JPH0329498B2 - - Google Patents

Info

Publication number
JPH0329498B2
JPH0329498B2 JP57174016A JP17401682A JPH0329498B2 JP H0329498 B2 JPH0329498 B2 JP H0329498B2 JP 57174016 A JP57174016 A JP 57174016A JP 17401682 A JP17401682 A JP 17401682A JP H0329498 B2 JPH0329498 B2 JP H0329498B2
Authority
JP
Japan
Prior art keywords
mold
temperature
output signal
signal
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57174016A
Other languages
Japanese (ja)
Other versions
JPS5964149A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17401682A priority Critical patent/JPS5964149A/en
Publication of JPS5964149A publication Critical patent/JPS5964149A/en
Publication of JPH0329498B2 publication Critical patent/JPH0329498B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2218Cooling or heating equipment for dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ダイカストマシン等の金型鋳造装置
において、金型鋳造を行つてから型開を行うまで
の型開時間を制御する金型鋳造における鋳物冷却
時間の制御装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a mold casting method that controls the mold opening time from mold casting to mold opening in a mold casting apparatus such as a die casting machine. This invention relates to a casting cooling time control device.

[従来技術] 金型鋳造における金型からの鋳物の取出は、金
型内の鋳物の温度が、使用した溶湯の凝固特性で
決定されるある所定の理想温度まで降下した時点
で行うようにしなければならない。もし、この理
想温度よりも高い温度のときに型開して鋳物を取
出すと、鋳物の型離れが悪く、金型を損傷して金
型の寿命を縮める原因になるとともに、取出した
後の鋳物の歪み率や収縮率が大きくて寸法精度が
安定せず、不良率の増大、品質のばらつき幅の増
大が生じる。勿論、金型内の溶湯がまだ充分に凝
固していない時に型開を行えば、鋳物の破裂や金
型への焼付けを生じるし、危険でもある。また、
逆に、金型内の鋳物の温度が前記理想温度まで降
下した後、いつまでも鋳物を金型内に留めておく
ことは、いたずらに鋳造サイクル時間を増加させ
るだけで、単位時間当りの鋳造個数を減少させる
結果となる。
[Prior art] In mold casting, the casting must be taken out from the mold when the temperature of the casting in the mold drops to a certain ideal temperature determined by the solidification characteristics of the molten metal used. Must be. If you open the mold and take out the casting when the temperature is higher than this ideal temperature, the casting will not easily separate from the mold, damaging the mold and shortening the life of the mold. The distortion rate and shrinkage rate are large, making the dimensional accuracy unstable, resulting in an increase in the defective rate and an increase in the width of quality variation. Of course, if the mold is opened when the molten metal in the mold has not yet sufficiently solidified, the casting may burst or the mold may seize, which is dangerous. Also,
On the other hand, leaving the casting in the mold indefinitely after the temperature of the casting in the mold has fallen to the ideal temperature will only unnecessarily increase the casting cycle time and reduce the number of pieces cast per unit time. This results in a decrease in

金型内の鋳物の温度が理想温度まで降下したか
どうかは金型内の鋳物の温度を直接計測すること
が一番理想的であり確実であるが、現在のとこ
ろ、この直接計測する手段には適当なものがな
い。
The most ideal and reliable way to determine whether the temperature of the casting inside the mold has fallen to the ideal temperature is to directly measure the temperature of the casting inside the mold, but at present, this method of direct measurement is insufficient. There is nothing suitable.

そこで、従来は、金型内に射出された溶湯が金
型に熱を奪われて凝固し、理想温度まで降下する
までに要する時間を予備試験で決定し、その時間
をセツトしたタイマを溶湯射出信号で始動させ、
型開と鋳物取出時間の目安としている。あるい
は、溶湯が射出された後の金型の温度変化の推移
を感熱素子で検知させ、その指示温度推移を監視
して、間接的に金型中の鋳物の冷却状態を推定す
る等の方法がとれている。
Therefore, in the past, the time required for the molten metal injected into the mold to absorb heat from the mold, solidify, and drop to the ideal temperature was determined in a preliminary test, and a timer with that time set was used to inject the molten metal. Start with a signal,
This is used as a guideline for mold opening and casting removal time. Another method is to use a heat-sensitive element to detect the change in temperature of the mold after the molten metal is injected, monitor the indicated temperature change, and indirectly estimate the cooling state of the casting in the mold. It's taken.

[本発明が解決しようとする課題] しかしながら、前記タイマによる方法では、鋳
造を重ねていくにしたがつて、各鋳造サイクルに
おける電気射出時点の金型初期温度が次第に上昇
していくこと、および、各鋳造サイクルにおける
金型内の溶湯の冷却速度特性は金型の初期温度に
よつて変わり、金型の初期温度が高くなると溶湯
の冷却速度が低下するから、鋳造を重ねるにつれ
て、タイマに設定した時間と実際の所望冷却時間
との間にずれが生じ、かつ、そのずれが次第に大
きくなるので、常に良好な状態での型開や鋳物の
取出が行えなくて、極めてラフな管理しか行えな
い。また、前記金型温度監視法は、前記タイマ法
よりは比較的に管理精度は良いが、作業者の勘に
よる目安管理の域を脱しきれず、実際の温度管理
幅も理想温度±50〜150℃と大きくなり、充分で
はない。
[Problems to be Solved by the Present Invention] However, in the method using the timer, as casting is repeated, the initial temperature of the mold at the time of electric injection in each casting cycle gradually increases; The cooling rate characteristics of the molten metal in the mold in each casting cycle vary depending on the initial temperature of the mold, and as the initial temperature of the mold increases, the cooling rate of the molten metal decreases. Since a lag occurs between the time and the actual desired cooling time, and the lag gradually increases, it is not always possible to open the mold or take out the casting in good condition, and only extremely rough management can be performed. In addition, although the mold temperature monitoring method has relatively better control accuracy than the timer method, it is still limited to guideline management based on the intuition of the operator, and the actual temperature control range is within ±50 to 150 of the ideal temperature. ℃, which is not enough.

また、鋳造した鋳物が型開開始に適した温度に
まで低下したことを知る場合に、必ずしも、金型
キヤビテイの内壁面に接している鋳物の表面の温
度を知れば良いと言うものではなく、鋳物の形
状、寸法、厚さ等の違いによつては、金型キヤビ
テイ内の溶湯や鋳物の内部の最終凝固点などのよ
うな所定の位置の温度を知り、その重要な部分の
位置の温度が充分な温度にまで低下したか否かを
知る必要がある。
In addition, in order to know that the temperature of the cast metal has dropped to a temperature suitable for starting mold opening, it is not necessarily necessary to know the temperature of the surface of the casting that is in contact with the inner wall surface of the mold cavity. Depending on the shape, size, thickness, etc. of the casting, it is necessary to know the temperature at a certain point, such as the molten metal inside the mold cavity or the final solidification point inside the casting, and the temperature at that important part. It is necessary to know whether the temperature has dropped to a sufficient level.

[課題を解決するための手段] 本発明は、これらの欠点をなくすためのもので
あり、金型内の鋳壁面穴近傍に取付けられた温度
検知素子により測定された金型温度の時間的変
化、すなわち、微係数により溶湯温度を予測し、
その予測温度が、金型、鋳造条件等に基づき決定
される最適な冷却状態の温度に達すると、金型操
作装置に型開指令を出力して金型の型開動作を行
うようにして、より充分な鋳物冷却時間の制御を
行い、満足のいく型開や鋳物取出を行いうるよう
にしたものである。
[Means for Solving the Problems] The present invention is intended to eliminate these drawbacks, and is aimed at solving the following problems: , that is, predict the molten metal temperature by the differential coefficient,
When the predicted temperature reaches the optimum cooling state temperature determined based on the mold, casting conditions, etc., a mold opening command is output to the mold operating device to perform the mold opening operation, The cooling time of the casting is controlled more fully, allowing for satisfactory mold opening and casting removal.

また、ダイカストマシン等で金型鋳造を行う場
合、鋳物の冷却時間は鋳物の場所によつて異なる
ので、鋳物の内部のどこの位置の温度を見て制御
ならびに管理するということは大切なことでもあ
り、この温度管理場所も製品によつて異なり、特
に、厚物製品や複雑な製品ではこの傾向が強い。
したがつて、本発明では、溶湯や鋳物の内部の所
定の位置の温度を推定して、鋳物冷却時間の制御
に活用し得るようにした。
In addition, when performing mold casting using a die-casting machine, etc., the cooling time of the casting varies depending on the location of the casting, so it is important to control and manage the temperature at any location inside the casting. This temperature control location also differs depending on the product, and this tendency is particularly strong for thick products and complex products.
Therefore, in the present invention, the temperature at a predetermined position inside the molten metal or casting can be estimated and utilized for controlling the cooling time of the casting.

そして、具体的には、金型の鋳壁面近傍の温度
に対応した電気信号を出力する温度検出素子8
と、その電気信号を所定の電圧信号または電流信
号に変換する入力変換回路10と、この入力変換
回路10の出力信号を時間により微分する微分回
路11と、この微分回路11の出力信号の符号を
反転させる反転回路12と、この反転回路12の
出力信号に溶湯の内部または溶湯の表面の所定の
位置と鋳壁面近傍の温度検出点との代表長さΔL
を掛ける第1の乗算器14と、この第1の乗算器
14の出力信号に補正係数Aを加算する第1の加
算器16と、この第1の加算器16の出力信号に
前記代表長さΔLおよび金型の密度ρと比熱Cの
積を熱伝導率λで除した値を掛ける第2の乗算器
17と、この第2の乗算器17の出力信号に補正
係数Bを加算する第2の加算器19と、この第2
の加算器19の出力信号と前記入力変換回路10
の出力信号を加算することにより溶湯温度に対応
した予測信号を算出する第3の加算器20と、こ
の第3の加算器20の出力信号と、金型、鋳造条
件等に基づく設定温度を設定する設定器21から
の出力信号とを比較し、溶湯温度の予測信号が設
定器21の出力信号に達するとON信号を出力す
る比較器22と、前記反転回路12または微分回
路11の出力信号の符号を判定し、反転回路12
の出力信号の符号が正の場合または微分回路11
の出力信号の符号が負の場合にON信号を出力す
る符号判定回路23と、この符号判定回路23の
出力信号がON信号のときに前記比較器22の出
力ON信号を入力させて出力信号を出力させるゲ
ート回路24と、このゲート回路24の出力信号
により金型の型開動作を行う金型操作装置25を
備えた。
Specifically, a temperature detection element 8 outputs an electric signal corresponding to the temperature near the casting wall surface of the mold.
, an input conversion circuit 10 that converts the electric signal into a predetermined voltage signal or current signal, a differentiation circuit 11 that differentiates the output signal of this input conversion circuit 10 with respect to time, and a sign of the output signal of this differentiation circuit 11. An inverting circuit 12 for inverting the inverting circuit 12 and a representative length ΔL between a predetermined position inside the molten metal or the surface of the molten metal and a temperature detection point near the casting wall surface in the output signal of this inverting circuit 12.
a first multiplier 14 that adds a correction coefficient A to the output signal of this first multiplier 14; A second multiplier 17 that multiplies the product of ΔL, mold density ρ, and specific heat C divided by thermal conductivity λ, and a second multiplier 17 that adds a correction coefficient B to the output signal of this second multiplier 17. adder 19 and this second adder 19;
The output signal of the adder 19 and the input conversion circuit 10
A third adder 20 calculates a predicted signal corresponding to the molten metal temperature by adding the output signals of the third adder 20, and a set temperature is set based on the output signal of this third adder 20, the mold, casting conditions, etc. a comparator 22 which compares the output signal from the setting device 21 and outputs an ON signal when the predicted signal of the molten metal temperature reaches the output signal of the setting device 21; Determine the sign and invert circuit 12
If the sign of the output signal is positive or the differentiating circuit 11
A sign determination circuit 23 outputs an ON signal when the sign of the output signal is negative, and when the output signal of this sign determination circuit 23 is an ON signal, the output ON signal of the comparator 22 is inputted to output the output signal. A gate circuit 24 for outputting an output signal and a mold operating device 25 for opening a mold according to the output signal of the gate circuit 24 are provided.

[作用] 金型キヤビテイ内に溶湯を射出したとき、金型
の鋳壁面近傍に設置した温度検出素子で、その設
置位置における金型の温度Tを測定する。
[Operation] When molten metal is injected into the mold cavity, the temperature T of the mold at the installation position is measured by a temperature detection element installed near the casting wall surface of the mold.

一方、金型キヤビテイ内の溶湯ないしはそれが
冷却凝固しつつあるあるいはすでに凝固している
鋳物の内部の温度を知りたい所定の位置を定め
て、その点と金型内の温度測定点との間の距離
ΔLや、金型の密度ρ、比重C、熱伝導率λや、
あらかじめ行つた実験結果などで得た係数A,B
をコンピユータに入力しておいて、本装置を用い
て順次演算していけば、鋳物内の所定の点の温度
TMが求まる。
On the other hand, determine the predetermined position where you want to know the temperature of the molten metal in the mold cavity, or the inside of the casting where it is cooling and solidifying, or has already solidified, and between that point and the temperature measurement point in the mold. distance ΔL, mold density ρ, specific gravity C, thermal conductivity λ,
Coefficients A and B obtained from experimental results conducted in advance, etc.
By inputting this into a computer and sequentially calculating it using this device, the temperature at a given point in the casting can be determined.
TM is found.

そして、この温度TMが、あらかじめ設定して
おいた設定温度Tsetまで低下したら、鋳物はそ
の内部まで型開や製品取出に充分に耐えうる状態
になつたことになるので、金型操作装置25を作
動させて型開を行い、その後、可動金型から鋳物
を押出す。
When this temperature T M falls to the preset temperature Tset, the inside of the casting has reached a state where it can withstand mold opening and product removal, so the mold operating device 25 is operated to open the mold, and then the casting is extruded from the movable mold.

[実施例] つぎに、図面に示した実施例によつて、本発明
を詳細に説明する。
[Example] Next, the present invention will be explained in detail with reference to an example shown in the drawings.

第1図において、1は固定盤、2は可動盤、3
は固定金型、4は可動金型、5は射出スリーブ、
6は射出プランジヤ、7はキヤビテイであり、射
出スリーブ5内に給湯した溶湯を射出プランジヤ
6の作用でキヤビテイ7内に鋳込んで所望の形状
の鋳物を得る。
In Figure 1, 1 is a fixed plate, 2 is a movable plate, 3
4 is a fixed mold, 4 is a movable mold, 5 is an injection sleeve,
Reference numeral 6 indicates an injection plunger, and 7 indicates a cavity, in which the molten metal fed into the injection sleeve 5 is cast into the cavity 7 by the action of the injection plunger 6 to obtain a casting of a desired shape.

金型3,4の鋳壁面近傍、例えば、可動金型4
内において、キヤビテイ7内壁面の一部からの距
離が約数mm〜10mm程度の所に、温度検出素子8を
設けた。この温度検出素子8では、金型4の鋳壁
面近傍の金型温度Tを測定し、その温度Tに対応
した電気信号を出力しうるようにした。10はそ
の電気信号を所定の電圧信号または電流信号に変
換する入力変換回路、11は入力変換回路10の
出力信号を時間により微分する微分回路、12は
該微分回路11の出力信号の正負の符号反転させ
る反転回路、13は溶湯の内部または溶湯の表面
の所定の位置と鋳壁面近傍の温度検出点との代表
長さΔLを設定する設定器、14は前記反転回路
12の出力信号に前記代表長さΔLを掛ける第1
の乗算器、15はこの乗算器14の出力信号に加
算する補正係数Aを設定する設定器、16は乗算
器14の出力信号に補正係数Aを加算する第1の
加算器、17aは、金型の密度ρ、比熱C、熱伝
導率λをそれぞれ設定するか、ないしは金型の密
度ρと比熱Cを掛けた値を熱伝導率λで割つた値
を設定する設定器、17は加算器16の出力信号
に前記代表長さΔLとρC/λを掛ける第2の乗算
器、18は乗算器17の出力信号に加算する補正
係数Bを設定する設定器、19は乗算器17の出
力信号に補正係数Bを加算する加算器である。2
0は該加算器19の出力信号と前記入力変換回路
10の出力信号を加算することにより溶湯温度に
対応した予測信号を算出する加算器、21は金
型、鋳造条件等に基づく設定温度Tsetを設定す
る設定器、22は加算器20の出力信号と設定器
21からの出力信号とを比較し、溶湯温度TM
予測信号が設定器21の出力信号に達するとON
信号を出力する比較器である。23は前記反転回
路12の出力信号の符号を判定し、正の場合に
ON信号を出力する符号判定回路、24は該符号
判定回路23の出力信号がON信号のときに前記
比較器22の出力ON信号を入力させて出力信号
を出力させるゲート回路、25は該ゲート回路2
4の出力信号により金型の型開動作を行う金型操
作装置である。なお、符号判定回路23へは、場
合によつては微分回路11の出力信号を出力し
て、その正負の符号を判別し、微分回路11の出
力信号の符号が負の場合にON信号を出力するよ
うにすることもできる。
Near the casting walls of the molds 3 and 4, for example, the movable mold 4
Inside, a temperature detection element 8 was provided at a distance of about several mm to about 10 mm from a part of the inner wall surface of the cavity 7. This temperature detection element 8 is capable of measuring the mold temperature T near the casting wall surface of the mold 4 and outputting an electrical signal corresponding to the temperature T. 10 is an input conversion circuit that converts the electrical signal into a predetermined voltage signal or current signal, 11 is a differentiation circuit that differentiates the output signal of the input conversion circuit 10 with respect to time, and 12 is the positive or negative sign of the output signal of the differentiation circuit 11. a reversing circuit for reversing; 13 a setting device for setting a representative length ΔL between a predetermined position inside the molten metal or the surface of the molten metal and a temperature detection point near the casting wall surface; Multiply the length ΔL by the first
15 is a setting device for setting the correction coefficient A to be added to the output signal of the multiplier 14, 16 is a first adder for adding the correction coefficient A to the output signal of the multiplier 14, 17a is a gold 17 is an adder that sets the density ρ, specific heat C, and thermal conductivity λ of the mold, or sets the value obtained by multiplying the density ρ of the mold by the specific heat C divided by the thermal conductivity λ. A second multiplier that multiplies the output signal of 16 by the representative length ΔL and ρC/λ; 18 a setting device that sets a correction coefficient B to be added to the output signal of the multiplier 17; and 19, an output signal of the multiplier 17. This is an adder that adds correction coefficient B to . 2
0 is an adder that calculates a predicted signal corresponding to the molten metal temperature by adding the output signal of the adder 19 and the output signal of the input conversion circuit 10, and 21 is a set temperature Tset based on the mold, casting conditions, etc. The setting device 22 compares the output signal of the adder 20 and the output signal from the setting device 21, and turns ON when the predicted signal of the molten metal temperature T M reaches the output signal of the setting device 21.
It is a comparator that outputs a signal. 23 determines the sign of the output signal of the inverting circuit 12, and if it is positive,
A sign determination circuit that outputs an ON signal; 24 a gate circuit that inputs the output ON signal of the comparator 22 and outputs an output signal when the output signal of the sign determination circuit 23 is an ON signal; 25 a gate circuit 2
This is a mold operating device that performs a mold opening operation based on the output signal No. 4. In addition, the output signal of the differentiating circuit 11 is outputted to the sign determination circuit 23 depending on the case, the sign is determined as positive or negative, and an ON signal is output when the sign of the output signal of the differentiating circuit 11 is negative. You can also do this.

なお、本発明において、入力変換回路10、微
分回路11、反転回路12、設定器13,15,
17a,18、第1の乗算器14、第1の加算器
16、第2の乗算器17、第2の加算器19、第
3の加算器20、溶湯温度設定用の設定器21、
比較器22、符号判別回路23、ゲート回路2
4、金型操作装置25を第1図に示し、かつ、前
記したように組込んで構成したのは、後記する(2)
式に示した計算式にのつとつた順次行う演算によ
つて、金型キヤビテイ7内の溶湯または鋳物の内
部の所望の位置の温度TMを知り得るようにした
ためである。勿論、これらの演算は、コンピユー
タで行う。そして、比較器22に入力される演算
で求められた溶湯温度TMが、設定器21に設定
しておいた設定温度Tsetの値まで下つたことを、
比較器22で比較判定することによつて検知した
ら、型開動作を行う。
In the present invention, the input conversion circuit 10, the differentiation circuit 11, the inversion circuit 12, the setting devices 13, 15,
17a, 18, first multiplier 14, first adder 16, second multiplier 17, second adder 19, third adder 20, setter 21 for setting molten metal temperature,
Comparator 22, sign discrimination circuit 23, gate circuit 2
4. The mold operating device 25 shown in FIG. 1 and assembled as described above will be described later in (2).
This is because the temperature T M at a desired position inside the molten metal or casting inside the mold cavity 7 can be determined by sequential calculations based on the calculation formula shown in the equation. Of course, these calculations are performed by a computer. Then, it is determined that the molten metal temperature T M determined by the calculation input to the comparator 22 has fallen to the value of the set temperature Tset set in the setting device 21.
When the detection is made by comparing and determining with the comparator 22, the mold opening operation is performed.

本発明では、金型4の鋳壁面近傍温度Tを測定
すると同時に、その温度の時間tに対する変化割
合∂T/∂tを演算し、この温度の時間的変化率
∂T/∂tと温度勾配の変化率∂2/∂x2が比例する
ことを利用して鋳壁面近傍の温度勾配および温度
分布を近似計算し、この温度分布より金型内溶湯
温度を予測演算する。
In the present invention, the temperature T near the casting wall surface of the mold 4 is measured, and at the same time, the rate of change in temperature ∂T/∂t with respect to time t is calculated, and the rate of change in temperature ∂T/∂t over time and the temperature gradient are calculated. The temperature gradient and temperature distribution in the vicinity of the casting wall surface are approximately calculated using the fact that the rate of change ∂ 2 /∂x 2 is proportional, and the temperature of the molten metal in the mold is predicted from this temperature distribution.

なお、溶湯が最適な冷却状態に近づくと、鋳壁
面近傍温度の時間的変化率∂T/∂tが小さくなり、
したがつて、温度勾配の変化率∂2T/∂x2も小さ
くなつているので、∂T/∂xはほぼ一定とみなす
ことができ、その結果、後記する(2)式を導き出し
た。そして、鋳壁面近傍温度の測定値から金型内
溶湯温度を予測演算するようにした。
Note that as the molten metal approaches the optimal cooling state, the temporal rate of change in the temperature near the casting wall surface ∂T/∂t decreases,
Therefore, since the rate of change in the temperature gradient ∂ 2 T/∂x 2 is also decreasing, ∂T/∂x can be considered to be approximately constant, and as a result, equation (2), which will be described later, was derived. Then, the temperature of the molten metal in the mold is predicted and calculated from the measured value of the temperature near the casting wall surface.

そして、この予測溶湯温度が、金型、鋳造条件
等に基づきあらかじめ設定されている設定温度に
達したなら、金型の型開を行う。
Then, when this predicted molten metal temperature reaches a set temperature that is preset based on the mold, casting conditions, etc., the mold is opened.

つぎに、金型内の鋳壁面近傍の測定温度から溶
湯温度を予測する方法について述べる。
Next, a method for predicting the temperature of the molten metal from the temperature measured near the casting wall surface in the mold will be described.

第2図に示すように、金型4の鋳壁面に対して
略垂直にとつたx座標軸に沿つて金型4内の温度
分布を一次元で近似して表わすと、(1)式のように
なる。
As shown in Fig. 2, the temperature distribution inside the mold 4 can be expressed as a one-dimensional approximation along the x-coordinate axis, which is perpendicular to the casting wall surface of the mold 4, as shown in equation (1). become.

ρC∂T/∂t=λ∂2T/∂x2 ……(1) ここで、T:金型内温度 t:時間、 x:x座標 ρ:金型の密度(Kg/m3) C:金型の比熱(k cal/Kg・℃) λ:金型の熱伝導率(k cal/m・
h・℃) なお、第2図中、4は金型、26は溶湯、Xは
温度測定点、Tは金型4内の鋳壁面近傍の温度測
定点Xの金型温度、TMはキヤビテイ内壁面の一
部から所定の距離だけ離れた溶湯内部の点Mの溶
湯温度、L,L+ΔLはx座標におけるX点と溶
湯のある点Mの位置であり、ΔLはこれらの両方
の点間の距離を示す。
ρC∂T/∂t=λ∂ 2 T/∂x 2 ...(1) Here, T: Temperature inside the mold t: Time x: x coordinate ρ: Density of the mold (Kg/m 3 ) C : Specific heat of the mold (k cal/Kg・℃) λ: Thermal conductivity of the mold (k cal/m・
In Fig. 2, 4 is the mold, 26 is the molten metal, X is the temperature measurement point, T is the mold temperature at the temperature measurement point X near the casting wall surface in the mold 4, and T M is the cavity temperature. The molten metal temperature at a point M inside the molten metal that is a predetermined distance away from a part of the inner wall surface, L, L + ΔL is the position of the X point on the x coordinate and the molten metal point M, and ΔL is the temperature between these two points. Show distance.

一方、鋳壁面近傍温度の時間的変化状況は第3
図のようになる。第3図において、横軸は時間
t、縦軸は温度Tを示す。t0は金型4,5内に溶
湯を射出終了した時点を示す。第3図に示すよう
に時刻t1を境にして温度の時間微分は符号が反転
するため、時間微分を用いて溶湯温度を予測する
場合には、t0〜t1間で型開動作を行う恐れがある
ので、温度の時間微分の符号により型開動作を行
う期間をt1以後になるようにする必要がある。ま
た、最適な冷却状態になる時刻t2の付近では温度
の時間微分は小さくなつており、これは温度分布
が直線に近くなつていることを表わしている。
On the other hand, the temporal change of the temperature near the casting wall surface is
It will look like the figure. In FIG. 3, the horizontal axis represents time t, and the vertical axis represents temperature T. t 0 indicates the time when injection of the molten metal into the molds 4 and 5 is completed. As shown in Figure 3, the sign of the time derivative of temperature reverses after time t 1 , so when predicting the molten metal temperature using time differentiation, the mold opening operation must be performed between t 0 and t 1 . Therefore, it is necessary to set the period during which the mold opening operation is performed after t 1 depending on the sign of the time differential of the temperature. Further, the time differential of temperature becomes small near time t 2 when the optimum cooling state is reached, which indicates that the temperature distribution becomes close to a straight line.

以上のことを考慮して、温度分布を直線近似と
し、(1)式を解くと次のようになる。 TM−T=
ΔT=ρC/λ∫L+L LL+L L∂T/∂td×dx =ρC/λ∫L+L L(∂T/∂t・ΔL+A)dx =ρC/λ(∂T/∂t・ΔL+A)・ΔL+B ここで、A,Bは補正係数である。
Considering the above, the temperature distribution is approximated by a straight line, and equation (1) is solved as follows. T M −T=
ΔT=ρC/λ∫ L+L LL+L L ∂T/∂td×dx =ρC/λ∫ L+L L (∂T/∂t・ΔL+A)dx =ρC/λ(∂T/∂ t・ΔL+A)・ΔL+B Here, A and B are correction coefficients.

この補正は、非線形の補正、および、密度、比
熱、熱伝導率が金型と溶湯で異なるための補正で
あり、また、ある点の溶湯温度TMは、元来、三
次元的に伝わるものであるが、ここでは、これを
一次元的に伝わるものだけを取出して、金型部の
一点の温度のみを測定してこれを求めているの
で、そのための補正も含んでいる。
This correction is for non-linearity and for the fact that the density, specific heat, and thermal conductivity are different between the mold and the molten metal. Also, the molten metal temperature T M at a certain point is originally transmitted three-dimensionally. However, here, only the one-dimensionally transmitted temperature is extracted and the temperature at only one point in the mold section is measured to obtain this, so corrections for this are also included.

したがつて、溶湯温度TMは、 TM=T+ΔT =T+ρC/λ(∂T/∂t・ΔL+A)・ΔL+B…
…(2) となる。
Therefore, the molten metal temperature T M is T M = T + ΔT = T + ρC / λ (∂T / ∂t · ΔL + A) · ΔL + B...
…(2) becomes.

したがつて、本発明では、(2)式の計算式にのつ
とつて順次演算し、所定位置の溶湯温度TMを求
め、あらかじめ設定したおいた設定温度Tsetと
比較し、また、所定位置の溶湯温度TMが設定温
度Tsetまで下つたら型開動作を自動的に行い得
るように、第1図に示し、かつ、前記したような
装置にした。
Therefore, in the present invention, the molten metal temperature T M at a predetermined position is calculated by sequentially calculating according to the calculation formula (2), and the molten metal temperature T M at a predetermined position is compared with the set temperature Tset set in advance. The apparatus shown in FIG. 1 and described above was designed so that the mold opening operation could be performed automatically when the molten metal temperature T M fell to the set temperature Tset.

なお、例えば、SKD61や中炭素鋼等のような
熱間工具鋼を金型の材料として用い、アルミニウ
ム合金の溶湯をダイカストによつて金型キヤビテ
イ内に鋳込んでダイカスト製品を得る場合、溶湯
や金型の温度は、例えば、つぎのようになるよう
にする。
For example, when hot work tool steel such as SKD61 or medium carbon steel is used as the mold material and molten aluminum alloy is cast into the mold cavity to obtain a die-cast product, the molten metal and For example, the temperature of the mold is set as follows.

(1) 鋳込時の溶湯の温度 約700℃ (2) 鋳込終了時の溶湯温度 600〜620℃ (3) 型開開示時の溶湯表面の温度 約430℃ (4) 型開開示時の溶湯内部の温度TM 約450℃ これは、対象とする溶湯内部の点Mの位置によ
つても異なる。
(1) Temperature of molten metal at the time of pouring: approximately 700℃ (2) Temperature of molten metal at the end of pouring: 600-620℃ (3) Temperature of the molten metal surface when the mold is opened: approximately 430℃ (4) When the mold is opened: The temperature inside the molten metal T M is about 450°C. This also varies depending on the position of the target point M inside the molten metal.

(5) 型開開示時の金型キヤビテイ内面の温度
約400℃ (6) 型開開示時の金型内部の温度測定点Xの金型
温度T 約250〜330℃ この金型温度Tは、温度測定点Xの位置によつ
て、かなり大きく異なる。
(5) Temperature inside the mold cavity when the mold is opened
Approximately 400°C (6) Mold temperature T at the temperature measurement point X inside the mold at the time of opening the mold Approximately 250 to 330°C This mold temperature T varies considerably depending on the position of the temperature measurement point X.

なお、金型内の温度Tは、鋳造サイクルに応じ
て、例えば、第4図aに示すように変化する。
Note that the temperature T inside the mold changes, for example, as shown in FIG. 4a, depending on the casting cycle.

第4図aにおいて、横軸に時間t(sec)、縦軸
に金型内部の温度T(℃)を取り、第4図bに示
すように、金型キヤビテイ7の内壁面から、例え
ば、1mm離れた点X1、4mm離れた点X2、16mm離
れた点X3にそれぞれ温度検出素子8を埋設して
おき、横軸である時間軸の下に示したようなタイ
ミングと時間で、射出、型開、製品取出、金型冷
却用のシヤワー冷却、型締、注湯等の一連の動作
を行つたとき、金型4内の各測定点X1,X2,X3
の金型温度Tは、第4図aにそれぞれT1,T2
T3で示すように変化する。
In FIG. 4a, the horizontal axis represents time t (sec), and the vertical axis represents temperature T (°C) inside the mold. As shown in FIG. 4b, from the inner wall surface of the mold cavity 7, for example, Temperature detection elements 8 are buried at a point X 1 1 mm apart, a point X 2 4 mm apart, and a point X 3 16 mm apart, and at the timing and time shown below the time axis (horizontal axis), When performing a series of operations such as injection, mold opening, product ejection, shower cooling for mold cooling, mold clamping, and pouring, each measurement point in the mold 4 is measured at X 1 , X 2 , X 3
The mold temperatures T are shown in Figure 4a as T 1 , T 2 , T 2 , and
It changes as shown by T 3 .

この第4図aからもわかるように、金型内の温
度測定点Xの違いによつて、温度の大きさや変化
状態は大きく変わる。したがつて、鋳物内部の温
度を知りたい点Mをどこにするかということとも
に、温度測定点Xの設定位置や点Mと点X間の距
離ΔLの値をどう選定するかが極めて重要になる。
なお、金型キヤビテイ7の内壁面と温度を知りた
い溶湯内部の点Mとの間の距離は、鋳造する鋳物
の形状、寸法、厚さ等によつて異なるが、通常は
10mm以下の値となることが多い。
As can be seen from FIG. 4a, the magnitude and state of temperature change vary greatly depending on the temperature measurement point X within the mold. Therefore, it is extremely important not only where to locate the point M at which you want to know the temperature inside the casting, but also how to select the setting position of the temperature measurement point X and the value of the distance ΔL between the points M and X. .
Note that the distance between the inner wall surface of the mold cavity 7 and the point M inside the molten metal whose temperature is to be determined varies depending on the shape, dimensions, thickness, etc. of the casting to be cast, but is usually
The value is often less than 10 mm.

また、通常、金型の密度ρは7.85×103Kg/m3
比熱Cは0.113k cl/Kg・℃、熱伝導率λは44k
cal/m・h・℃程度である。
In addition, the density ρ of the mold is usually 7.85×10 3 Kg/m 3 ,
Specific heat C is 0.113k cl/Kg・℃, thermal conductivity λ is 44k
It is about cal/m・h・℃.

また、補正係数A,Bは、前記したように、密
度、比熱、熱伝導率が金型と溶湯で異なるための
補正で、また、三次元の立体的な温度分布を一次
元で(1)式のように近似化したことや、この近似式
からさらに(2)式のよいに近似化したことによる補
正で、例えば、第4図aに示したような実験結果
等からあらかじめ求めておくことができる。な
お、この補正係数A,Bは、例えば、Aが180〜
200程度、Bが80〜95程度となる。
In addition, as mentioned above, the correction coefficients A and B are corrections for the differences in density, specific heat, and thermal conductivity between the mold and the molten metal. This can be determined in advance from the experimental results shown in Figure 4a, for example, by approximating the equation as shown in the equation, or by further approximating the equation (2) from this approximate equation. I can do it. In addition, these correction coefficients A and B are, for example, A is 180~
It is about 200, and B is about 80-95.

[発明の効果] 本発明によれば、鋳造サイクル毎に金型の鋳壁
面近傍温度の時間的変化割合から金型内溶湯温度
を予測するための演算を行い、この予測溶湯温度
が最適冷却状態の温度に達したら、金型の型開操
作が行われるので、常に最適温度の冷却状態で鋳
込製品を金型から取出すことができる。したがつ
て、次のような効果が得られる。
[Effects of the Invention] According to the present invention, a calculation is performed to predict the temperature of the molten metal in the mold from the temporal change rate of the temperature near the casting wall surface of the mold for each casting cycle, and this predicted molten metal temperature is determined in the optimum cooling state. When the temperature reaches , the mold opening operation is performed, so that the cast product can always be taken out from the mold in a cooled state at the optimum temperature. Therefore, the following effects can be obtained.

(1) 鋳物の破裂や焼付きが防止され、かつ、鋳物
抜き抵抗を小さくして金型の寿命を著しく延長
することができる。
(1) It prevents the casting from bursting and seizing, and reduces the casting resistance, significantly extending the life of the mold.

(2) 鋳造サイクルの鋳物取出温度にばらつきがな
い。そして、鋳物の寸法精度が安定化し、品質
を向上させることができる。
(2) There is no variation in the casting temperature during the casting cycle. Then, the dimensional accuracy of the casting is stabilized, and the quality can be improved.

(3) 必要以上の冷却時間になることはないから、
単位時間当りの鋳造個数が増加し、能率が向上
する。
(3) Cooling time will not be longer than necessary,
The number of pieces cast per unit time increases, improving efficiency.

また、本発明においては、金型の鋳壁面近傍の
温度の時間的変化割合を演算するようにし、ない
しは、そのための微分回路を設けた制御装置にし
たので、金型内の温度測定点と溶湯のある点との
間の距離ΔLを用いて溶湯温度を求めることがで
きる。したがつて、金型温度の測定点をどこに変
えても、すなわち、熱電対をどこの位置に入れて
も溶湯温度を計算式によつて算出して推測するこ
とができる。このように、本発明では、温度の微
分を求めるようにしたので、温度の測定点を考慮
して溶湯の温度を求めることによつて、金型鋳造
を行つてから型開を行うまでの型開時間を常に良
好に制御することができる。
In addition, in the present invention, the time rate of change in temperature near the casting wall surface of the mold is calculated, or the control device is equipped with a differential circuit for this purpose, so that the temperature measurement point in the mold and the molten metal are The temperature of the molten metal can be determined using the distance ΔL between the point and a certain point. Therefore, no matter where the mold temperature measurement point is changed, that is, no matter where the thermocouple is placed, the molten metal temperature can be calculated and estimated using the calculation formula. In this way, in the present invention, since the temperature differential is determined, the temperature of the molten metal is determined by taking into account the temperature measurement points, thereby controlling the mold from the time of mold casting to the time of mold opening. The opening time can always be well controlled.

また、鋳物の冷却時間は鋳物の場所によつて異
なるので、鋳物の内部どこの位置の温度を見て制
御ならびに管理するかということは大切なことで
もあり、この温度管理場所も製品によつて異な
り、特に、厚物製品や複雑な製品ではこの傾向が
強い。
In addition, the cooling time for a casting varies depending on the location of the casting, so it is important to control and manage the temperature at which location inside the casting, and this temperature control location also varies depending on the product. This tendency is particularly strong for thick and complex products.

しかし、本発明では、温度を予測したい溶湯の
位置と金型内の温度測定点との間の距離ΔL等を
用いて溶湯温度を予想測定するようにしたので、
この距離ΔLを変えれば、いろいろな場所の温度
を推定することができ、鋳物の表面だけでなく、
鋳物の内部の所定の位置の温度など、鋳物の総て
の位置の温度を推定することができる。この鋳物
の内部の温度も推定できるということは、前記し
たように管理上重要なポイントであり、本発明に
おいては、金型内の温度測定位置すなわち温度検
出素子の設定位置を変更しないで、溶湯の温度管
理位置を容易に変更できるという優れた効果も有
している。
However, in the present invention, the molten metal temperature is predicted and measured using the distance ΔL between the position of the molten metal whose temperature is to be predicted and the temperature measurement point in the mold.
By changing this distance ΔL, it is possible to estimate the temperature in various places, not only on the surface of the casting, but also on the surface of the casting.
It is possible to estimate the temperature at all locations in the casting, including the temperature at a predetermined location inside the casting. Being able to estimate the temperature inside the casting is an important point in management as described above, and in the present invention, it is possible to estimate the temperature inside the casting without changing the temperature measurement position in the mold, that is, the setting position of the temperature detection element. It also has the excellent effect of being able to easily change the temperature control position.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示すブロツク線
図、第2図は金型鋳壁面付近の温度状態を説明す
るための金型部の縦断面図、第3図は金型部の温
度変化状態を示す時間−温度線図、第4図aは鋳
造サイクル中の金型温度の変化状態を示す時間−
温度線図、第4図bは第4図aに示した金型温度
の測定点を示す縦断面説明図である。 1……固定盤、2……可動盤、3……固定金
型、4……可動金型、8……温度検出素子、10
……入力変換回路、11……微分回路、12……
反転回路、13,15,18,21……設定器、
14,17……乗算器、16,19,20……加
算器、22……比較器、23……符号判定回路、
24……ゲート回路、25……金型操作装置。
Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 is a vertical cross-sectional view of the mold part to explain the temperature state near the mold casting wall surface, and Fig. 3 is the temperature of the mold part. Time-temperature diagram showing changing conditions, Figure 4a is a time-temperature diagram showing changing conditions of mold temperature during the casting cycle.
The temperature diagram, FIG. 4b, is an explanatory longitudinal cross-sectional view showing the measurement points of the mold temperature shown in FIG. 4a. 1...Fixed plate, 2...Movable plate, 3...Fixed mold, 4...Movable mold, 8...Temperature detection element, 10
... Input conversion circuit, 11 ... Differentiation circuit, 12 ...
Inverting circuit, 13, 15, 18, 21...setting device,
14, 17... Multiplier, 16, 19, 20... Adder, 22... Comparator, 23... Sign determination circuit,
24...gate circuit, 25...mold operating device.

Claims (1)

【特許請求の範囲】[Claims] 1 金型の鋳壁面近傍の温度に対応した電気信号
を出力する温度検出素子8と、その電気信号を所
定の電圧信号または電流信号に変換する入力変換
回路10と、この入力変換回路10の出力信号を
時間により微分する微分回路11と、この微分回
路11の出力信号の符号を反転させる反転回路1
2と、この反転回路12の出力信号に溶湯の内部
または溶湯の表面の所定の位置と鋳壁面近傍の温
度検出点との代表長さΔLを掛ける第1の乗算器
14と、この第1の乗算器14の出力信号に補正
係数Aを加算する第1の加算器16と、この第1
の加算器16の出力信号に前記代表長さΔLおよ
び金型の密度ρと比熱Cの積を熱伝導率λで除し
た値を掛ける第2の乗算器17と、この第2の乗
算器17の出力信号に補正係数Bを加算する第2
の加算器19と、この第2の加算器19の出力信
号と前記入力変換回路10の出力信号を加算する
ことにより溶湯温度に対応した予測信号を算出す
る第3の加算器20と、この第3の加算器20の
出力信号と、金型、鋳造条件等に基づく設定温度
を設定する設定器21からの出力信号とを比較
し、溶湯温度の予測信号が設定器21の出力信号
に達するとON信号を出力する比較器22と、前
記反転回路12または微分回路11の出力信号の
符号を判定し、反転回路12の出力信号の符号が
正の場合または微分回路11の出力信号の符号が
負の場合にON信号を出力する符号判定回路23
と、この符号判定回路23の出力信号がON信号
のときに前記比較器22の出力ON信号を入力さ
せて出力信号を出力させるゲート回路24と、こ
のゲート回路24の出力信号により金型の型開動
作を行う金型操作装置25を備えた金型鋳造にお
ける鋳物冷却時間の制御装置。
1. A temperature detection element 8 that outputs an electrical signal corresponding to the temperature near the casting wall surface of the mold, an input conversion circuit 10 that converts the electrical signal into a predetermined voltage signal or current signal, and an output of this input conversion circuit 10. A differentiating circuit 11 that differentiates a signal with respect to time, and an inverting circuit 1 that inverts the sign of the output signal of this differentiating circuit 11.
2, a first multiplier 14 that multiplies the output signal of this inversion circuit 12 by a representative length ΔL between a predetermined position inside the molten metal or the surface of the molten metal and a temperature detection point near the casting wall surface; a first adder 16 that adds a correction coefficient A to the output signal of the multiplier 14;
a second multiplier 17 that multiplies the output signal of the adder 16 by a value obtained by dividing the product of the representative length ΔL, the mold density ρ, and the specific heat C by the thermal conductivity λ; A second step that adds correction coefficient B to the output signal of
a third adder 20 that calculates a predicted signal corresponding to the molten metal temperature by adding the output signal of the second adder 19 and the output signal of the input conversion circuit 10; The output signal of the adder 20 of No. 3 is compared with the output signal from the setting device 21 that sets the set temperature based on the mold, casting conditions, etc., and when the predicted signal of the molten metal temperature reaches the output signal of the setting device 21. The sign of the output signal of the comparator 22 that outputs the ON signal and the inverting circuit 12 or the differentiating circuit 11 is determined, and if the sign of the output signal of the inverting circuit 12 is positive or the sign of the output signal of the differentiating circuit 11 is negative, Sign determination circuit 23 that outputs an ON signal in the case of
and a gate circuit 24 which inputs the output ON signal of the comparator 22 and outputs an output signal when the output signal of the sign determination circuit 23 is an ON signal; A casting cooling time control device in mold casting, including a mold operating device 25 that performs an opening operation.
JP17401682A 1982-10-05 1982-10-05 Method and device for controlling cooling time for casting in die casting Granted JPS5964149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17401682A JPS5964149A (en) 1982-10-05 1982-10-05 Method and device for controlling cooling time for casting in die casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17401682A JPS5964149A (en) 1982-10-05 1982-10-05 Method and device for controlling cooling time for casting in die casting

Publications (2)

Publication Number Publication Date
JPS5964149A JPS5964149A (en) 1984-04-12
JPH0329498B2 true JPH0329498B2 (en) 1991-04-24

Family

ID=15971162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17401682A Granted JPS5964149A (en) 1982-10-05 1982-10-05 Method and device for controlling cooling time for casting in die casting

Country Status (1)

Country Link
JP (1) JPS5964149A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4341494B2 (en) * 2004-07-20 2009-10-07 トヨタ自動車株式会社 Mold calorimetry method, temperature control method, calorimetry device, and temperature control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105924A (en) * 1975-03-15 1976-09-20 Honda Motor Co Ltd KANAGATACHUZONIOKERU IMONOREIKYAKUJIKANNOSEIGYOSOCHI
JPS532609A (en) * 1976-06-24 1978-01-11 Fuji Kako Kk Production of decorative paper for resin impregnation
JPS5440206A (en) * 1977-09-06 1979-03-29 Kawasaki Steel Co Explosionnpreventive method of molten metal ladle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105924A (en) * 1975-03-15 1976-09-20 Honda Motor Co Ltd KANAGATACHUZONIOKERU IMONOREIKYAKUJIKANNOSEIGYOSOCHI
JPS532609A (en) * 1976-06-24 1978-01-11 Fuji Kako Kk Production of decorative paper for resin impregnation
JPS5440206A (en) * 1977-09-06 1979-03-29 Kawasaki Steel Co Explosionnpreventive method of molten metal ladle

Also Published As

Publication number Publication date
JPS5964149A (en) 1984-04-12

Similar Documents

Publication Publication Date Title
US4370719A (en) Control of centrifugal pipe casting operation
JPH06122062A (en) Continuous different pressure casting method
JPH0329498B2 (en)
JPS6353904B2 (en)
JP6435988B2 (en) Breakout prediction method, breakout prevention method, solidified shell thickness measurement method, breakout prediction device and breakout prevention device in continuous casting
JP3562116B2 (en) Control method of molten steel temperature in tundish
JPH0242409B2 (en)
US6557617B1 (en) Method for process monitoring during die casting or thixoforming of metals
CN108031809B (en) Narrow-edge taper control method for electric width adjusting device of crystallizer
CN105081283B (en) A kind of apparatus and method detected for low pressure casting alloy critical solidification coefficient
JPH0142789B2 (en)
JPH0747199B2 (en) Continuous casting method and its mold
Zhang et al. An Inverse Heat Conduction Model for Determining the Casting/Chill Interfacial Heat Transfer Coefficient
JP2004276050A (en) Method for starting continuous casting
JPS5666364A (en) Continuous casting method
TWI792485B (en) continuous casting method for steel
KR970033269A (en) How to measure cast iron defects in continuous casting of steel small section billet
JPH0556224B2 (en)
JP3062723B2 (en) Measurement method of slab surface dent shape due to solidification shrinkage in mold
JP3206353B2 (en) Initial casting control method for continuous casting
JPH0819844A (en) Method for controlling casting in continuous casting machine
JPH0556222B2 (en)
JPS6330162A (en) Measurement for shell thickness in continuous casting
JPH02268954A (en) Continuous casting method for decreasing solidified cavity
JPH03180261A (en) Method for predicting breakout