JPH0142789B2 - - Google Patents

Info

Publication number
JPH0142789B2
JPH0142789B2 JP57169725A JP16972582A JPH0142789B2 JP H0142789 B2 JPH0142789 B2 JP H0142789B2 JP 57169725 A JP57169725 A JP 57169725A JP 16972582 A JP16972582 A JP 16972582A JP H0142789 B2 JPH0142789 B2 JP H0142789B2
Authority
JP
Japan
Prior art keywords
mold
casting
wall surface
molten metal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57169725A
Other languages
Japanese (ja)
Other versions
JPS5961564A (en
Inventor
Koji Tanido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP16972582A priority Critical patent/JPS5961564A/en
Publication of JPS5961564A publication Critical patent/JPS5961564A/en
Publication of JPH0142789B2 publication Critical patent/JPH0142789B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment

Description

【発明の詳細な説明】 本発明は、ダイカストマシン等の金型鋳造装置
において、金型鋳造を行つてから型開を行うまで
の型開時間を制御する金型鋳造における鋳物冷却
時間の制御方法および装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for controlling casting cooling time in mold casting, which controls the mold opening time from mold casting to mold opening in a mold casting apparatus such as a die casting machine. and equipment.

金型鋳造における金型からの鋳物の取出は、金
型内の鋳物の温度が、使用した溶湯の凝固特性で
決定されるある所定の理想温度まで降下した時点
で行うようにしなければならない。もし、この理
想温度よりも高い温度のときに型開して鋳物を取
出すと、鋳物の型離れが悪く、金型を損傷して金
型の寿命の縮める原因になるとともに、取出した
後の鋳物の歪み率や収縮率が大きくて寸法精度が
安定せず、不良率の増大,品質のばらつき幅の増
大が生じる。勿論、金型内の溶湯がまだ充分に凝
固していない時に型開を行えば、鋳物の破裂や金
型への焼付けを生じるし、危険でもある。また、
逆に、金型内の鋳物の温度が前記理想温度まで降
下した後、いつまでも鋳物を金型内に留めておく
ことは、いたずらに鋳造サイクル時間を増加させ
るだけで、単位時間当りの鋳造個数を減少させる
結果となる。
In mold casting, the casting must be removed from the mold when the temperature of the casting within the mold has fallen to a certain ideal temperature determined by the solidification characteristics of the molten metal used. If you open the mold and take out the casting when the temperature is higher than this ideal temperature, the casting will not easily separate from the mold, damaging the mold and shortening the life of the mold. The distortion rate and shrinkage rate are large, making the dimensional accuracy unstable, resulting in an increase in the defective rate and an increase in the width of quality variation. Of course, if the mold is opened when the molten metal in the mold has not yet sufficiently solidified, the casting may burst or the mold may seize, which is dangerous. Also,
On the other hand, leaving the casting in the mold indefinitely after the temperature of the casting in the mold has fallen to the ideal temperature will only unnecessarily increase the casting cycle time and reduce the number of pieces cast per unit time. This results in a decrease in

金型内の鋳物の温度が理想温度まで降下したか
どうかは金型内の鋳物の温度を直接計測すること
が一番理想的であり確実であるが、現在のとこ
ろ、この直接計測する手段には適当なものがな
い。
The most ideal and reliable way to determine whether the temperature of the casting inside the mold has fallen to the ideal temperature is to directly measure the temperature of the casting inside the mold, but at present, this method of direct measurement is insufficient. There is nothing suitable.

そこで、従来は、金型内に射出された溶湯が金
型に熱を奪われて凝固し、理想温度まで降下する
までに要する時間を予備試験で決定し、その時間
をセツトしたタイマを溶湯射出信号で始動させ、
型開と鋳物取出し時間の目安としている。あるい
は、溶湯が射出された後の金型の温度変化の推移
を感熱素子で検知させ、その指示温度推移を監視
して、間接的に金型中の鋳物の冷却状態を推定す
る等の方法がとられている。
Therefore, in the past, the time required for the molten metal injected into the mold to absorb heat from the mold, solidify, and drop to the ideal temperature was determined in a preliminary test, and a timer with that time set was used to inject the molten metal. Start with a signal,
This is used as a guideline for mold opening and casting removal time. Another method is to use a heat-sensitive element to detect the change in temperature of the mold after the molten metal is injected, monitor the indicated temperature change, and indirectly estimate the cooling state of the casting in the mold. It is taken.

しかしながら、前記タイマによる方法では、鋳
造を重ねていくにしたがつて、各鋳造サイクルに
おける溶湯射出時点の金型初期温度が次第に上昇
していくこと、および、各鋳造サイクルにおける
金型内の溶湯の冷却速度特性は金型の初期温度に
よつて変わり、金型の初期温度が高くなると溶湯
の冷却速度が低下するから、鋳造を重ねるにつれ
て、タイマに設定した時間と実際の所望冷却時間
との間にずれが生じ、かつ、そのずれが次第に大
きくなるので、常に良好な状態での型開や鋳物の
取出しが行えなくて、極めてラフな管理しか行え
ない。また、前記金型温度監視法は、前記タイマ
法よりは比較的に管理精度は良いが、作業者の勘
による目安管理の域を脱しきれず、実際の温度管
理幅も理想温度±50〜150℃と大きくなり、充分
ではない。
However, in the method using the timer, as casting is repeated, the initial temperature of the mold at the time of molten metal injection in each casting cycle gradually increases, and the temperature of the molten metal in the mold in each casting cycle gradually increases. The cooling rate characteristics change depending on the initial temperature of the mold, and as the initial temperature of the mold increases, the cooling rate of the molten metal decreases, so as castings are repeated, the difference between the time set on the timer and the actual desired cooling time increases. Since a deviation occurs and the deviation gradually increases, it is not always possible to open the mold or take out the casting in good condition, and only very rough management can be performed. In addition, although the mold temperature monitoring method has relatively better control accuracy than the timer method, it is still limited to guideline management based on the intuition of the operator, and the actual temperature control range is within ±50 to 150 of the ideal temperature. ℃, which is not enough.

本発明は、これらの欠点をなくすためのもので
あり、金型内の2点間の温度勾配に基づいて金型
が溶湯から吸収した熱エネルギを算し、この熱エ
ネルギに基づいて型開や鋳物取出を行いうるよう
にして、より充分な鋳物冷却時間の制御を行い、
満足のいく型開や鋳物取出を行いうるようにした
ものである。
The present invention is intended to eliminate these drawbacks, and calculates the thermal energy absorbed by the mold from the molten metal based on the temperature gradient between two points in the mold, and calculates the thermal energy absorbed by the mold from the molten metal based on this thermal energy. By making it possible to take out the castings and controlling the cooling time of the castings more fully,
This allows for satisfactory mold opening and casting removal.

つぎに、図面に示した1実施例によつて、本発
明を詳細に説明する。
Next, the present invention will be explained in detail with reference to an embodiment shown in the drawings.

第1図において、1は固定盤、2は可動盤、3
は固定金型、4は可動金型、5は射出スリーブ、
6は射出プランジヤ、7はキヤビテイであり、射
出スリーブ5内に給湯した溶湯を射出プランジヤ
6の作用でキヤビテイ7内に鋳込んで所望の形状
の鋳物を得る。
In Figure 1, 1 is a fixed plate, 2 is a movable plate, 3
4 is a fixed mold, 4 is a movable mold, 5 is an injection sleeve,
Reference numeral 6 indicates an injection plunger, and 7 indicates a cavity, in which the molten metal fed into the injection sleeve 5 is cast into the cavity 7 by the action of the injection plunger 6 to obtain a casting of a desired shape.

金型3,4の鋳壁面近傍、例えば、可動金型4
内において、キヤビテイ7内壁面の一部からの距
離が約10mm程度の所には、2個の温度検出素子
8,9を、溶湯からの熱流束の流れ方向へキヤビ
テイ7内壁面からの距離に差をもたせた2点に設
けた。この温度検出素子8,9では金型4の鋳壁
面近傍の2点の金型温度を測定し、それぞれの温
度に応じた電気信号を出力しうるようにした。1
0,11はこれらの電気信号を電圧信号又は電流
信号に変換する入力変換回路、12は2個の入力
変換回路10,11の出力信号の減算を行うこと
により鋳壁面近傍の2点間の温度差を出力する減
算回路、13は減算回路12の出力信号、すなわ
ち、温度差を積分する積分回路、14は積分回路
の出力信号12補正係数kを掛ける乗算器、15
は補正係数設定器である。積分回路13にはリセ
ツト信号Rが入力される。16は金型4および鋳
造条件に基づいて設定値を予め設定しておく設定
器、17はこの設定値と乗算器14の出力信号を
比較し、乗算器14の出力信号が該設定値を越え
るとON―OFF信号を出力する比較器であり、1
8は比較器17のON―OFF信号により金型の型
開き操作が行われる金型操作装置である。積分回
路13では、温度差の値を積分するので熱エネル
ギに対応した値が得られる。したがつて、設定器
16でも熱エネルギに対応した値で設定する。
Near the casting walls of the molds 3 and 4, for example, the movable mold 4
Inside, two temperature detection elements 8 and 9 are installed at a distance of about 10 mm from a part of the inner wall of the cavity 7 in the flow direction of the heat flux from the molten metal. Two points were set with a difference. The temperature detecting elements 8 and 9 are capable of measuring mold temperatures at two points near the casting wall surface of the mold 4 and outputting electrical signals corresponding to the respective temperatures. 1
0 and 11 are input conversion circuits that convert these electrical signals into voltage signals or current signals, and 12 is the temperature between two points near the casting wall surface by subtracting the output signals of the two input conversion circuits 10 and 11. 13 is an integration circuit that integrates the output signal of the subtraction circuit 12, that is, the temperature difference; 14 is a multiplier that multiplies the output signal 12 of the integration circuit by the correction coefficient k; 15
is a correction coefficient setter. A reset signal R is input to the integrating circuit 13. Reference numeral 16 denotes a setting device in which a set value is preset based on the mold 4 and casting conditions; 17 compares this set value with the output signal of the multiplier 14, and the output signal of the multiplier 14 exceeds the set value. It is a comparator that outputs an ON-OFF signal, and 1
Reference numeral 8 denotes a mold operating device that opens the mold according to the ON-OFF signal of the comparator 17. Since the integrating circuit 13 integrates the value of the temperature difference, a value corresponding to thermal energy is obtained. Therefore, the setting device 16 also sets a value corresponding to the thermal energy.

19,20は、減算器12で減算した値の正負
により、前記2点間の温度差が正であるか負であ
るかを判定する比較器であり、21,22はその
結果を表示するための表示装置である。
19 and 20 are comparators that determine whether the temperature difference between the two points is positive or negative based on the sign of the value subtracted by the subtracter 12, and 21 and 22 are for displaying the results. This is a display device.

本発明では、金型4の鋳壁面近傍において、溶
湯からの熱流束の流れ方向へ鋳壁面からの距離に
差をもたせた2点に設けた2個の温度検出素子
8,9により、金型4の鋳壁近傍の温度勾配を測
定し、この温度勾配により溶湯から金型4へ流入
する熱流束または熱勾配を減算回路にて算出し、
溶湯が金型4内へ注入され始める時点からの熱流
束の積分値により、金型が溶湯から吸収した熱エ
ネルギを算出し、その値があらかじめ設定されて
いる設定値に達したら、金型操作装置18の作動
により、金型の型開を行う。
In the present invention, in the vicinity of the casting wall surface of the mold 4, two temperature detection elements 8 and 9 are provided at two points with different distances from the casting wall surface in the flow direction of the heat flux from the molten metal. Measure the temperature gradient near the casting wall of 4, calculate the heat flux or thermal gradient flowing from the molten metal into the mold 4 using a subtraction circuit based on this temperature gradient,
The thermal energy absorbed by the mold from the molten metal is calculated from the integral value of the heat flux from the point when the molten metal starts to be injected into the mold 4, and when the value reaches a preset value, the mold is operated. By operating the device 18, the mold is opened.

金型内の鋳壁面近傍の単位面積を通過する熱流
速q〓は、熱伝導率をλ、温度をT、鋳壁面からの
距離をXとすると、 q〓=λ∂T/∂X と表わされる。
The heat flow rate q〓 passing through a unit area near the casting wall surface in the mold is expressed as q〓=λ∂T/∂X, where λ is the thermal conductivity, T is the temperature, and X is the distance from the casting wall surface. It will be done.

したがつて、金型へ溶湯を注入した時点から時
間τ経過した時の上記単位面積を通過した熱量q
は、 q=∫〓〓λ∂T/∂Xdt となる。そこで、本発明では微小距離△だけ離
れた2点の温度T1,T2を測定して、上式を q=∫〓〓λT1−T2/△dt =λ/△∫〓〓(T1−T2)dt のように近似し、さらに、金型が溶湯から吸収し
た全熱量は、上記単位面積を通過した熱量qに比
例すると近似した。
Therefore, the amount of heat q that has passed through the above unit area when time τ has elapsed from the time when the molten metal was injected into the mold
becomes q=∫〓〓λ∂T/∂Xdt. Therefore, in the present invention, the temperatures T 1 and T 2 at two points separated by a minute distance △ are measured, and the above equation is expressed as q=∫〓〓λT 1 −T 2 /△dt =λ/△∫〓〓 1 −T 2 )dt, and further approximated that the total amount of heat absorbed by the mold from the molten metal is proportional to the amount of heat q passing through the unit area.

そして、第1図のブロツク図に示したようにし
て、金型鋳造における鋳物冷却時間、すなわち、
型開時間を適正に制御する。
As shown in the block diagram of FIG. 1, the casting cooling time in mold casting, that is,
Appropriately control mold opening time.

ただし、型開中のスプレー等の冷却操作により
鋳壁面から冷却すれば、鋳壁面近傍の温度勾配が
大きく反転する場合もあり、鋳壁面からの温度検
出素子8,9までの距離、2個の温度検出素子
8,9間の距離△など、温度検出素子8,9の
取付位置は重要であるため、これを確認する機能
として、温度差T1−T2の正、負、すなわち、T1
−T2>+α,T1−T2<−α(α,−αは温度差の
許容値)の判定を比較器19,20により行い、
その結果を表示するようにした。
However, if cooling is performed from the casting wall surface by a cooling operation such as spraying during mold opening, the temperature gradient near the casting wall surface may be significantly reversed. Since the mounting positions of the temperature detection elements 8 and 9 are important, such as the distance △ between the temperature detection elements 8 and 9, the positive or negative temperature difference T 1 −T 2 , that is, T 1
−T 2 >+α, T 1 −T 2 <−α (α, −α are allowable values for temperature difference) are determined by comparators 19 and 20,
The results are now displayed.

なお、本発明においては、温度検出素子8,9
の取付け個数を、2個以上とすることもできる。
また、温度検出素子8,9を数個所の金型鋳壁面
近傍に取付け、複数箇所の温度勾配の平均値を用
い、精度を向上させることもできる。前記ブロツ
ク線図中、場合によつては、補正係数設定器15
や乗算器14をのけることも可能である。
In addition, in the present invention, the temperature detection elements 8, 9
The number of attachments may be two or more.
It is also possible to improve accuracy by attaching the temperature detection elements 8 and 9 near the casting wall surface of the mold at several locations and using the average value of the temperature gradients at the multiple locations. In the block diagram, in some cases, the correction coefficient setter 15
It is also possible to omit the multiplier 14.

本発明においては、金型内へ溶湯を注入する直
前の金型温度が変動しても、鋳壁面近傍の温度勾
配から金型が溶湯より吸収した熱量を計算し、こ
の総熱量が鋳物の最適な冷却状態となる金型吸収
熱量に達した時に金型の型間操作を行うので、つ
ぎのような効果が得られる。
In the present invention, even if the mold temperature immediately before pouring the molten metal into the mold fluctuates, the amount of heat absorbed by the mold from the molten metal is calculated from the temperature gradient near the casting wall surface, and this total amount of heat is determined to be the optimum amount for the casting. Since the inter-mold operation of the mold is performed when the amount of heat absorbed by the mold is reached, which results in a cooling state, the following effects can be obtained.

(1) 鋳物の破裂や焼付きが防止され、かつ、鋳物
抜き抵抗を小さくして金型の寿命を著しく延長
することができる。
(1) It prevents the casting from bursting and seizing, and reduces the casting resistance, significantly extending the life of the mold.

(2) 常に、適正な鋳物冷却時間を得ることがで
き、鋳造サイクルの鋳物取出温度にばらつきが
ない。そして、鋳物の寸法精度が安定化し、品
質を向上させることができる。
(2) Appropriate cooling time for castings can always be obtained, and there is no variation in the temperature at which the castings are taken out during the casting cycle. Then, the dimensional accuracy of the casting is stabilized, and the quality can be improved.

(3) 必要以上の冷却時間になることはないから、
単位時間当りの鋳造個数が増加し、能率が向上
する。
(3) Cooling time will not be longer than necessary,
The number of pieces cast per unit time increases, improving efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するための装置の
1実施例を示すブロツク線図である。 1…固定盤、2…可動盤、3…固定金型、4…
可動金型、8,9…温度検出素子、10,11…
入力変換回路、12…減算回路、13…積分回
路、14…乗算器、16…設定器、17,19,
20…比較器、18…金型操作装置。
FIG. 1 is a block diagram showing one embodiment of an apparatus for carrying out the method of the invention. 1...Fixed plate, 2...Movable plate, 3...Fixed mold, 4...
Movable mold, 8, 9...temperature detection element, 10, 11...
Input conversion circuit, 12... Subtraction circuit, 13... Integrating circuit, 14... Multiplier, 16... Setting device, 17, 19,
20...Comparator, 18...Mold operation device.

Claims (1)

【特許請求の範囲】 1 金型の鋳壁面近傍の熱勾配を測定し、それを
時間の経過とともに積分してゆくことにより、金
型が溶湯から吸収した熱エネルギーを演算し、そ
の演算結果が、あらかじめ設定している設定値に
達したら、金型の型開を行うようにした金型鋳造
における鋳物冷却時間の制御方法。 2 金型の鋳壁面近傍において溶湯からの熱流束
の流れ方向へ鋳壁面からの距離に差をもたせた2
点に設けた2個の温度検出素子により、金型の鋳
壁面近傍の温度勾配を測定し、該温度勾配により
溶湯から金型へ流入する熱流束を算出し、溶湯が
金型内へ注入され始める時点からの該熱流束の積
分値により、金型が溶湯から吸収した熱エネルギ
を算出し、この値が金型、鋳造条件等に基づいて
あらかじめ設定されている設定値に達したとき金
型の型開を行うようにした特許請求の範囲第1項
記載の金型鋳造における鋳物冷却時間の制御方
法。 3 金型の鋳壁面近傍において溶湯からの熱流束
の流れ方向へ鋳壁面から距離差をもたせた2点の
金型温度に対応した電気信号を出力する温度検出
素子と、その電気信号を電圧信号又は電流信号に
変換する入力変換回路と、2個の該入力変換回路
の出力信号の減算を行うことにより鋳壁面近傍の
2点間の温度差を出力する減算回路と、該減算回
路の出力信号、すなわち、温度差を積分する積分
回路と、該積分回路の出力信号と金型および鋳造
条件に基づいて予め設定された設定値を比較して
該積分回路からの出力信号が該設定値を越えると
信号を出力する比較器と、該比較器からの信号に
より、金型の型開き操作が行なわれる金型操作装
置とを備えた金型鋳造における鋳物冷却時間の制
御装置。 4 金型の鋳壁面近傍において溶湯からの熱流束
の流れ方向へ鋳壁面から距離差をもたせた2点間
の温度差が、正であるか負であるかを判定する比
較器とその結果を表示するための表示装置を具備
した特許請求の範囲第3項記載の金型鋳造におけ
る鋳物冷却時間の制御装置。
[Claims] 1. By measuring the thermal gradient near the casting wall surface of the mold and integrating it over time, the thermal energy absorbed by the mold from the molten metal is calculated, and the calculation result is calculated. , A method for controlling the casting cooling time in mold casting, in which the mold is opened when a preset value is reached. 2 In the vicinity of the casting wall surface of the mold, there is a difference in the distance from the casting wall surface in the flow direction of the heat flux from the molten metal.
The temperature gradient near the casting wall surface of the mold is measured by two temperature detection elements installed at the points, and the heat flux flowing from the molten metal into the mold is calculated based on the temperature gradient, and the molten metal is injected into the mold. The heat energy absorbed by the mold from the molten metal is calculated from the integral value of the heat flux from the starting point, and when this value reaches a preset value based on the mold, casting conditions, etc., the mold A method for controlling casting cooling time in mold casting according to claim 1, wherein the mold is opened. 3 A temperature detection element that outputs an electric signal corresponding to the mold temperature at two points near the casting wall surface of the mold with a distance difference from the casting wall surface in the direction of flow of heat flux from the molten metal, and converting the electrical signal into a voltage signal. Or an input conversion circuit that converts into a current signal, a subtraction circuit that outputs the temperature difference between two points near the casting wall surface by subtracting the output signals of the two input conversion circuits, and the output signal of the subtraction circuit. That is, an integrating circuit that integrates the temperature difference is compared with a preset value based on the mold and casting conditions, and the output signal of the integrating circuit is compared, and the output signal from the integrating circuit exceeds the set value. 1. A control device for casting cooling time in mold casting, comprising: a comparator that outputs a signal; and a mold operating device that opens a mold according to the signal from the comparator. 4 A comparator that determines whether the temperature difference between two points near the casting wall surface of the mold with a distance difference from the casting wall surface in the flow direction of the heat flux from the molten metal is positive or negative, and the result 4. A casting cooling time control device in mold casting according to claim 3, further comprising a display device for displaying the information.
JP16972582A 1982-09-30 1982-09-30 Method and device for controlling cooling time for casting in die casting Granted JPS5961564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16972582A JPS5961564A (en) 1982-09-30 1982-09-30 Method and device for controlling cooling time for casting in die casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16972582A JPS5961564A (en) 1982-09-30 1982-09-30 Method and device for controlling cooling time for casting in die casting

Publications (2)

Publication Number Publication Date
JPS5961564A JPS5961564A (en) 1984-04-07
JPH0142789B2 true JPH0142789B2 (en) 1989-09-14

Family

ID=15891691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16972582A Granted JPS5961564A (en) 1982-09-30 1982-09-30 Method and device for controlling cooling time for casting in die casting

Country Status (1)

Country Link
JP (1) JPS5961564A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874032A (en) * 1986-09-13 1989-10-17 Yotaro Hatamura Die casting controlling method
JP4341494B2 (en) * 2004-07-20 2009-10-07 トヨタ自動車株式会社 Mold calorimetry method, temperature control method, calorimetry device, and temperature control device
US7886807B2 (en) * 2007-06-15 2011-02-15 Die Therm Engineering L.L.C. Die casting control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440206A (en) * 1977-09-06 1979-03-29 Kawasaki Steel Co Explosionnpreventive method of molten metal ladle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440206A (en) * 1977-09-06 1979-03-29 Kawasaki Steel Co Explosionnpreventive method of molten metal ladle

Also Published As

Publication number Publication date
JPS5961564A (en) 1984-04-07

Similar Documents

Publication Publication Date Title
US4583579A (en) Method of die casting
JP3000806B2 (en) Continuous differential pressure casting
JPH0142789B2 (en)
JPH10291060A (en) Continuous casting system
CA1176818A (en) Method for control of billet stripping
JP6435988B2 (en) Breakout prediction method, breakout prevention method, solidified shell thickness measurement method, breakout prediction device and breakout prevention device in continuous casting
CN114160775A (en) Intelligent temperature control system and intelligent temperature control method for low-pressure casting aluminum alloy melt
JPS5964149A (en) Method and device for controlling cooling time for casting in die casting
JP2004090064A (en) Method for controlling temperature of die-casting mold
US6557617B1 (en) Method for process monitoring during die casting or thixoforming of metals
JPS59111022A (en) Device and method of making sure position of surface of liquid of metallic solution
JPH06262337A (en) Method for controlling temperature of die
JPH06320245A (en) Heat extraction control device in mold
JP4726164B2 (en) Method for managing solid phase ratio of semi-solid metal slurry
JPS5921259B2 (en) Control device for casting cooling time in mold casting
JPH0242409B2 (en)
CN109195241B (en) Over-burning prevention method in electromagnetic induction heating process of aluminum alloy ingot
JPH084906B2 (en) Casting mold temperature control method
JPS5666364A (en) Continuous casting method
JPH0622957Y2 (en) Tandishyu heat retention device
JP2595834B2 (en) How to measure the number of low pressure castings
JPH0673733B2 (en) Method of controlling molten steel temperature in tundish at the beginning of casting
JP2004276050A (en) Method for starting continuous casting
JP3080560B2 (en) Local pressurization method and control device in die casting
JP3149647B2 (en) Metal layer detector for melting furnace