにし
て記録及び消去を確実にかつ高感度、低ノfワー、高速
回転をもって行うことができるようにし、しかも記録後
の変調度を大きくとることができるようにした情報記録
媒体を提供するものである。
Purpose of the Invention The present invention provides an information recording medium based on the above-mentioned phase transition,
It is possible to make the thickness of the information recording layer sufficiently thin so that recording and erasing can be performed reliably with high sensitivity, low noise, and high speed rotation, and the degree of modulation after recording is increased. The purpose of this invention is to provide an information recording medium that enables the following.

発明の概要 本発明においては、基板上に1少くとも第1の層と第2
の層とを設ける。第1の層は相転移記録層即ち非晶質状
態と結晶質状態とが可逆的に変化し得る記録材料層よシ
なシ、第2の層はこの第1の層即ち記録層の構成材料の
融点よ9300℃以上高い融点を有し、かつ第1の層即
ち記録層がその溶融温度以上に昇温した状態においても
この第1の層と反応が生じることがない安定な高融点材
料層よ)構成する。
SUMMARY OF THE INVENTION In the present invention, at least one layer and a second layer are formed on a substrate.
A layer is provided. The first layer is a phase change recording layer, that is, a recording material layer that can reversibly change between an amorphous state and a crystalline state, and the second layer is a constituent material of this first layer, that is, a recording layer. A stable high melting point material layer that has a melting point higher than the melting point of ) Configure.

実施例 実施例1 第2図に示すように、ガラス基板(1)上に第1の層(
2)、即ち記録層として5b2S03ヲ抵抗加熱による
真空蒸着によって厚さ400Xに被着形成し、これの上
に第2の層(3)即ち高融点層としてMo f電子ビー
ム蒸着によp 960 Xの厚さに被着形成した。これ
ら第1及び第2の層(2)及び(3)は同一の真空蒸着
ペルツヤー内にSb2Se3の抵抗加熱による蒸着源と
、Moの電子ビーム衝撃による蒸着源とを設けおくこと
によって連続蒸着によって形成することができる。この
ようにして得た試料に対し、その基体(1)側から半導
体レーデ−元(波長λ= s3o nm)の平行ビーム
を照射し、その反射光をフォトディテクターでモニター
しながらこの試料を加熱して行った。この場合の加熱温
度と反射率との関係の測定結果を第3図に示す。これよ
シ明らかなように、この場合、180℃付近の加熱によ
って反射率が大きく変化している。これはこの温度で5
b2Ss3記録層(2)が非晶質状態から結晶質状態に
転移しているためでアリ、これ以上にその加熱温度を上
昇させても反射率変化はほとんど見られていない。尚、
ここにS b 2 S s sの融点は、5850′で
あシ、この温度程度位までの昇温によっても第2層のM
oとの反応は生じていない。
Examples Example 1 As shown in FIG. 2, a first layer (
2), that is, as a recording layer, 5b2S03 is deposited to a thickness of 400X by vacuum evaporation using resistance heating, and on top of this, a second layer (3), that is, a high melting point layer, is formed by Mo f electron beam evaporation. It was deposited to a thickness of . These first and second layers (2) and (3) are formed by continuous evaporation by providing an evaporation source of Sb2Se3 by resistance heating and a evaporation source of Mo by electron beam bombardment in the same vacuum evaporation Pelzer. can do. The sample thus obtained was irradiated with a parallel beam of a semiconductor radar source (wavelength λ = s3o nm) from the substrate (1) side, and the sample was heated while monitoring the reflected light with a photodetector. I went. The measurement results of the relationship between heating temperature and reflectance in this case are shown in FIG. As is clear, in this case, the reflectance changes greatly due to heating around 180°C. This is 5 at this temperature
This is because the b2Ss3 recording layer (2) has transitioned from an amorphous state to a crystalline state, and almost no change in reflectance is observed even if the heating temperature is increased further. still,
Here, the melting point of S b 2 S s s is 5850', and even if the temperature is raised to about this temperature, the M of the second layer
No reaction with o occurred.

実施例2 1.2諺厚さのガラス円盤よシなる基体(1)ヲ設けこ
れに実施例1と同様に5b2S03よシなる第1の層(
2)とMoよシなる第2の層(3)を夫々抵抗加熱によ
る真空蒸着、電子ビーム衝撃による真空蒸着によって被
着してディスクを得た。これをオーブンにて加熱し第1
の層即ち記録層のSb2Se3層を結晶化させて第3図
において示した高反射率の状態にし、その後半導体レー
ザー光でディスクの回転数300r、p、mとして盤面
のレーザーノぞワー9.5mW直流によって記録を行っ
た。このようにして記録された部分は、非晶質化されそ
の反射率は半分程度に低下した。このディスクを再びオ
ープンにて加熱アニールすると記録部は再度結晶化した
。同様にして再び直流レーザー元による記録を行うと前
述したとP1様に非晶質化され、これらの現象が可逆的
であることが確認された。
Example 2 A substrate (1) such as a glass disk having a thickness of 1.2 mm was provided, and a first layer (5b2S03) was coated thereon in the same manner as in Example 1.
2) and a second layer (3) made of Mo were deposited by vacuum evaporation using resistance heating and vacuum evaporation using electron beam bombardment, respectively, to obtain a disk. Heat this in the oven and
The layer, that is, the three Sb2Se layers of the recording layer, is crystallized to the high reflectance state shown in FIG. Recordings were made by direct current. The portion recorded in this manner became amorphous and its reflectance was reduced to about half. When this disk was heated and annealed again in the open, the recording portion was crystallized again. When recording was performed again using a direct current laser source in the same manner, the film became amorphous like P1 as described above, and it was confirmed that these phenomena were reversible.

比較例1 実施例IKおけると同様にガラス基体上に5b2Se。Comparative example 1 5b2Se on a glass substrate as in Example IK.

層を抵抗加熱による真空蒸着によって400Xの厚さに
形成し、これの上にNl ’に電子ビーム蒸着により 
2500X形成した。このようにして得た試料を、実施
例1におけると同様に加熱しながらその反射率をモニタ
ーしたところ、第4図に示すように加熱温度に対する反
射率変化が得られた。この第4図を第3図と比較して明
らかなように、この比較例1による試料は、反射率の変
化が複雑な態様をとる。これは記録層の5b2Se、の
結晶状態変化だけではなくSb2Se3と1IJiとの
合金化反応(拡散反応)がおきていることによるものと
思われる。尚、この場合、高反射率状態から元の低反射
率状態即ち5b2so、の非晶質状態に戻すことは不可
能であシ記録消去書き換えは不可能であった。
A layer is formed to a thickness of 400X by vacuum evaporation with resistance heating, and on top of this, Nl' is deposited by electron beam evaporation.
2500X was formed. When the reflectance of the thus obtained sample was monitored while being heated in the same manner as in Example 1, changes in reflectance with respect to heating temperature were obtained as shown in FIG. As is clear from comparing FIG. 4 with FIG. 3, the sample according to Comparative Example 1 exhibits a complicated change in reflectance. This seems to be due to not only a change in the crystal state of 5b2Se in the recording layer but also an alloying reaction (diffusion reaction) between Sb2Se3 and 1IJi. In this case, it was impossible to return from the high reflectance state to the original low reflectance state, that is, the amorphous state of 5b2so, and recording, erasing, and rewriting were impossible.

実施例3 案内溝付きの厚さ1.2簡のアクリル基板よシなる基体
(1)を用意し、これに5lo2t 1ooo lの厚
さに抵抗加熱蒸着によって形成した。更にこれの上に第
1の記録層として5b2Se5とsbとの2元共蒸着に
よI) Seの組成比が30原子係である8b−8o合
金@ 350 Xの厚さに形成し、これの上に第2の層
(3)としてMoを電子ビーム蒸着によjo 500 
Xの厚さに被着形成した。これら5iOz −5b−8
s合金層、Mo層の各蒸着は、同一蒸着ペルジャー内で
連続的に行うことができる。このようにして得たディス
クを、その蒸着面を内側にして基体(1)とは反対側に
透明の同様のアクリル基板を紫外線硬化樹脂をもって貼
シ合わせてディスクを得た。このようにして得たディス
クの5IO2層は、断熱効果を得るためのものである。
Example 3 A substrate (1) such as a 1.2-thick acrylic substrate with a guide groove was prepared, and a film was formed thereon to a thickness of 5lo2t 1ooo l by resistance heating vapor deposition. Furthermore, a first recording layer of 8b-8o alloy @350 Mo is deposited as a second layer (3) on top of the jo 500 by electron beam evaporation.
It was deposited to a thickness of X. These 5iOz -5b-8
The s-alloy layer and the Mo layer can be deposited continuously in the same deposition Pelger. A similar transparent acrylic substrate was laminated with an ultraviolet curing resin on the side opposite to the substrate (1), with the vapor-deposited surface facing inside, to obtain a disk. The 5IO2 layer of the disk thus obtained is for obtaining a heat insulating effect.

即ち、この5so2Nはアクリル基板よシ成る基体(1
)の、第1及び第2の層の蒸着時の加熱による変形を防
止すると共に、第1の層の記録材料層の腐蝕防止の効果
を得るものである。また、この蒸着面上に貼シ合わせた
アクリル基板は、記録層の保護と共に記録材料の変形蒸
発等の防止効果を得るだめのものである。このようにし
て作製したディスクに半導体レーザー元をビーム径約1
μm程度に集光させて記録層(2)に対して記録消去を
行った。先ず、ディスクを45Orpmで回転させ半導
体レーザー元の盤面パワー15mWの直流で記録層を非
晶質から結晶質層に変化させ高反射率状態とした。この
時、初期の反射率を1とした時高反射率状態ではその1
.5〜2倍程度となった。次にディスクk 1800r
pmの速度で回転させ、レーザー元の盤面での出力パワ
ー盤を、最高18.5mWで2 MHzの基準信号f 
/?ルス変調し記録を行った。この時の再生18号のC
/Nをスペクトルアナライザで測定したところ47 d
Bであった。その後、ディスクの回転数f 450 r
pmに落し先に記録したトラックを再び盤面パワー15
mWのレーデパワーで消去した。
That is, this 5so2N is a base (1
), the first and second layers are prevented from being deformed by heating during vapor deposition, and the recording material layer of the first layer is also prevented from being corroded. Further, the acrylic substrate laminated on the vapor deposition surface is used to protect the recording layer and to prevent deformation and evaporation of the recording material. A semiconductor laser source with a beam diameter of approximately 1
Recording and erasing was performed on the recording layer (2) by focusing the light to about μm. First, the disk was rotated at 45 rpm, and the recording layer was changed from an amorphous state to a crystalline layer with a direct current of 15 mW of surface power from a semiconductor laser, resulting in a high reflectance state. At this time, when the initial reflectance is 1, in a high reflectance state, it is 1
.. It became about 5 to 2 times. Next disk k 1800r
The output power at the laser source panel is rotated at a speed of 2 MHz with a maximum of 18.5 mW and a reference signal f of 2 MHz.
/? The pulse was modulated and recorded. At this time, playback No. 18 C
/N was measured with a spectrum analyzer and found to be 47 d
It was B. After that, the rotation speed of the disk f 450 r
pm and the previously recorded track again with a board power of 15.
It was erased with a lede power of mW.

この時の消去部分の再生信号をスペクトルアナライザで
測定すると10 dB程度の消し残しはあるもののほと
んど消去されていることが確認された。
When the reproduced signal of the erased portion was measured using a spectrum analyzer, it was confirmed that most of the signal had been erased, although there was about 10 dB left unerased.

このディスクに対する記録消去は可逆的であシ、同一ト
ラック上で複数回の記録、消去、書き換えが可能であっ
た。上述したように本発明によれば、その第1の層即ち
記録層を100OX未満の薄い膜にするにも拘らず、記
録、消去時即ち非晶質状態及び結晶質状態間に大きな反
射率変化が得られている。これは第2の層を設けたこと
による2層構造もしくはそれ以上の多層構造にしたこと
による各層間の多重干渉効果によるものである。即ち今
、透明基体上K 5b7oSesoよシ成る第1の層、
即ち記録層を抵抗加熱真空蒸着によって被着し、これの
上に厚さ500 XのMo(D電子ビーム蒸着による第
2の層を設けた2層構造において、その第1の層の厚さ
即ち5b7oSeso層の厚さを変化させた場合の反射
出は、第5図に示すようになる。図中、実線曲線は非晶
質状態、破線曲線は結晶質状態の各反射率を示し、両者
の差はS b 7 OS e s o層の厚さが300
X程度の薄いところで大きな差即ち充分大きな変調度が
とれることがわかる。
Recording and erasing on this disk was reversible, and recording, erasing, and rewriting on the same track was possible multiple times. As described above, according to the present invention, although the first layer, that is, the recording layer, is made into a thin film of less than 100 OX, there is no large reflectance change during recording and erasing, that is, between the amorphous state and the crystalline state. is obtained. This is due to the multiple interference effect between each layer due to the two-layer structure or the multi-layer structure formed by providing the second layer. That is, now a first layer consisting of K5b7oSeso on a transparent substrate,
That is, in a two-layer structure in which a recording layer is deposited by resistance heating vacuum evaporation, and a second layer of 500× thick Mo(D) is deposited thereon by electron beam evaporation, the thickness of the first layer is The reflection output when the thickness of the 5b7oSeso layer is changed is as shown in Figure 5. In the figure, the solid line curve shows the reflectance of the amorphous state, and the dashed line curve shows the reflectance of the crystalline state. The difference is that the thickness of the S b 7 OS e s o layer is 300
It can be seen that a large difference, that is, a sufficiently large modulation degree, can be obtained at a thinness of about X.

上述した本発明によれば、記録層の厚さを充分/J1に
したにも拘らず、大きな変調度が得られるものであるが
、第1の層としてSb S e化合物による記録相打を
用いる場合、そのSe組成比は10〜70原子チ、好ま
しくは、20〜35原子俤に選定することによってこの
記録層の結晶化及び非晶質化を可逆的に確実に行うこと
ができることが確かめられた。また第2の層としては、
上述したMO以外にW 、Ta + Nb 、Zr +
 Hf * Tlの内から選ばれた少なくとも1つの金
属もしくはこれらの合金を用いることによって記録及び
消去の過程において上述した第1の層とこの第2層との
界面を充分変形なく保持することができた。
According to the present invention described above, a large degree of modulation can be obtained even though the thickness of the recording layer is set to sufficient /J1, but recording interpolation using a SbSe compound is used as the first layer. It has been confirmed that by selecting the Se composition ratio in the range of 10 to 70 atoms, preferably 20 to 35 atoms, the recording layer can be reversibly crystallized and made amorphous. Ta. Also, as the second layer,
In addition to the MO mentioned above, W, Ta + Nb, Zr +
By using at least one metal selected from Hf*Tl or an alloy thereof, the interface between the first layer and the second layer can be maintained without deformation during the recording and erasing process. Ta.

発明の効果 上述したように本発明によれば、記録層例えば5bSs
化合物記録層の単層構造とする場合に比し高融点層の第
2の層を設けた2層以上の多層構造としたことによって
記録層の膜厚を単層構造の場合の1程度にも薄くして充
分な変調度を得ることができ、このように記録層を薄く
することができるので記録層の熱容量の低減化を図るこ
とができ、結晶質状態から非晶質状態への転移過程にお
ける急熱急冷の榮件が満足しゃすくなシ記録感度を高め
ることができ、また非晶質状態から結晶質状態において
も、そのレーザー元パワーを小さくできるとかディスク
の高速回転が可能となるなどの利点を有する。また、第
2の層として高融点材料層を設けたことによって記録層
の変形が効果的に防止できると共に記録層上の保護膜の
効果を得ることができる。
Effects of the Invention As described above, according to the present invention, the recording layer, for example, 5bSs
Compared to the case of a single layer structure of a compound recording layer, by adopting a multilayer structure of two or more layers with a second layer of high melting point layer, the film thickness of the recording layer can be reduced to about one layer of that of a single layer structure. A sufficient modulation degree can be obtained by making the recording layer thinner, and since the recording layer can be made thinner, the heat capacity of the recording layer can be reduced, and the transition process from the crystalline state to the amorphous state can be reduced. The rapid heating and cooling conditions are satisfactory, and the recording sensitivity can be increased, and the laser source power can be reduced even in the amorphous to crystalline state, and the disk can rotate at high speed. has advantages. Further, by providing the high melting point material layer as the second layer, deformation of the recording layer can be effectively prevented and the effect of a protective film on the recording layer can be obtained.

また記録層の単層構造とする場合、この記録層は、使用
レーザー元に対して成る程度の吸収金もつことが必要に
なるものであるが、2層以上の構造とした場合において
は記録層自体が使用レーザー元に対して吸収をもつ必要
性がないので、使用し一ザー元に対して透過性の高い材
料をもつ記録層が使用可能となシ、記録層の材料の選定
の自由度が大となるという実用上の効果もある。
In addition, when the recording layer has a single layer structure, this recording layer needs to have a certain amount of absorption for the laser source used, but when it has a two or more layer structure, the recording layer Since there is no need for the recording layer to absorb the laser source used, it is possible to use a recording layer made of a material that is highly transparent to the laser source, which increases the flexibility in selecting the material for the recording layer. There is also the practical effect of increasing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は記録層の膜厚と反射率の関係を示す特性図、第
2図は本発明による情報記録媒体の路線的断面図、第3
図及び第4図は本発明の実施例及び比較例の各反射率特
性曲線図、第5図は本発明による情報記録媒体の記録層
の厚さと反射率の関係を示す特性曲線図であ゛る。 (1)は基体、(2)及び(3)は第1及び第2の層で
ある。 5bto 5ajo ’) 41!(7)−5bto 
SamO#)Jl14(ス)へ第3図 第4図 :IIL麿(℃]−
FIG. 1 is a characteristic diagram showing the relationship between the thickness of the recording layer and the reflectance, FIG. 2 is a cross-sectional view of the information recording medium according to the present invention, and FIG.
4 and 4 are reflectance characteristic curve diagrams of examples and comparative examples of the present invention, and FIG. 5 is a characteristic curve diagram showing the relationship between the thickness of the recording layer and the reflectance of the information recording medium according to the present invention. Ru. (1) is a base, (2) and (3) are first and second layers. 5bto 5ajo') 41! (7)-5bto
SamO #) Jl14 (S) Figure 3 Figure 4: IIL Maro (℃] -

Claims (1)

【特許請求の範囲】[Claims] 基板上に、少くとも第1の層と第2の層とを有して成シ
、上記第1の層は非晶質状態と結晶質状態とが可逆的に
変化し得る記録材料層よシ成シ、上記第2の層は上記第
1の層の融点よ9300℃以上高い融点を有し、かつ上
記第1の層がこれの溶融温度に昇温した状態で該第1の
層と反応することのない高融点材料層よシ成る情報記録
媒体。
The film is formed on a substrate by at least a first layer and a second layer, the first layer being a recording material layer capable of reversibly changing between an amorphous state and a crystalline state. The second layer has a melting point higher than the melting point of the first layer by 9300° C. or more, and reacts with the first layer when the temperature of the first layer is raised to its melting temperature. An information recording medium consisting of a layer of high melting point material that does not melt.
JP59015463A 1984-01-31 1984-01-31 Information recording medium Pending JPS60160037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59015463A JPS60160037A (en) 1984-01-31 1984-01-31 Information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59015463A JPS60160037A (en) 1984-01-31 1984-01-31 Information recording medium

Publications (1)

Publication Number Publication Date
JPS60160037A true JPS60160037A (en) 1985-08-21

Family

ID=11889486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59015463A Pending JPS60160037A (en) 1984-01-31 1984-01-31 Information recording medium

Country Status (1)

Country Link
JP (1) JPS60160037A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287058A (en) * 1985-06-10 1986-12-17 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Optical data memory device and making thereof
JPH02196688A (en) * 1989-01-26 1990-08-03 Toray Ind Inc Optical recording medium
US5652036A (en) * 1994-09-21 1997-07-29 Kabushiki Kaisha Toshiba Information recording medium and method of manufacturing the same
CN109518149A (en) * 2019-01-07 2019-03-26 重庆大学 Along the preparation method of the antimony selenide optoelectronic film of<002>direction preferential growth

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287058A (en) * 1985-06-10 1986-12-17 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Optical data memory device and making thereof
JPH02196688A (en) * 1989-01-26 1990-08-03 Toray Ind Inc Optical recording medium
US5652036A (en) * 1994-09-21 1997-07-29 Kabushiki Kaisha Toshiba Information recording medium and method of manufacturing the same
CN109518149A (en) * 2019-01-07 2019-03-26 重庆大学 Along the preparation method of the antimony selenide optoelectronic film of<002>direction preferential growth
CN109518149B (en) * 2019-01-07 2020-11-20 重庆大学 Preparation method of antimony selenide photoelectric film preferentially growing along (002) direction

Similar Documents

Publication Publication Date Title
JP2512087B2 (en) Optical recording medium and optical recording method
JP4571238B2 (en) Optical recording medium having phase change recording layer
US6670013B2 (en) Optical recording medium and use of such optical recording medium
US5249175A (en) Optical information recording medium and information recording and reproducing method therefor
US5395669A (en) Optical record medium
JP3666854B2 (en) Information recording medium and manufacturing method thereof
US6660451B1 (en) Optical information recording medium
US5811217A (en) Optical information recording medium and optical information recording/reproducing method
JP2834131B2 (en) Thin film for information recording
EP0360466B1 (en) Optical information recording medium and information recording and reproducing method therefor
JP2827202B2 (en) Optical recording medium
JP2778237B2 (en) Optical information recording medium and optical recording / erasing method
JPS60160037A (en) Information recording medium
JP2661293B2 (en) Optical information recording medium
JP4227278B2 (en) Information recording medium, manufacturing method thereof, and recording / reproducing method thereof
JPH07105063B2 (en) Optical information recording medium
JPH04232780A (en) Phase change optical recording medium
JP2782910B2 (en) Optical information recording method, reproducing method and erasing method
KR100188703B1 (en) Phase change type optical disk
JPS62200544A (en) Optical recording medium
JPH10289478A (en) Optical information recording medium and its production
JPH05144084A (en) Optical recording medium and production thereof
JPH06150375A (en) Optical recording medium and recording-reproducing method using the same
JP2913521B2 (en) Optical recording medium, sputtering target for optical recording medium, and method of manufacturing the same
JPH04263133A (en) Information beam recording medium and recording/ reproducing