JPH03294765A - Co-generation device for cold water production and subway air cooling device used the same - Google Patents

Co-generation device for cold water production and subway air cooling device used the same

Info

Publication number
JPH03294765A
JPH03294765A JP2094455A JP9445590A JPH03294765A JP H03294765 A JPH03294765 A JP H03294765A JP 2094455 A JP2094455 A JP 2094455A JP 9445590 A JP9445590 A JP 9445590A JP H03294765 A JPH03294765 A JP H03294765A
Authority
JP
Japan
Prior art keywords
adsorption
regenerator
waste heat
cold water
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2094455A
Other languages
Japanese (ja)
Other versions
JPH0769093B2 (en
Inventor
Hirofumi Iida
飯田 弘文
Mitsushige Nishino
光重 西野
Masaru Sanada
勝 真田
Hiromi Ino
展海 猪野
Hideji Yanagi
秀治 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Tokyo Gas Co Ltd
Original Assignee
Mayekawa Manufacturing Co
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co, Tokyo Gas Co Ltd filed Critical Mayekawa Manufacturing Co
Priority to JP2094455A priority Critical patent/JPH0769093B2/en
Publication of JPH03294765A publication Critical patent/JPH03294765A/en
Publication of JPH0769093B2 publication Critical patent/JPH0769093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To produce cold water efficiently using waste heat and prevent environmental pollution by supplying waste heat recovery hot water passing through the waste heat recovery part of an internal combustion engine and the condenser of a compression type freezer, to the adsorbent filling part as a recovery pot which is separated into one part of a multitude unit of adsorption regeneration pots in an adsorption type freezer for normal operation adsorption regeneration pots, and the other part for auxiliary adsorption regeneration pots. CONSTITUTION:An adsorption type freezer A has a multitude of adsorption regeneration pots 20 consisting of a pair of adsorbent filling parts and one is a normal operation adsorption regeneration pot U and the other is an auxiliary adsorption regeneration pot V. The waste heat from an internal combustion engine 1 to operate a compression type freezer C passes a waste heat recovery part 6 and is recovered by the hot water in a waste heat recovery hot water system H. Also, the heat from a condenser 8 in the compression type freezer C is recovered by the hot water in the waste heat recovery system H and is supplied to the adsorption type freezer A, flows in the adsorbent filling part operating as a regeneration pot in the adsorption regeneration pots U and V, and is utilized for adsorbent. In the case the waste heat generated in the internal combustion engine 1 and that in the condenser 8 in the compression type freezer C is larger than the heat necessary for producing cool water in normal operation, the auxiliary adsorption regeneration pot V is used together.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は冷水発生用コージエネレーシヨン装置及びこれ
を利用した地下鉄冷房装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a cogeneration system for generating cold water and a subway cooling system using the same.

(従来の技術) 従来、地下鉄の駅舎や謎道内の冷房は、電動機駆動の圧
縮式冷凍機を利用した冷水発生装置を設置して行ったり
、付近の熱供給プラントからの冷水供給を受けて行って
おり、その設備容量は、入梅時期から夏期期間に於1す
る最大負荷に対応させている。
(Conventional technology) Conventionally, air conditioning in subway station buildings and roads has been done by installing cold water generators that use motor-driven compression refrigerators, or by receiving cold water from nearby heat supply plants. The installed capacity corresponds to the maximum load from the beginning of the plum season to the summer season.

また、近来いわゆるコージエネレーシヨン装置の一例と
して、発電機駆動用の内燃機関の廃熱を吸収式冷凍機の
再生用熱源として利用して冷水を発生させる装置が使用
されつつある。
Furthermore, recently, as an example of a so-called cozi energy device, a device that generates cold water by using waste heat from an internal combustion engine for driving a generator as a heat source for regeneration of an absorption refrigerator is being used.

(発明が解決しようとする課題) 従来の地下鉄の冷房装置では、前述したように、その設
備容量を、単に入梅時期から夏期期間に於ける最大負荷
に対応させて設置しており、従ってその設備の年間稼働
日数は少なく、設備の有効利用が図られていない。また
効率も殆ど無視されて、熱の有効利用を図るように構成
されてはおらず、また長期的な冷房負荷の増大には対処
できない。
(Problem to be solved by the invention) As mentioned above, in conventional subway cooling systems, the equipment capacity is simply set to correspond to the maximum load from the beginning of the plum season to the summer period, and therefore the equipment capacity is The number of operating days per year is small, and the equipment is not used effectively. Furthermore, efficiency is almost ignored, the system is not designed to utilize heat effectively, and it cannot cope with long-term increases in cooling load.

このような地下鉄の冷房装置に、前述のコージエネレー
シヨン装置による冷水発生装置を利用することも考えら
れるが、吸収式冷凍サイクルは、再生器に於いて必要な
温度が80℃以上と比較的高く、一般には85℃前後の
温度が安定して継続的に得られないと成績係数を高く維
持できず、そしてその温度が70℃以下に下がると吸収
剤の結晶が析出したり、効率が極端に低下したりして冷
水の発生機能を十分に発揮できないし、冷水負荷が少な
い場合等に於いて発生する余剰の熱量を有効に利用する
こともできない。
It is conceivable to use the above-mentioned cold water generation device using the cozi energy system in the cooling system of such subways, but the absorption refrigeration cycle requires a temperature of 80°C or higher in the regenerator, which is relatively low. Generally speaking, unless a stable and continuous temperature of around 85°C can be obtained, it is not possible to maintain a high coefficient of performance, and if the temperature drops below 70°C, absorbent crystals may precipitate and the efficiency may become extremely low. It is not possible to fully demonstrate the function of generating cold water, and it is not possible to effectively utilize the surplus heat generated when the load of cold water is small.

本発明は、コージエネレーシヨン装置と圧縮式冷凍機と
吸着式冷凍機を合理的に組み合わせることにより、以上
の従来の課題を解決することを目的とするものである。
The present invention aims to solve the above-mentioned conventional problems by rationally combining a cozi energy system, a compression refrigerator, and an adsorption refrigerator.

(課題を解決するための手段) 上記の課題を解決するための手段を説明すると、まず、
本発明の冷水発生用コージエネレーシヨン装置は、内燃
機関により駆動する発電機と、圧縮式冷凍機と、吸着式
冷凍機を構成要素とすると共に、該吸着式冷凍機は共通
の凝縮器、蒸発器に対して、交互に吸着器及び再生器と
して動作させる一対の吸着剤充填部から成る吸着再生器
を複数組設けて構成し、これらの複数組の吸着再生器の
一部を、常用運転時に動作させる常用吸着再生器として
構成すると共に、他の吸着再生器を、補助運転時に動作
させる補助吸着再生器として構成し、再生器として動作
させる前記吸着剤充填部に、前記内燃機関の廃熱回収部
及び前記圧縮式冷凍機の凝縮器を通る廃熱回収温水系統
の温水を供給する構成としたものである。
(Means for solving the problem) To explain the means for solving the above problem, first,
The cogeneration system for generating cold water of the present invention includes a generator driven by an internal combustion engine, a compression refrigerator, and an adsorption refrigerator as components, and the adsorption refrigerator has a common condenser, The evaporator is configured with a plurality of sets of adsorption regenerators each consisting of a pair of adsorbent filling sections that operate alternately as an adsorber and a regenerator, and some of these sets of adsorption regenerators are operated during regular operation. The adsorption regenerator is configured as a regular adsorption regenerator that is operated during auxiliary operation, and another adsorption regenerator is configured as an auxiliary adsorption regenerator that is operated during auxiliary operation. The system is configured to supply hot water from the waste heat recovery hot water system that passes through the recovery section and the condenser of the compression refrigerator.

上記の構成に於いて、補助吸着再生器に於ける吸着再生
のサイクル時間は、常用吸着再生器に於ける吸着再生の
サイクル時間よりも長くした構成とすることができる。
In the above configuration, the cycle time of adsorption regeneration in the auxiliary adsorption regenerator can be made longer than the cycle time of adsorption regeneration in the regular adsorption regenerator.

また圧縮器は、その駆動軸を発電機駆動用の内燃機関に
より駆動する構成とし、該駆動軸と内燃機関を断続自在
に構成することができる。また、吸着式冷凍機は複数設
けた構成とすることができる。
Further, the compressor has a configuration in which its drive shaft is driven by an internal combustion engine for driving a generator, and the drive shaft and the internal combustion engine can be configured to be disconnectable. Further, a configuration may be provided in which a plurality of adsorption refrigerators are provided.

更に本発明は、上記の構成に於いて、吸着式冷凍機を地
下鉄駅舎のプラットフォーム下のスペースに設置したり
、地下鉄隧道のデッドスペースに設置して地下鉄冷房装
置を構成するものである。
Furthermore, in the present invention, in the above configuration, the adsorption refrigerator is installed in a space under the platform of a subway station building or in a dead space of a subway tunnel to constitute a subway cooling system.

(作用) 冷房期には、内燃機関の運転により発電機を駆動して発
電を行って所要の電力需要を賄うと同時に、圧縮器の駆
動により圧縮式冷凍機を動作させて、その蒸発器に於い
て冷水を発生させ、この冷水を冷房に利用する。そして
、以上の運転により内燃機関に発生する廃熱及び圧縮式
冷凍機の凝縮器に発生する廃熱は、該凝縮器及び内燃機
関の廃熱回収部を通る廃熱回収温水系統により温水とし
て回収し、この温水を吸着式冷凍機の再生器に導く。吸
着式冷凍機では、まず共通の凝縮器及び蒸発器と共に常
用吸着再生器を動作させて吸着式冷凍サイクルを行わせ
る常用運転を行う。即ち、常用吸着再生器に於いて、一
方何の吸着剤充填部に廃熱回収温水系統の温水を供給し
て再生器として動作させると共に、他方側の吸着剤充填
部を吸着器として動作させることにより、蒸発器に於い
て冷水を発生することができる。この他方側の吸着剤充
填部の吸着能力が所定以下に低下した場合には前述の動
作を切り替えて、前記一方何の吸着剤充填部を吸着器、
他方側の吸着剤充填部を再生器として動作させ、以降同
様に交互に以上の動作切替を行うことにより冷水の発生
を継続することができる。そして蒸発器に於いて発生さ
せた冷水は、圧縮式冷凍器の蒸発器に於いて発生させた
冷水と共に冷房に供することができ、こうして内燃機関
に発生する廃熱及び圧縮式冷凍機の凝縮器に発生する廃
熱を冷水の発生に利用することができる。
(Function) During the cooling period, the internal combustion engine drives the generator to generate electricity to meet the required electricity demand, and at the same time, the compressor is driven to operate the compression refrigerator, which cools the evaporator. Cold water is generated and used for air conditioning. The waste heat generated in the internal combustion engine and the waste heat generated in the condenser of the compression refrigerator due to the above operation are recovered as hot water by the waste heat recovery hot water system that passes through the condenser and the waste heat recovery section of the internal combustion engine. Then, this hot water is led to the regenerator of the adsorption refrigerator. In an adsorption refrigerating machine, a normal operation is first performed in which a common adsorption regenerator is operated together with a common condenser and evaporator to perform an adsorption refrigeration cycle. That is, in a regular adsorption regenerator, hot water from the waste heat recovery hot water system is supplied to one adsorbent-filled part to operate it as a regenerator, and the other adsorbent-filled part is operated as an adsorber. This allows cold water to be generated in the evaporator. If the adsorption capacity of the adsorbent filling section on the other side decreases below a predetermined level, the above-mentioned operation is switched and the adsorbent filling section on the other side is replaced with the adsorbent.
The generation of cold water can be continued by operating the adsorbent filling section on the other side as a regenerator, and thereafter switching the above operations alternately in the same manner. The cold water generated in the evaporator can be used for cooling together with the cold water generated in the evaporator of the compression type refrigerator, and thus the waste heat generated in the internal combustion engine and the condenser of the compression type refrigerator can be The waste heat generated can be used to generate cold water.

このようにして吸着式冷凍機の常用運転に於いて発生さ
せるべき冷水量が少なく、この冷水を発生させるために
必要な熱量よりも前記内燃機関に発生する廃熱及び圧縮
式冷凍機の凝縮器に発生する廃熱の熱量の方が多い場合
は、吸着式冷凍機に於いては、補助吸着再生器の吸着剤
充填部に前記廃熱回収温水系統の温水の一部を供給して
、これを再生器として動作させる補助運転を併用する。
In this way, the amount of cold water to be generated during normal operation of the adsorption refrigerator is small, and the amount of waste heat generated in the internal combustion engine and the condenser of the compression refrigerator is smaller than the amount of heat required to generate this cold water. If the amount of heat generated by the waste heat is larger than that of the waste heat, in an adsorption refrigerator, a portion of the hot water from the waste heat recovery hot water system is supplied to the adsorbent filling section of the auxiliary adsorption regenerator. It is also used with auxiliary operation that operates as a regenerator.

こうして余剰の熱量は補助吸着再生器の吸着剤充填部の
再生に利用され、再生後その状態を紬持して、後述する
ように必要時にこれを吸着器とじて動作させることによ
り冷水の発生に利用することができ、従って実質的に冷
熱としての蓄熱を行うことができる。また、更に冷水負
荷が小さく、圧縮式冷凍機のみで必要量の冷水を賄える
場合は、吸着式冷凍機は前述した常用運転に於ける冷水
発生を行わず、専ら前述した吸着剤の再生を行い、再生
後は次の運転まで待機させる。
In this way, the surplus heat is used to regenerate the adsorbent filling part of the auxiliary adsorption regenerator, and after regeneration, the state is maintained and the adsorber is closed and operated when necessary, as described later, to generate cold water. Therefore, it is possible to essentially store heat as cold heat. Furthermore, if the chilled water load is small and the necessary amount of chilled water can be supplied only by the compression chiller, the adsorption chiller will not generate chilled water during normal operation as described above, but will only regenerate the adsorbent as described above. , After regeneration, it is put on standby until the next operation.

次いで冷水負荷が増大して、圧縮式冷凍機及び吸着式冷
凍機の常用運転では必要量の冷水が得られない場合には
、吸着式冷凍機は、常用運転に加えて前述したように予
め再生されている補助吸着再生器の吸着剤充填部の吸着
剤により冷媒蒸気の吸着を行う補助運転を併用する。従
って蒸発器に於ける冷媒の蒸発量を増やすことができ、
吸着式冷凍機の冷水発生能力を増大することにより装置
全体としての冷水発生能力を増大させることができ、冷
水負荷の増大に対処することができる。吸着式冷凍機は
、所要の冷水負荷や将来の冷水負荷の増大等の条件を加
味してその冷水発生能力を選定すれば良く、複数の補助
吸着再生器を設置することにより容易に能力を大とする
ことができ、この場合でも凝縮器及び蒸発器そしてこれ
らを動作させる構成要素は共通であるから、コストやス
ペースが大きくならない。また補助吸着再生器は、その
吸着再生のサイクル時間を適宜に設定することができ、
例えば常用吸着再生器に於ける吸着再生のサイクル時間
よりも長く構成することにより、前述の蓄熱量及び吸着
量を容易に大きくすることができる。
Next, if the chilled water load increases and the necessary amount of chilled water cannot be obtained by normal operation of the compression chiller and adsorption chiller, the adsorption chiller may be regenerated in advance as described above in addition to normal operation. An auxiliary operation is also used in which refrigerant vapor is adsorbed by the adsorbent in the adsorbent filling section of the auxiliary adsorption regenerator. Therefore, the amount of evaporation of refrigerant in the evaporator can be increased,
By increasing the cold water generation capacity of the adsorption refrigerator, the cold water generation capacity of the entire apparatus can be increased, and an increase in the cold water load can be coped with. The chilled water generation capacity of an adsorption chiller can be selected by taking into account conditions such as the required chilled water load and future increase in chilled water load, and the capacity can be easily increased by installing multiple auxiliary adsorption regenerators. Even in this case, the condenser and evaporator and the components for operating them are common, so the cost and space will not increase. In addition, the auxiliary adsorption regenerator can set its adsorption regeneration cycle time appropriately.
For example, by configuring the cycle time to be longer than the cycle time of adsorption regeneration in a conventional adsorption regenerator, the amount of heat storage and the amount of adsorption described above can be easily increased.

吸着式冷凍機は、吸収式冷凍機に於ける吸収剤の析出と
いう不都合がなく、再生器に於ける吸着剤の再生に必要
な熱源の温度も50℃以上と、比較的低いことに加えて
、熱源の熱量の変動に対しての能力の変動が少なく、ま
た熱量を吸着式冷凍機の吸着再生器内の吸着剤の再生と
いう形態で蓄熱することができるので、時間的にずれが
あっても熱を冷水発生に有効利用することができ、こう
して内燃機関及び圧縮式冷凍機の凝縮器に発生する廃熱
を有効利用することができる。
Adsorption chillers do not have the disadvantage of absorbent precipitation that occurs in absorption chillers, and the temperature of the heat source required to regenerate the adsorbent in the regenerator is relatively low, at 50°C or higher. , the capacity fluctuates little in response to fluctuations in the heat amount of the heat source, and the heat can be stored in the form of regenerating the adsorbent in the adsorption regenerator of the adsorption refrigerator, so there is no time lag. Also, the heat can be effectively used to generate cold water, and thus the waste heat generated in the internal combustion engine and the condenser of the compression refrigerator can be effectively used.

また、吸着式冷凍機に使用するシリカゲル、ゼアライト
等の吸着剤は、吸着反応時でも体積変化がなく、無毒、
無臭、非腐食性という性質を有し、長期間の使用でも保
守、管理が容易であるので、吸着式冷凍機を地下鉄駅舎
のプラットフォーム下のスペースや地下鉄隨道のデッド
スペースに設置することにより容易に、安全な地下鉄用
の冷房装置を構成することができる。
In addition, the adsorbents used in adsorption refrigerators, such as silica gel and zealite, do not change in volume even during adsorption reactions, are non-toxic, and are
It is odorless and non-corrosive, and is easy to maintain and manage even after long-term use, making it easy to install adsorption chillers in the space under the platform of a subway station building or in the dead space of a subway tunnel. Therefore, a safe cooling system for subways can be constructed.

(実施例) 次に本発明のコージエネレーシヨン装置を地下鉄冷房装
置に適用した実施例につき添付の図面を参照して説明す
る。
(Example) Next, an example in which the cozi energy system of the present invention is applied to a subway cooling system will be described with reference to the accompanying drawings.

第1図に於いて、符号1はガスエンジン等の内燃機関1
であり、この内燃機関lにより発電機2を駆動する構成
としている。この内燃機関lには、ジャケット冷却器3
と、排ガス経路4に設けた排気ガス熱交換器5とから成
る廃熱回収部6を設けている。
In FIG. 1, reference numeral 1 indicates an internal combustion engine 1 such as a gas engine.
The generator 2 is driven by the internal combustion engine l. This internal combustion engine l has a jacket cooler 3
and an exhaust gas heat exchanger 5 provided in the exhaust gas path 4.

符号Cは圧縮式冷凍機を示すもので、この圧縮式冷凍機
Cは、圧縮器7、凝縮器8、膨張弁9及び蒸発器10を
構成要素としている。そしてこの圧縮器7は、駆動軸1
1を前記内燃機関1により駆動する構成としており、該
駆動軸11と内燃機関1の出力軸12とはクラッチ13
を介して断続自在に接続する構成としている。尚、図示
例ではこの駆動軸11は、発電機2の回転軸14を介し
て前記出力軸12に接続する構成としているが、直接に
接続する構成とすることもできる。また、この圧縮器7
の駆動軸11は、内燃機関1の出ノJ軸12により駆動
させる構成とする他、場合によっては、電動機により駆
動する構成とすることもできる。前記凝縮器8には、後
記廃熱回収温水系統Hに連なる熱交換部15と、冷却塔
17aに連なる冷却水経路Raの熱交換部16を設けて
いる。
The symbol C indicates a compression type refrigerator, and this compression type refrigerator C has a compressor 7, a condenser 8, an expansion valve 9, and an evaporator 10 as components. This compressor 7 is connected to the drive shaft 1
1 is configured to be driven by the internal combustion engine 1, and the drive shaft 11 and the output shaft 12 of the internal combustion engine 1 are connected to each other by a clutch 13.
The configuration is such that the connection can be made intermittently via the . In the illustrated example, the drive shaft 11 is connected to the output shaft 12 via the rotating shaft 14 of the generator 2, but it can also be connected directly. Also, this compressor 7
The drive shaft 11 is configured to be driven by the output J-shaft 12 of the internal combustion engine 1, or may be configured to be driven by an electric motor depending on the case. The condenser 8 is provided with a heat exchange section 15 connected to a waste heat recovery hot water system H described later, and a heat exchange section 16 of a cooling water path Ra connected to a cooling tower 17a.

また廃熱回収部6には、ジャケット冷却器3と排気ガス
熱交換器5を順次通る温水経路を構成しており、この経
路は廃熱回収温水系統Hを構成している。
Further, the waste heat recovery section 6 has a hot water path that passes through the jacket cooler 3 and the exhaust gas heat exchanger 5 in sequence, and this path forms a waste heat recovery hot water system H.

符号Aは吸着式冷凍機を示すもので、この吸着式冷凍機
Aは地下鉄駅舎のプラットフォームPLの下方空間に適
数を設置している。この吸着式冷凍機Aは、共通の凝縮
器18、蒸発器19に対して、交互に吸着器及び再生器
として動作させる一対の吸着剤充填部a、bから成る吸
着再生器20を複数組設けて構成している。そして、こ
れらの複数組の吸着再生器20の一部は、常用運転時に
動作させる常用吸着再生器Uとして構成すると共に、他
の吸着再生器を、補助運転時に動作させる補助吸着再生
器Vとして構成している。これらの吸着再生器20の吸
着剤充填部a、bにはシリカゲルやゼオライト等の固体
吸着剤を充填している。
Reference numeral A indicates an adsorption refrigerator, and an appropriate number of adsorption refrigerators A are installed in the space below the platform PL of the subway station building. This adsorption refrigerator A has a common condenser 18 and an evaporator 19, and a plurality of sets of adsorption regenerators 20 each consisting of a pair of adsorbent filling parts a and b that are operated alternately as adsorbers and regenerators. It is composed of Some of these plurality of adsorption regenerators 20 are configured as regular adsorption regenerators U that are operated during regular operation, and other adsorption regenerators are configured as auxiliary adsorption regenerators V that are operated during auxiliary operation. are doing. The adsorbent filling parts a and b of these adsorption regenerators 20 are filled with a solid adsorbent such as silica gel or zeolite.

そして、補助吸着再生器Vを構成する吸着剤充填部は、
常用吸着再生器Uを構成する吸着剤充填部a、bよりも
吸着剤の充填容量を大きくして、該補助吸着再生器■に
於ける吸着再生のサイクル時間を、常用吸着再生器Uに
於ける吸着再生のサイクル時間よりも長く構成している
。例えば、常用吸着再生器Uは1−10分間のサイクル
時間で吸着、再生を行う構成とすると共に、補助吸着再
生器Vは10分間〜1時間以上のサイクル時間で吸着、
再生を行う構成としている。図に於いて、常1 用吸着再生器Uは一組のみ示しているが、複数組構成す
ることもできる。また補助吸着再生器Vも図示のように
複数組とする他、−組であっても良い。
The adsorbent filling part that constitutes the auxiliary adsorption regenerator V is
By making the adsorbent filling capacity larger than that of the adsorbent filling parts a and b that constitute the regular adsorption regenerator U, the adsorption regeneration cycle time in the auxiliary adsorption regenerator The cycle time is longer than the adsorption regeneration cycle time. For example, the regular adsorption regenerator U is configured to adsorb and regenerate with a cycle time of 1 to 10 minutes, and the auxiliary adsorption regenerator V adsorbs and regenerates with a cycle time of 10 minutes to over 1 hour.
It is configured to perform playback. In the figure, only one set of adsorption regenerators U for normal use is shown, but a plurality of sets can be constructed. Further, the auxiliary adsorption regenerators V may be provided in a plurality of sets as shown in the figure, or may be in - sets.

符号21.22は共通の冷媒蒸気経路であり、前記凝縮
器18と蒸発器19を、夫々一対の開閉弁23.24を
介して夫々の冷媒蒸気経路21゜22に選択的に接続す
る構成としている。また、常用吸着再生器Uの吸着剤充
填部Ua、Ubは、夫々一対の開閉弁25.26を介し
て冷媒蒸気経路21.22の双方に選択的に接続する構
成とすると共に、補助吸着再生器■の吸着剤充填部Va
Reference numerals 21 and 22 indicate a common refrigerant vapor path, and the condenser 18 and evaporator 19 are selectively connected to the respective refrigerant vapor paths 21 and 22 via a pair of on-off valves 23 and 24, respectively. There is. In addition, the adsorbent filling parts Ua and Ub of the regular adsorption regenerator U are configured to be selectively connected to both of the refrigerant vapor paths 21 and 22 via a pair of on-off valves 25 and 26, respectively, and the auxiliary adsorption and regeneration Adsorbent filling part Va of container ■
.

vbは、開閉弁27.28を介して冷媒蒸気経路21.
22の夫々に接続する構成としている。符号29は冷媒
タンクであり、前記凝縮器18に於いて凝縮した冷媒は
サイフオン管3oを経てこの冷媒タンク29に導入され
て貯留され、そしてポンプ31、流量調整弁32を経て
冷媒噴射部33から蒸発器19に導入する構成としてい
る。以上の凝縮器18、蒸発器19及び吸着剤充填部a
Vb is connected to the refrigerant vapor path 21.vb via on-off valves 27.28.
22, respectively. Reference numeral 29 denotes a refrigerant tank, and the refrigerant condensed in the condenser 18 is introduced into the refrigerant tank 29 through the siphon pipe 3o and stored therein, and is then discharged from the refrigerant injection section 33 through a pump 31 and a flow rate adjustment valve 32. It is configured to be introduced into the evaporator 19. The above condenser 18, evaporator 19 and adsorbent filling part a
.

2 bには夫々熱交換部34,35,36.37を設けてい
る。
2b are provided with heat exchange sections 34, 35, 36, and 37, respectively.

熱交換部34は冷却水経路R1熱交換部35は冷水系統
Wに連なる冷水経路wbに接続すると共に、熱交換部3
6a、36b;37a、37bは二対ずつの開閉弁対3
8a、38b;39a、39bを介して冷却水経路Rと
前記廃熱回収温水系統Hを構成する経路に選択的に接続
する構成としている。
The heat exchange section 34 is connected to the cooling water path R1, and the heat exchange section 35 is connected to the cold water path wb connected to the cold water system W.
6a, 36b; 37a, 37b are two pairs of on-off valves 3
8a, 38b; 39a, 39b are configured to selectively connect to the cooling water route R and the route constituting the waste heat recovery hot water system H.

前記冷水経路wbは、圧縮式冷凍機Cの蒸発器10の熱
交換部40を通る冷水経路Waと並列に接続して、冷水
系統Wを構成しており、この冷水系統Wには適数の空調
用熱交換部41を設けている。一方、前記冷却水経路R
は、地下鉄隠道Tの適所の漏水を冷却水源とする経路R
bと、適所に設置した冷却塔17bに連なる経路Rcに
連なる構成としている。尚、図中pはポンプ、fはファ
ン、■は開閉弁、42は地下鉄車両、43はダンパ、4
4は断熱部材を表すものである。
The cold water path wb is connected in parallel with the cold water path Wa passing through the heat exchange section 40 of the evaporator 10 of the compression refrigerator C to constitute a cold water system W. An air conditioning heat exchange section 41 is provided. On the other hand, the cooling water path R
is a route R that uses water leakage at a suitable location on subway Hidden Road T as a cooling water source.
b and a path Rc that connects to a cooling tower 17b installed at an appropriate location. In addition, in the figure, p is a pump, f is a fan, ■ is an on-off valve, 42 is a subway car, 43 is a damper, 4
4 represents a heat insulating member.

以上の構成に於いて、冷房期にはクラッチ13を連結し
て内燃機関1を運転し、発電機2を駆動すると共に、圧
縮器7を駆動して圧縮式冷凍機Cを動作させる。発電機
2により発電された電力は駅舎や隧道Tの換気ファン、
排水ポンプ等の補機動力等の電源として使用する。また
圧縮式冷凍機Cの動作により蒸発器10に於いて発生す
る冷水は冷水経路Waを経て冷水系統Wの熱交換器41
に至り、冷房に供される。一方、内燃機関1の運転によ
り発生する廃熱は、ジャケット熱交換器3及び排ガス熱
交換器5から成る廃熱回収部6を通る経路を介して廃熱
回収温水系統Hの温水に回収され、また圧縮式冷凍機C
の動作により、凝縮器8に発生する熱も、この凝縮器8
の熱交換部15を通る経路を介して廃熱回収温水系統H
の温水に回収される。そしてこの廃熱回収温水系統Hの
温水は吸着式冷凍機Aに供給される。尚、熱交換部15
を流れる温水だけでは凝縮器8に発生する熱を十分に除
去できない場合には、必要に応じて冷却塔17aへの冷
却経路Raを動作させることにより、圧縮式冷凍機Cの
動作を阻害する凝縮熱の除去を行うことができる。
In the above configuration, during the cooling period, the clutch 13 is engaged to operate the internal combustion engine 1, drive the generator 2, and drive the compressor 7 to operate the compression refrigerator C. The electricity generated by generator 2 is used for ventilation fans in the station building and tunnel T,
Used as a power source for auxiliary equipment such as drainage pumps. In addition, the cold water generated in the evaporator 10 by the operation of the compression refrigerator C passes through the cold water path Wa to the heat exchanger 41 of the cold water system W.
It is then placed in the air conditioner. On the other hand, waste heat generated by the operation of the internal combustion engine 1 is recovered into hot water of a waste heat recovery hot water system H via a path passing through a waste heat recovery section 6 consisting of a jacket heat exchanger 3 and an exhaust gas heat exchanger 5, Also, compression type refrigerator C
Due to the operation of , the heat generated in the condenser 8 is also transferred to the condenser 8.
The waste heat recovery hot water system H
collected in warm water. The hot water from the waste heat recovery hot water system H is then supplied to the adsorption refrigerator A. In addition, the heat exchange section 15
If the heat generated in the condenser 8 cannot be sufficiently removed by hot water flowing through the cooling tower 17a, the cooling path Ra to the cooling tower 17a may be operated as necessary to prevent condensation that inhibits the operation of the compression refrigerator C. Heat removal can be performed.

前述した通り、廃熱回収温水系統Hの温水は吸着式冷凍
機Aに至り、吸着再生器U、Vに於いて、再生器として
動作している吸着剤充填部を流れて吸着剤の再生に供さ
れる。まず、吸着式冷凍機Aは、第2図に示すように図
中ハツチングを施した開閉弁及び開閉弁対を開、これを
施していない開閉弁及び開閉弁対を閉として常用吸着再
生器Uのみを動作させる常用運転を行う状態とする。尚
、補助吸着再生器Vに関する開閉弁及び開閉弁対は、ハ
ツチングの状態にかかわらず、いまは便宜的に何れも閉
とする。
As mentioned above, the hot water from the waste heat recovery hot water system H reaches the adsorption refrigerator A, and in the adsorption regenerators U and V, it flows through the adsorbent filling section that operates as a regenerator to regenerate the adsorbent. Served. First, as shown in Fig. 2, the adsorption refrigerating machine A opens the on-off valves and on-off valve pairs marked with hatching, and closes the on-off valves and on-off valve pairs that are not hatched. The system is in a state where regular operation is performed with only the Note that the on-off valve and the on-off valve pair regarding the auxiliary adsorption regenerator V are both closed for the sake of convenience, regardless of the hatching state.

しかして、廃熱回収温水系統Hの温水は、吸着剤充填部
Uaの熱交換部36aを流れてこの吸着剤を加熱し、吸
着されている冷媒蒸気を放出させて再生する。放出され
た冷媒蒸気は開閉弁25を介して冷媒蒸気経路21から
開閉弁24を介して委縮器18に導入され、熱交換部3
4を流れている冷却水により冷却されて液化し、サイフ
オン管30を介して冷媒液タンク29に至る。次いでポ
5 ンプ31、流量調整弁32を経て、冷媒噴出部33から
蒸発器19内に導入されて蒸発し、この際、熱交換部3
5を流れている冷水経路wbの冷水から熱を奪い、これ
を冷却する。そして、このように冷却された冷水経路w
bの冷水は、前記圧縮式冷凍機Cの蒸発器10に於いて
発生した冷水と共に冷水系統Wの熱交換器41に至り、
冷房に供される。一方、蒸発器19内の冷媒蒸気は開閉
弁23から冷媒蒸気経路22を経て、開閉弁26から他
の吸着剤充填部Ubに至り、ここで吸着剤に吸着される
。かかる吸着に際して発生する吸着熱は、熱交換部36
bを流れる冷却水経路Rの冷却水、即ち地下鉄の漏水や
冷却塔17bからの冷却水により除去される。これらの
冷却水は運転時の条件により適宜選択したり、又は同時
に使用する。このような運転により一方側の吸着剤充填
部ubの吸着能力が所定以下に低下した場合には開閉弁
及び開閉弁対を、前述と逆に第2図に於いてハツチング
を施したものを閉、施していないものを開として、いま
まで再生器として動作していた吸着剤6 充填部Uaを吸着器、吸着器として動作していた吸着剤
充填部Ubを再生器として動作させることにより、冷水
の発生を継続することができる。
Thus, the hot water of the waste heat recovery hot water system H flows through the heat exchange section 36a of the adsorbent filling section Ua, heats the adsorbent, releases the adsorbed refrigerant vapor, and regenerates the adsorbent. The released refrigerant vapor is introduced from the refrigerant vapor path 21 via the on-off valve 25 into the condenser 18 via the on-off valve 24, and is then introduced into the condenser 18 via the on-off valve 24.
The refrigerant is cooled and liquefied by the cooling water flowing through the refrigerant liquid tank 29 through the siphon pipe 30. Next, the refrigerant is introduced into the evaporator 19 from the refrigerant jet section 33 through the pump 31 and the flow rate adjustment valve 32, and is evaporated.
Heat is removed from the cold water in the cold water path wb flowing through the cold water path wb, and the water is cooled. And the cold water route cooled like this lol
The cold water b reaches the heat exchanger 41 of the cold water system W together with the cold water generated in the evaporator 10 of the compression refrigerator C,
Served for cooling. On the other hand, the refrigerant vapor in the evaporator 19 passes from the on-off valve 23 through the refrigerant vapor path 22, and from the on-off valve 26 to another adsorbent filling section Ub, where it is adsorbed by the adsorbent. The adsorption heat generated during such adsorption is transferred to the heat exchange section 36.
It is removed by the cooling water in the cooling water path R flowing through the cooling water path R, that is, the cooling water from the subway leakage or the cooling water from the cooling tower 17b. These cooling waters may be appropriately selected depending on the operating conditions, or may be used simultaneously. If the adsorption capacity of the adsorbent filling part ub on one side decreases below a predetermined level due to such operation, the on-off valve and the on-off valve pair, which are hatched in Fig. 2 in the opposite manner to the above, are closed. , by operating the adsorbent filling part Ua, which had been operating as a regenerator, as an adsorber, and the adsorbent filling part Ub, which had been operating as an adsorber, as a regenerator. can continue to occur.

以上の常用運転は、開閉弁を第2図の状態とは逆に第3
図に示す状態に切り替えて行うこともできる。尚、第3
図も第2図と同様に、ハツチングを施しているものを開
、施していないものを閉としている。以上の状態に於い
て、凝縮器18は開閉弁24を介して冷媒蒸気経路22
と連通し、また蒸発器19は開閉弁23を介して冷媒蒸
気経路21と連通して、常用吸着再生器Uと共に常用運
転を行う。
For the above regular operation, the on-off valve should be set to the 3rd position, contrary to the state shown in Figure 2.
It is also possible to switch to the state shown in the figure. Furthermore, the third
Similarly to Figure 2, the figures with hatching are open, and those without hatching are closed. In the above state, the condenser 18 is connected to the refrigerant vapor path 22 via the on-off valve 24.
The evaporator 19 also communicates with the refrigerant vapor path 21 via the on-off valve 23, and performs normal operation together with the normal adsorption regenerator U.

このようにして吸着式冷凍機Cの常用運転に於いて発生
させるべき冷水量が少なく、この冷水を発生させるため
に必要な熱量よりも前記内燃機関1に発生する廃熱及び
圧縮式冷凍機Cの凝縮器8に発生する廃熱の熱量の方が
多い場合は、吸着式冷凍機Aに於いては、補助吸着再生
器Vの吸着剤充填部a、bに前記廃熱回収温水系統Hの
温水の一部を供給して、これを再生器として動作させる
補助運転を併用する。即ち、補助吸着再生器Vに関する
開閉弁27.28及び開閉弁対39a、39bは、第2
図に於いてハツチングを施した開閉弁及び開閉弁対を開
、これを施していない開閉弁及び開閉弁対を閉として、
前述の常用運転に併用して補助運転を行う。
In this way, the amount of cold water to be generated during regular operation of the adsorption refrigerator C is small, and the amount of waste heat generated in the internal combustion engine 1 and the compression refrigerator C are greater than the amount of heat required to generate this cold water. If the amount of waste heat generated in the condenser 8 is larger than that of the waste heat recovery system H, in the adsorption refrigerator A, the waste heat recovery hot water system H is An auxiliary operation is also used in which a portion of hot water is supplied and used as a regenerator. That is, the on-off valves 27, 28 and the on-off valve pair 39a, 39b regarding the auxiliary adsorption regenerator V are the second
In the figure, the hatched on-off valves and on-off valve pairs are open, and the on-off valves and on-off valve pairs that are not hatched are closed.
Auxiliary operation is performed in conjunction with the above-mentioned regular operation.

しかして補助吸着再生器Vの吸着剤充填部Va内の吸着
剤は、廃熱回収温水系統Hから開閉弁対39aを介して
熱交換部37aに流れる温水により加熱されて冷媒蒸気
を放出し、ここから放出された冷媒蒸気は開閉弁27を
経て冷媒蒸気経路21に至り、常用吸着再生器Uから放
出された冷媒蒸気と共に、この冷媒蒸気経路21を流れ
、開閉弁24を経て凝縮器I8に流入する。このように
して補助吸着再生器Vの吸着剤充填部Vaの再生が完了
したら、開閉弁27と開閉弁対39aを閉とし、次いで
以上と同様にして、他の補助吸着再生器Vの吸着剤充填
部の再生を行う。また第3図に示す状態で常用運転を行
う場合には、第4図のハツチングに示すように、開閉弁
28と開閉弁対39bを開として補助吸着再生器Vの他
の吸着剤充填部vbの再生を行うことができる。
Thus, the adsorbent in the adsorbent filling section Va of the auxiliary adsorption regenerator V is heated by the hot water flowing from the waste heat recovery hot water system H to the heat exchange section 37a via the on-off valve pair 39a, and releases refrigerant vapor. The refrigerant vapor released from here reaches the refrigerant vapor path 21 via the on-off valve 27, flows through this refrigerant vapor path 21 together with the refrigerant vapor released from the regular adsorption regenerator U, passes through the on-off valve 24, and enters the condenser I8. Inflow. When the regeneration of the adsorbent filling part Va of the auxiliary adsorption regenerator V is completed in this way, the on-off valve 27 and the on-off valve pair 39a are closed, and then in the same manner as above, the adsorbent in the other auxiliary adsorption regenerator V is Regenerate the filled part. Further, when performing regular operation in the state shown in FIG. 3, as shown by hatching in FIG. can be played.

以上説明したように、冷水負荷が小さい場合等、冷水を
発生させるために必要な熱量よりも廃熱回収温水系統H
の熱量の方が多い場合には、常用吸着再生器Uの吸着剤
充填部Ua、Ubの再生は短時間で終了してしまうので
、このままであると発生熱量は余ってしまうのであるが
、前述した通り、本発明では、このような状態に於いて
、余剰の熱量は補助吸着再生器Vの吸着剤充填部Va、
Vbの再生に利用するので、その有効利用が図られる。
As explained above, when the chilled water load is small, the waste heat recovery hot water system H
If the amount of heat is larger than the amount of heat generated by As described above, in the present invention, in such a state, the surplus heat is transferred to the adsorbent filling section Va of the auxiliary adsorption regenerator V,
Since it is used for reproducing Vb, it can be used effectively.

このように余剰の熱量を実質的に蓄熱する補助吸着再生
器Vは、吸着剤充填部に於ける吸着剤の充填量を、常用
吸着再生器Uのそれよりも多くすることにより、より多
量の蓄熱を行うことができ、かかる構成では吸着再生の
サイクル時間は、常用吸着再生器Uのそれよりも長くな
る。この他、補助吸着再生器Vを複数設けることにより
蓄熱量を増やすこともできる。また、更に冷水負荷が小
さく圧縮式冷凍機Cのみで必要量の冷水を賄える場9 合は、吸着式冷凍機Aは前述した常用運転に於ける冷水
発生を行わず、専ら前述した吸着剤の再生を行い、再生
後は次の運転まで待機させる。
The auxiliary adsorption regenerator V, which stores surplus heat in this way, has a larger amount of adsorbent in the adsorbent filling section than that of the regular adsorption regenerator U. Heat storage can be provided, and in such a configuration the cycle time of adsorption regeneration is longer than that of the conventional adsorption regenerator U. In addition, the amount of heat storage can be increased by providing a plurality of auxiliary adsorption regenerators V. Furthermore, if the chilled water load is small and the necessary amount of chilled water can be supplied only by the compression chiller C, the adsorption chiller A will not generate chilled water during normal operation as described above, and will only use the adsorbent as described above. It performs regeneration, and after regeneration, it waits until the next operation.

次いで冷水負荷が増大して、圧縮式冷凍機C及び吸着式
冷凍機Aの常用運転では必要量の冷水が得られない場合
には、吸着式冷凍機Aは、常用運転に加えて前述したよ
うに予め再生されている補助吸着再生器■の吸着剤充填
部Va、Vbの吸着剤により冷媒蒸気の吸着を行う補助
運転を併用する。
Next, if the chilled water load increases and the required amount of chilled water cannot be obtained by normal operation of compression chiller C and adsorption chiller A, adsorption chiller A may be operated as described above in addition to normal operation. An auxiliary operation is also used in which the refrigerant vapor is adsorbed by the adsorbent in the adsorbent filling parts Va and Vb of the auxiliary adsorption regenerator (2), which has been regenerated in advance.

即ち、第5図に示すように、補助吸着再生器Vの開閉弁
及び開閉弁対は、図中ハツチングを施した開閉弁及び開
閉弁対を開として、前述の常用運転に併用して補助運転
を行う。
That is, as shown in FIG. 5, the on-off valve and the on-off valve pair of the auxiliary adsorption regenerator V are opened during the auxiliary operation in conjunction with the above-mentioned normal operation, with the on-off valve and the on-off valve pair indicated by hatching in the figure opened. I do.

しかして蒸発器19に於いて蒸発し、冷媒蒸気経路22
を流れる冷媒蒸気の一部は、開閉弁26を経て常用吸着
再生器Uの吸着剤充填部Ubに至り、そこで吸着剤に吸
着されると共に、残りは開閉弁28を経て補助吸着再生
器Vの吸着剤充填部vbに至り、そこで以前の運転によ
り再生されて0− いる吸着剤に吸着される。かかる補助吸着再生器Vの動
作により、冷媒蒸気の吸着量、従って蒸発器19に於け
る冷媒の蒸発量を増やすことができるので、吸着式冷凍
機Aの冷水発生能力を増大することにより装置全体とし
ての冷水発生能力を増大させることができ、冷水負荷の
増大に対処することができる。吸着式冷凍機は、所要の
冷水負荷や将来の冷水負荷の増大等の条件を加味してそ
の冷水発生能力を選定すれば良く、複数の補助吸着再生
器■を設置することにより容易に能力を大とすることが
でき、この場合でも凝縮器18及び蒸発器19そしてこ
れらを動作させる構成要素は共通であるから、コストや
スペースが大きくならない。また補助吸着再生器Vは、
その吸着再生のサイクル時間を適宜に設定することがで
き、例えば常用吸着再生器Uに於ける吸着再生のサイク
ル時間よりも長く構成することにより、前述の蓄熱量及
び吸着量を容易に大きくすることができる。
The refrigerant vapor is evaporated in the evaporator 19, and the refrigerant vapor path 22
A part of the refrigerant vapor flowing through the on-off valve 26 reaches the adsorbent filling part Ub of the regular adsorption regenerator U, where it is adsorbed by the adsorbent, and the rest passes through the on-off valve 28 and reaches the adsorbent filling part Ub of the auxiliary adsorption regenerator V. It reaches the adsorbent filling section vb, where it is adsorbed by the adsorbent that has been regenerated from the previous operation. By operating the auxiliary adsorption regenerator V, it is possible to increase the amount of refrigerant vapor adsorbed and, therefore, the amount of evaporation of the refrigerant in the evaporator 19. Therefore, by increasing the cold water generation capacity of the adsorption refrigerator A, the entire system is reduced. As a result, it is possible to increase the chilled water generation capacity of the system, making it possible to cope with an increase in chilled water load. The chilled water generation capacity of an adsorption chiller can be selected by taking into account conditions such as the required chilled water load and future increase in chilled water load, and the capacity can be easily increased by installing multiple auxiliary adsorption regenerators. Even in this case, the condenser 18 and evaporator 19 and the components for operating them are common, so the cost and space will not increase. In addition, the auxiliary adsorption regenerator V is
The adsorption regeneration cycle time can be appropriately set, for example, by configuring the adsorption regeneration cycle time to be longer than the adsorption regeneration cycle time in the regular adsorption regenerator U, thereby easily increasing the aforementioned heat storage amount and adsorption amount. Can be done.

次に、冬期や中間期、または冷房期に於ける夜間のよう
に冷房を必要としない場合に於いては、クラッチ13を
外した状態で内燃機関1を運転して、圧縮式冷凍機Cは
動作させず、発電機2のみを駆動して発電を行う。発電
機2により発電された電力は前述と同様に駅舎や隧道T
の換気ファン、排水ポンプ等の補機動力の電源として使
用する。
Next, when air conditioning is not required, such as during winter, mid-season, or at night during the cooling season, the internal combustion engine 1 is operated with the clutch 13 disengaged, and the compression refrigerator C is operated. It does not operate, and only the generator 2 is driven to generate electricity. The electric power generated by generator 2 is used in the station building and tunnel T as described above.
Used as a power source for auxiliary equipment such as ventilation fans and drainage pumps.

また、かかる運転により発生する廃熱は専ら前述と同様
に吸着式冷凍機Aの常用吸着再生器U及び補助吸着再生
器Vの吸着剤充填部の吸着剤の再生に供したり、土中蓄
熱を除去する程度の冷房運転に供する。
In addition, the waste heat generated by such operation is exclusively used for regenerating the adsorbent in the adsorbent filling section of the regular adsorption regenerator U and the auxiliary adsorption regenerator V of the adsorption chiller A, or for heat storage in the soil, as described above. Run the air conditioner to remove it.

尚、吸着式冷凍機Aは、場合によっては冷房期に於いて
もそれのみで冷房運転を行うように制御することもでき
ることは勿論である。
It goes without saying that the adsorption refrigerator A can be controlled to perform cooling operation by itself even during the cooling period depending on the case.

前述した通り吸着式冷凍機Aは、吸収式冷凍機に於ける
吸収剤の析出というような不都合がなく、再生器に於け
る吸着剤の再生に必要な熱源の温度が低いことに加えて
、熱源の熱量の変動に対しての能力の変動が少なく、ま
た熱量を吸着式冷凍機Aの常用及び補助吸着再生器U、
V内の吸着剤の再生という形態で蓄熱することができる
ので、時間的にずれがあっても熱を冷水発生に有効利用
することができ、こうして内燃機関1及び圧縮式冷凍機
Cの凝縮器8に発生する廃熱を有効利用することができ
る。また、吸着式冷凍機Aに使用するシリカゲル、ゼア
ライト等の吸着剤は、吸着反応時でも体積変化がなく、
無毒、無臭、非腐食性という性質を有し、長期間の使用
でも保守、管理が容易であるので、吸着式冷凍機Aを地
下鉄駅舎のプラットフォームPL下のスペースや地下鉄
隨道Tのデッドスペース等に設置することにより容易に
、そして万一の破損でも安全な地下鉄用の冷房装置を構
成することができる。尚、本発明は、このように地下鉄
の冷房装置に適用する他、地下街や一般のビルに於ける
冷水発生用コージエネレーシヨン装置として利用するこ
とができ、省エネルギーを図ることができるものである
As mentioned above, the adsorption refrigerator A does not have the disadvantages of absorption refrigerating machines such as precipitation of absorbent, and in addition to the fact that the temperature of the heat source required for regenerating the adsorbent in the regenerator is low, There is little variation in capacity in response to changes in the amount of heat from the heat source, and the amount of heat is reduced by the regular use of the adsorption refrigerator A and the auxiliary adsorption regenerator U.
Since heat can be stored in the form of regeneration of the adsorbent in V, the heat can be effectively used for cold water generation even if there is a time lag, and thus the condenser of the internal combustion engine 1 and the compression refrigerator C 8. The waste heat generated can be effectively utilized. In addition, the adsorbents used in adsorption refrigerator A, such as silica gel and zealite, do not change in volume even during adsorption reactions.
It is non-toxic, odorless, and non-corrosive, and is easy to maintain and manage even after long-term use. Therefore, the adsorption chiller A can be used in spaces under the platforms of subway station buildings, dead spaces in subway tunnels, etc. By installing the cooling system in the subway, it is possible to easily construct a cooling system for subways that is safe even in the unlikely event of damage. In addition to being applied to subway cooling systems as described above, the present invention can also be used as a cogeneration system for generating cold water in underground malls and general buildings, thereby making it possible to save energy. .

(発明の効果) 本発明は以上の通り、コージエネレーシヨン装置と圧縮
式冷凍機及び吸着式冷凍機を合理的に組み合わせて冷水
を発生させるので、吸収式冷凍機3 を利用したもののように吸収剤の析出というような不都
合がなく、50℃程度以上あれば発生熱量が変動する廃
熱であっても有効に冷水の発生に利用することができ、
従ってコージエネレーシヨン装置の内燃機関の運転に際
して発生する廃熱を有効に利用して効率的に冷水を発生
することができるという効果がある。特に本発明では、
吸着式冷凍機に於ける吸着剤の再生という形態で蓄熱を
行えるので、冷水の需要時点に於いて冷水負荷が小さい
ために余剰熱量が生じる場合や、熱の発生時点と冷水の
需要時点とに時間的なずれがある場合にも、これらの熱
量を無駄にせず、そして圧縮式冷凍機だけでは対応でき
ない大きな冷水負荷の発生時点に於いて冷水の発生に有
効に利用することができるという効果がある。そして、
本発明に適用する吸着式冷凍機は、共通の凝縮器及び蒸
発器に対して、交互に吸着器及び再生器として動作させ
る一対の吸着剤充填部から成る吸着再生器を複数組設け
て構成し、これらの複数組の吸着再生器の一部を、常用
運転時に動作させる常用吸着再生4 器として構成すると共に、他の吸着再生器を、補助運転
時に動作させる補助吸着再生器として構成したので、複
数の補助吸着再生器を設置したり、その吸着再生のサイ
クル時間を適宜に設定することにより、所要の冷水負荷
や将来の冷水負荷の増大等の条件を加味して容易にその
冷水発生能ノJを設定することができ、大きな能力を設
定する場合にも凝縮器及び蒸発器そしてこれらを動作さ
せる構成要素は共通であるから、コストやスペースが大
きくならないという効果がある。かくして本発明は、地
下鉄の冷房装置に適用する他、地下街や一般のビルに於
ける冷水発生用コージエネレーシヨン装置として利用す
ることができ、省エネルギーを図ることができると共に
、吸着式冷凍機は、無振動、無騒音であって、シリカゲ
ルやゼオライト等の吸着剤も無毒、無臭、無公害、無腐
食性であるので災害時等の万一の場合でも環境汚染等を
起こさず安全であり、保守や管理等も非常にやりやすい
という効果がある。
(Effects of the Invention) As described above, the present invention generates cold water by rationally combining a cozi energy device, a compression type refrigerator, and an adsorption type refrigerator, so that the present invention generates cold water by rationally combining a cozi energy device, a compression type refrigerator, and an adsorption type refrigerator. There is no inconvenience such as precipitation of absorbent, and even waste heat whose generated heat fluctuates at temperatures above 50°C can be effectively used to generate cold water.
Therefore, there is an effect that cold water can be efficiently generated by effectively utilizing the waste heat generated during operation of the internal combustion engine of the cozi energy system. In particular, in the present invention,
Since heat can be stored in the form of regenerating the adsorbent in an adsorption chiller, it is possible to store surplus heat when the chilled water load is small at the point of demand for chilled water, or when there is surplus heat between the point of heat generation and the point of demand for chilled water. Even if there is a time lag, this heat quantity is not wasted and can be used effectively to generate cold water at the time of occurrence of a large cold water load that cannot be handled by compression chillers alone. be. and,
The adsorption refrigerating machine applied to the present invention has a common condenser and an evaporator, and a plurality of sets of adsorption regenerators each consisting of a pair of adsorbent-filled parts that operate alternately as an adsorber and a regenerator. Some of these adsorption regenerators are configured as regular adsorption regenerators that are operated during normal operation, and other adsorption regenerators are configured as auxiliary adsorption regenerators that are operated during auxiliary operation. By installing multiple auxiliary adsorption regenerators and setting the adsorption regeneration cycle time appropriately, you can easily adjust the chilled water generation capacity by taking into consideration conditions such as the required chilled water load and future chilled water load increase. J can be set, and even when setting a large capacity, the condenser and evaporator and the components for operating them are common, so there is an effect that cost and space do not increase. In this way, the present invention can be applied not only to cooling systems in subways, but also as a cogeneration system for generating cold water in underground malls and general buildings. It is vibration-free, noise-free, and the adsorbents such as silica gel and zeolite are non-toxic, odorless, pollution-free, and non-corrosive, so it is safe and does not cause environmental pollution even in the event of a disaster. It also has the effect of being extremely easy to maintain and manage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を地下鉄冷房装置に適用した全体構成の
実施例を表した構成説明図であり、第2図は本発明に適
用する吸着式冷凍機の全体の構成及び動作を表した系統
説明図、第3図、第4図及び第5図は動作を表した第2
図の構成の要部の系統説明図である。 符号A・・・吸着式冷凍機、C・・・圧縮式冷凍機、H
・・・廃熱回収温水系統、R(Ra、Rb、Rc)・・
・冷却水経路、W・・・冷水系統、Wa、Wb・・・冷
水経路、U・・・常用吸着再生器、■・・・補助吸着再
生器、1・・・内燃機関、2・・・発電機、3・・・ジ
ャケット冷却器、4・・・排ガス経路、5・・・排気ガ
ス熱交換器、6・・・廃熱回収部、7・・・圧縮器、8
.18・・・凝縮器、9・・・膨張弁、10.19・・
蒸発器、11・・駆動軸、12・・・出力軸、13・・
・クラッチ、14・・・回転軸、15.16.34.3
5.36 a、  36 b、 37a、 37 b、
 40−熱交換部、17a、17b−冷却塔、20・・
・吸着再生器、21.22・・冷媒蒸気経路、29・・
・冷媒液タンク、30・・・サイフオン管、31・・・
ポンプ、32・・・流量調整弁、33・・・冷媒噴射部
、23,24,25,26,27.28・・・開閉弁、
38a、38b、39a、39b−開閉弁対、41・・
・空調用熱交換部、42・・・地下鉄車両、43・・・
ダンパ、44川断熱部材、PL・・・プラットフォーム
、T・・・隊道、p・・・ポンプ、f・・・ファン、■
・・・開閉弁。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the overall configuration in which the present invention is applied to a subway cooling system, and FIG. 2 is a system diagram showing the overall configuration and operation of an adsorption refrigerator to which the present invention is applied. The explanatory diagrams, Fig. 3, Fig. 4, and Fig. 5 are the second diagram showing the operation.
It is a system explanatory diagram of the main part of the structure of a figure. Code A: Adsorption refrigerator, C: Compression refrigerator, H
...Waste heat recovery hot water system, R (Ra, Rb, Rc)...
・Cooling water route, W...Cold water system, Wa, Wb...Cold water route, U...Common adsorption regenerator, ■...Auxiliary adsorption regenerator, 1...Internal combustion engine, 2... Generator, 3... Jacket cooler, 4... Exhaust gas path, 5... Exhaust gas heat exchanger, 6... Waste heat recovery section, 7... Compressor, 8
.. 18... Condenser, 9... Expansion valve, 10.19...
Evaporator, 11... Drive shaft, 12... Output shaft, 13...
・Clutch, 14...Rotating shaft, 15.16.34.3
5.36 a, 36 b, 37a, 37 b,
40-heat exchange section, 17a, 17b-cooling tower, 20...
・Adsorption regenerator, 21.22... Refrigerant vapor path, 29...
・Refrigerant liquid tank, 30...siphon tube, 31...
Pump, 32...Flow rate adjustment valve, 33...Refrigerant injection part, 23, 24, 25, 26, 27.28... Opening/closing valve,
38a, 38b, 39a, 39b - on-off valve pair, 41...
・Heat exchange unit for air conditioning, 42...Subway car, 43...
Damper, 44 river insulation member, PL...platform, T...platform, p...pump, f...fan, ■
...Opening/closing valve.

Claims (5)

【特許請求の範囲】[Claims] (1)内燃機関により駆動する発電機と、圧縮式冷凍機
と、吸着式冷凍機を構成要素とすると共に、該吸着式冷
凍機は共通の凝縮器、蒸発器に対して、交互に吸着器及
び再生器として動作させる一対の吸着剤充填部から成る
吸着再生器を複数組設けて構成し、これらの複数組の吸
着再生器の一部を、常用運転時に動作させる常用吸着再
生器として構成すると共に、他の吸着再生器を、補助運
転時に動作させる補助吸着再生器として構成し、再生器
として動作させる前記吸着剤充填部に、前記内燃機関の
廃熱回収部及び前記圧縮式冷凍機の凝縮器を通る廃熱回
収温水系統の温水を供給する構成としたことを特徴とす
る冷水発生用コージエネレーシヨン装置
(1) The components are a generator driven by an internal combustion engine, a compression refrigerator, and an adsorption refrigerator. and a plurality of sets of adsorption regenerators each consisting of a pair of adsorbent filling sections operated as a regenerator, and a part of these plurality of sets of adsorption regenerators is configured as a regular adsorption regenerator operated during regular operation. At the same time, another adsorption regenerator is configured as an auxiliary adsorption regenerator operated during auxiliary operation, and the waste heat recovery section of the internal combustion engine and the condensation of the compression refrigerator are connected to the adsorbent filling section operated as a regenerator. A cozi energy generation device for generating cold water, characterized in that it is configured to supply hot water from a waste heat recovery hot water system that passes through a container.
(2)請求項1の補助吸着再生器に於ける吸着再生のサ
イクル時間は、常用吸着再生器に於ける吸着再生のサイ
クル時間よりも長く構成したことを特徴とする冷水発生
用コージェネレーシヨン装置
(2) A cogeneration device for cold water generation characterized in that the cycle time of adsorption regeneration in the auxiliary adsorption regenerator according to claim 1 is configured to be longer than the cycle time of adsorption regeneration in the regular adsorption regenerator.
(3)請求項1の圧縮器は、その駆動軸を発電機駆動用
の内燃機関により駆動する構成とし、該駆動軸と内燃機
関を断続自在に構成したことを特徴とする冷水発生用コ
ージェネレーシヨン装置
(3) The compressor according to claim 1 is a cogeneration system for generating cold water, characterized in that its drive shaft is driven by an internal combustion engine for driving a generator, and the drive shaft and the internal combustion engine are configured to be intermittent. sion device
(4)請求項1の吸着式冷凍機を地下鉄駅舎のプラット
フォーム下のスペースに設置したことを特徴とする地下
鉄冷房装置
(4) A subway cooling device characterized in that the adsorption refrigerator according to claim 1 is installed in a space under a platform of a subway station building.
(5)請求項1の吸着式冷凍機を地下鉄隧道のデツドス
ペースに設置したことを特徴とする地下鉄冷房装置
(5) A subway cooling device characterized in that the adsorption refrigerator according to claim 1 is installed in a dead space of a subway tunnel.
JP2094455A 1990-04-10 1990-04-10 Cogeneration system for generating cold water and subway cooling system using the same Expired - Fee Related JPH0769093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2094455A JPH0769093B2 (en) 1990-04-10 1990-04-10 Cogeneration system for generating cold water and subway cooling system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2094455A JPH0769093B2 (en) 1990-04-10 1990-04-10 Cogeneration system for generating cold water and subway cooling system using the same

Publications (2)

Publication Number Publication Date
JPH03294765A true JPH03294765A (en) 1991-12-25
JPH0769093B2 JPH0769093B2 (en) 1995-07-26

Family

ID=14110743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2094455A Expired - Fee Related JPH0769093B2 (en) 1990-04-10 1990-04-10 Cogeneration system for generating cold water and subway cooling system using the same

Country Status (1)

Country Link
JP (1) JPH0769093B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1882890A2 (en) * 2006-07-25 2008-01-30 LG Electronic Inc. Co-generation
US8245948B2 (en) 2006-07-25 2012-08-21 Lg Electronics Inc. Co-generation and control method of the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542602B (en) * 2013-10-24 2015-10-21 上海电机学院 Based on solar absorption refrigeration system and the solar energy refrigerator car of engine
CN103673376B (en) * 2013-12-24 2015-07-15 金继伟 Heat conversion device with heating and adsorption heat combined
WO2017164201A1 (en) * 2016-03-25 2017-09-28 日本電気株式会社 Cooling system, and method for controlling cooling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1882890A2 (en) * 2006-07-25 2008-01-30 LG Electronic Inc. Co-generation
EP1882890A3 (en) * 2006-07-25 2008-06-25 LG Electronic Inc. Co-generation
US8245948B2 (en) 2006-07-25 2012-08-21 Lg Electronics Inc. Co-generation and control method of the same

Also Published As

Publication number Publication date
JPH0769093B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
JP4089187B2 (en) Thermoelectric supply system
JP6028799B2 (en) Carbon dioxide supply device
JP5379137B2 (en) Two-stage low-temperature air-cooled adsorption cooling equipment and method for operating the cooling equipment
JP2005257127A (en) Natural refrigerant heat pump system
JP2991337B1 (en) Unused heat source ice heat storage heat pump device
JPH03294765A (en) Co-generation device for cold water production and subway air cooling device used the same
JP3037649B2 (en) Dehumidification air conditioning system
JP5762023B2 (en) Desiccant air conditioning system
JPH03294764A (en) Co-generation device for cold water production and subway air cooling device used the same
JPH11117713A (en) Chemical heat-accumulating type intake air cooling device
JP5808105B2 (en) Heat source system and control method thereof
JP2002250573A (en) Air conditioner
JPH05272833A (en) Control method for freezing output of adsorption type freezer and adsorption type freezer capable of controlling freezing output
JPH07111286B2 (en) Cold water generator
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP4186354B2 (en) Thermal management device
JPH0743184B2 (en) Cold water generator
JP3168362B2 (en) Chemical heat pump refrigeration system with heat storage function and its operation method
JPH11132501A (en) Dehumidifying air conditioner system
JPH0743183B2 (en) Cold water generator
JPH07111285B2 (en) Cold water generator
JP3994798B2 (en) Waste heat recovery system for distributed power supply
JP2001241706A (en) Cold/hot heat storage device
JP2005037008A (en) Air conditioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees