JPH03294764A - Co-generation device for cold water production and subway air cooling device used the same - Google Patents

Co-generation device for cold water production and subway air cooling device used the same

Info

Publication number
JPH03294764A
JPH03294764A JP2094454A JP9445490A JPH03294764A JP H03294764 A JPH03294764 A JP H03294764A JP 2094454 A JP2094454 A JP 2094454A JP 9445490 A JP9445490 A JP 9445490A JP H03294764 A JPH03294764 A JP H03294764A
Authority
JP
Japan
Prior art keywords
waste heat
hot water
adsorption
cold water
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2094454A
Other languages
Japanese (ja)
Inventor
Hirofumi Iida
飯田 弘文
Mitsushige Nishino
光重 西野
Masaru Sanada
勝 真田
Hiromi Ino
展海 猪野
Hideji Yanagi
秀治 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Tokyo Gas Co Ltd
Original Assignee
Mayekawa Manufacturing Co
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co, Tokyo Gas Co Ltd filed Critical Mayekawa Manufacturing Co
Priority to JP2094454A priority Critical patent/JPH03294764A/en
Publication of JPH03294764A publication Critical patent/JPH03294764A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To produce cold water efficiently using waste heat and prevent environmental pollution by operating adsorption type freezer with the use of the hot water coming from a waste heat recovery hot water system via the waste heat recoverer of a internal combustion engine and the condenser of a compression type freezer, as a regenerative heat source. CONSTITUTION:The waste heat generated by the operation of an internal combustion engine 1 is recovered in the hot water in a waste heat recovery hot water system H by way of the path in a waste heat recoverer 6 consisting of a jacket heat exchanger 3 and an exhaust gas heating exchanger 5. Also by the operation of a compression type freezer C, the heat generated in a condenser 8 is collected by the hot water in the waste heat recovery hot water system H by way of the path in the heat exchanger part 15 in the condenser 8 and is supplied to an adsorption type freezer A. If the heat generated in the condenser 8 cannot be removed only by the water in the heat exchanger 15, the heat supplied to a cooling tower 17a. The hot water in the waste heat recovery hot water system H flows to the adsorption type freezer A and in a regeneration pot to regenerate the adsorbent. The cool water in a cool water path Wb flows to a heat exchanger 34 in a cool water system W together with the cool water produced in the evaporator 10 in the compression type freezer C, and is utilized for air conditioning.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は冷水発生用コージェネレーシヨン装置及びこれ
を利用した地下鉄冷房装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cogeneration system for generating cold water and a subway cooling system using the same.

(従来の技術) 従来、地下鉄の駅舎や隈道内の冷房は、電動機駆動の圧
縮式冷凍機を利用した冷水発生装置を設置して行ったり
、付近の熱供給プラントからの冷水供給を受けて行って
おり、その設備容量は、入梅時期から夏期期間に於ける
最大負荷に対応させている。
(Conventional technology) Conventionally, cooling in subway station buildings and tunnels has been done by installing cold water generators that use motor-driven compression refrigerators, or by receiving cold water from nearby heat supply plants. The installed capacity corresponds to the maximum load from the beginning of the plum season to the summer season.

また、近来いわゆるコージェネレーシヨン装置の一例と
して、発電機駆動用の内燃機関の廃熱を吸収式冷凍機の
再生用熱源として利用して冷水を発生させる装置が使用
されつつある。
Furthermore, recently, as an example of a so-called cogeneration device, a device that generates cold water by using waste heat from an internal combustion engine for driving a generator as a heat source for regeneration of an absorption refrigerator is being used.

(発明が解決しようとする課題) 従来の地下鉄の冷房装置では、前述したように、その設
備容量を、単に入梅時期から夏期期間に於ける最大負荷
に対応させて設置しており、従ってその設備の年間稼働
日数は少なく、設備の有効利用が図られていない。また
効率も殆ど無視されて、熱の有効利用を図るように構成
されてはおらず、また長期的な冷房負荷の増大には対処
できない。
(Problem to be solved by the invention) As mentioned above, in conventional subway cooling systems, the equipment capacity is simply set to correspond to the maximum load from the beginning of the plum season to the summer period, and therefore the equipment capacity is The number of operating days per year is small, and the equipment is not used effectively. Furthermore, efficiency is almost ignored, the system is not designed to utilize heat effectively, and it cannot cope with long-term increases in cooling load.

このような地下鉄の冷房装置に、前述のコージェネレー
シヨン装置による冷水発生装置を利用することも考えら
れるが、吸収式冷凍サイクルは、再生器に於いて必要な
温度が80℃以上と比較的高く、一般には85℃前後の
温度が安定して継続的に得られないと成績係数を高く維
持できず、そしてその温度が70℃以下に下がると吸収
剤の結晶が析出したり、効率が極端に低下したりして冷
水の発生機能を十分に発揮できないし、冷水負荷が少な
い場合等に於いて発生する余剰の熱量を有効に利用する
こともできない。
It is conceivable to use the above-mentioned cogeneration system to generate cold water for such subway cooling systems, but the absorption refrigeration cycle requires a relatively high temperature of 80°C or higher in the regenerator. In general, it is not possible to maintain a high coefficient of performance unless a stable and continuous temperature of around 85°C is obtained, and if the temperature drops below 70°C, absorbent crystals may precipitate or the efficiency may become extremely low. It is not possible to fully demonstrate the function of generating cold water, and it is not possible to effectively utilize the surplus heat generated when the cold water load is small.

本発明は、コージェネレーシヨン装置と圧縮式冷凍機と
吸着式冷凍機を合理的に組み合わせることにより、以上
の従来の課題を解決することを目的とするものである。
The present invention aims to solve the above conventional problems by rationally combining a cogeneration device, a compression refrigerator, and an adsorption refrigerator.

(課題を解決するための手段) 上記の課題を解決するための手段を説明すると、まず、
本発明の冷水発生用コージェネレーシヨン装置は、内燃
機関により駆動する一発電機と、圧縮式冷凍機と、吸着
式冷凍機を構成要素とし、前記内燃機関の廃熱回収部及
び前記圧縮式冷凍機の凝縮器を通る廃熱回収温水系統の
温水を再生用熱源として前記吸着式冷凍機を動作させる
構成としたものである。
(Means for solving the problem) To explain the means for solving the above problem, first,
The cogeneration device for cold water generation of the present invention includes a generator driven by an internal combustion engine, a compression refrigerator, and an adsorption refrigerator as components, and includes a waste heat recovery section of the internal combustion engine and the compression refrigerator. The adsorption refrigerator is configured to operate using hot water from a waste heat recovery hot water system that passes through the condenser of the refrigerator as a heat source for regeneration.

上記の構成に於いて、圧縮器は、その駆動軸を発電機駆
動用の内燃機関により駆動する構成とし、該駆動軸と内
燃機関を断続自在に構成することができる。また、吸着
式冷凍機は複数設けた構成とすることができる。
In the above configuration, the compressor has a configuration in which its drive shaft is driven by an internal combustion engine for driving a generator, and the drive shaft and the internal combustion engine can be configured to be intermittent with each other. Further, a configuration may be provided in which a plurality of adsorption refrigerators are provided.

また本発明は、上記の構成に於いて、吸着式冷凍機を地
下鉄駅舎のプラットフォーム下のスペースに設置したり
、地下鉄隈道のデッドスペースに設置して地下鉄冷房装
置を構成するものである。
Further, in the present invention, in the above configuration, the adsorption refrigerator is installed in a space under the platform of a subway station building or in a dead space of a subway tunnel to configure a subway cooling system.

(作用) 冷房期には、内燃機関の運転により発電機を駆動して発
電を行って所要の電力需要を賄うと同時に、圧縮器の駆
動により圧縮式冷凍機を動作させて、その蒸発器に於い
て冷水を発生させ、この冷水を冷房に利用する。そして
、以上の運転により内燃機関に発生する廃熱及び圧縮式
冷凍機の凝縮器に発生する廃熱は、該凝縮器及び内燃機
関の廃熱回収部を通る廃熱回収温水系統により温水とし
て回収し、この温水を吸着式冷凍機の再生器に導き、吸
着剤の再生を行う。
(Function) During the cooling period, the internal combustion engine drives the generator to generate electricity to meet the required electricity demand, and at the same time, the compressor is driven to operate the compression refrigerator, which cools the evaporator. Cold water is generated and used for air conditioning. The waste heat generated in the internal combustion engine and the waste heat generated in the condenser of the compression refrigerator due to the above operation are recovered as hot water by the waste heat recovery hot water system that passes through the condenser and the waste heat recovery section of the internal combustion engine. Then, this hot water is led to the regenerator of the adsorption refrigerator to regenerate the adsorbent.

このようにして再生が行われた吸着剤は、次いで冷媒蒸
気の吸着に供され、吸着式冷凍機の蒸発器に於ける冷水
発生に供される。そして蒸発器に於いて発生させた冷水
は、圧縮式冷凍器の蒸発器に於いて発生させた冷水と共
に冷房に供することができ、こうして内燃機関に発生す
る廃熱及び圧縮式冷凍機の凝縮器に発生する廃熱を冷水
の発生に利用することができる。
The adsorbent thus regenerated is then used to adsorb refrigerant vapor and used to generate cold water in the evaporator of an adsorption refrigerator. The cold water generated in the evaporator can be used for cooling together with the cold water generated in the evaporator of the compression type refrigerator, and thus the waste heat generated in the internal combustion engine and the condenser of the compression type refrigerator can be The waste heat generated can be used to generate cold water.

冷水負荷が小さく、圧縮式冷凍機のみで必要量の冷水を
賄える場合は、吸着式冷凍機は冷水発生運転を行わず、
専ら内燃機関に発生する廃熱及び圧縮式冷凍機の凝縮器
に発生する廃熱により前述した吸着剤の再生を行い、再
生後は次の運転まで待機させる。そして、冷水負荷が増
大して、圧縮式冷凍機のみでは必要量の冷水が得られな
い場合には、前述したように予め再生されている吸着剤
により冷媒蒸気の吸着を行い、蒸発器に於いて冷水を発
生させることにより全体としての冷水発生能力を増大さ
せることができ、冷水負荷の増大に対処することができ
る。吸着式冷凍機は、所要の冷水負荷や将来の冷水負荷
の増大等の条件を加味してその冷水発生能力を選定すれ
ば良く、例えば複数を設置して能力を大とすることがで
きる。
If the chilled water load is small and the necessary amount of chilled water can be supplied only by the compression chiller, the adsorption chiller does not operate to generate chilled water;
The above-mentioned adsorbent is regenerated using the waste heat generated exclusively from the internal combustion engine and the waste heat generated from the condenser of the compression refrigerator, and after regeneration, it is kept on standby until the next operation. When the chilled water load increases and the necessary amount of chilled water cannot be obtained using only the compression chiller, the refrigerant vapor is adsorbed by the previously regenerated adsorbent as described above, and the evaporator is By generating chilled water using the same system, the overall chilled water generation capacity can be increased, and an increase in the chilled water load can be coped with. The cold water generation capacity of the adsorption chiller can be selected by taking into account conditions such as the required cold water load and future increase in the cold water load. For example, the capacity can be increased by installing a plurality of adsorption chillers.

吸着式冷凍機は、吸収式冷凍機に於ける吸収剤の析出と
いう不都合がなく、再生器に於ける吸着剤の再生に必要
な熱源の温度も50℃以上と、比較的低いことに加えて
、熱源の熱量の変動に対しての能力の変動が少なく、ま
た熱量を吸着式冷凍機の吸着再生器内の吸着剤の再生と
いう形態で蓄熱することができるので、時間的にずれが
あっても熱を冷水発生に有効利用することができ、こう
して内燃機関及び圧縮式冷凍機の凝縮器に発生する廃熱
を有効利用することができる。
Adsorption chillers do not have the disadvantage of absorbent precipitation that occurs in absorption chillers, and the temperature of the heat source required to regenerate the adsorbent in the regenerator is relatively low, at 50°C or higher. , the capacity fluctuates little in response to fluctuations in the heat amount of the heat source, and the heat can be stored in the form of regenerating the adsorbent in the adsorption regenerator of the adsorption refrigerator, so there is no time lag. Also, the heat can be effectively used to generate cold water, and thus the waste heat generated in the internal combustion engine and the condenser of the compression refrigerator can be effectively used.

また、吸着式冷凍機に使用するシリカゲル、ゼアライト
等の吸着剤は、吸着反応時でも体積変化がなく、無毒、
無臭、非腐食性という性質を有し、長期間の使用でも保
守、管理が容易であるので、吸着式冷凍機を地下鉄駅舎
のプラットフォーム下のスペースや地下鉄隊道のデッド
スペースに設置することにより容易に、地下鉄用の冷房
装置を構成することができる。
In addition, the adsorbents used in adsorption refrigerators, such as silica gel and zealite, do not change in volume even during adsorption reactions, are non-toxic, and are
It is odorless and non-corrosive, and is easy to maintain and manage even after long-term use. Adsorption chillers can be easily installed in spaces under the platforms of subway station buildings and in dead spaces on subway tracks. Therefore, a cooling system for subways can be constructed.

(実施例) 次に本発明のコージェネレーシヨン装置を地下鉄冷房装
置に適用した実施例につき添付の図面を参照して説明す
る。
(Example) Next, an example in which the cogeneration system of the present invention is applied to a subway cooling system will be described with reference to the accompanying drawings.

図に於いて、符号1はガスエンジン等の内燃機関1であ
り、この内燃機関1により発電機2を駆動する構成とし
ている。この内燃機関1には、ジャケット冷却器3と、
排ガス経路4に設けた排気ガス熱交換器5とから成る廃
熱回収部6を設けている。
In the figure, reference numeral 1 denotes an internal combustion engine 1 such as a gas engine, and a generator 2 is driven by this internal combustion engine 1. This internal combustion engine 1 includes a jacket cooler 3,
A waste heat recovery section 6 consisting of an exhaust gas heat exchanger 5 provided in the exhaust gas path 4 is provided.

符号Cは圧縮式冷凍機を示すもので、この圧縮式冷凍機
Cは、圧縮器7、凝縮器8、膨張弁9及び蒸発器10を
構成要素としている。そしてこの圧縮器7は、駆動軸1
1を前記内燃機関lにより駆動する構成としており、該
駆動軸11と内燃機関lの出力軸12とはクラッチ13
を介して断続自在に接続する構成としている。尚、図示
例ではこの駆動軸11は、発電機2の回転軸14を介し
て前記出力軸12に接続する構成としているが、直接に
接続する構成とすることもできる。また、この圧縮器7
の駆動軸11は、内燃機関lの出力軸12により駆動さ
せる構成とする他、場合によっては、電動機により駆動
する構成とすることもできる。前記凝縮器8には、後記
廃熱回収温水系統Hに連なる熱交換部15と、冷却塔1
7aに連なる冷却水経路Raの熱交換部16を設けてい
る。
The symbol C indicates a compression type refrigerator, and this compression type refrigerator C has a compressor 7, a condenser 8, an expansion valve 9, and an evaporator 10 as components. This compressor 7 is connected to the drive shaft 1
1 is driven by the internal combustion engine l, and the drive shaft 11 and the output shaft 12 of the internal combustion engine l are connected to a clutch 13.
The configuration is such that the connection can be made intermittently via the . In the illustrated example, the drive shaft 11 is connected to the output shaft 12 via the rotating shaft 14 of the generator 2, but it can also be connected directly. Also, this compressor 7
The drive shaft 11 is configured to be driven by the output shaft 12 of the internal combustion engine l, or may be configured to be driven by an electric motor depending on the case. The condenser 8 includes a heat exchange section 15 connected to a waste heat recovery hot water system H described later, and a cooling tower 1.
A heat exchange section 16 is provided for the cooling water path Ra that is continuous with the cooling water path 7a.

また廃熱回収部6には、ジャケット冷却器3と排気ガス
熱交換器5を順次通る温水経路を構成しており、この経
路は廃熱回収温水系統Hを構成している。
Further, the waste heat recovery section 6 has a hot water path that passes through the jacket cooler 3 and the exhaust gas heat exchanger 5 in sequence, and this path forms a waste heat recovery hot water system H.

符号Aは吸着式冷凍機を示すもので、この吸着式冷凍機
Aは地下鉄駅舎のプラットフォームPLの下方空間に適
数を設置している。この吸着式冷凍機Aは、例えば第2
図に示すように交互に吸着器及び再生器として動作させ
る一対の吸着剤充填部a、bから成る吸着再生器18と
、凝縮器19と、蒸発器20とから構成しており、凝縮
器19と蒸発器20間にはサイフオン管21で接続した
冷媒液タンク22を設け、該冷媒液タンク22内の冷媒
液は、ポンプ23、流量調整弁24及び冷媒噴射部25
を経て蒸発器20に導入する構成としている。また、一
対の吸着剤充填部a、bは、夫々一対の開閉弁26a、
26bを介して凝縮器19に至る冷媒蒸気経路27と、
蒸発器20からの冷媒蒸気経路28に選択的に接続する
構成としている。前記凝縮器19、蒸発器20及び吸着
剤充填部a、bには夫々熱交換部29,30.31a、
31bを設けており、熱交換部29は冷却水経路R1熱
交換部30は冷水系統Wに連なる冷水経路wbに接続す
ると共に、熱交換部31a、31bは二対ずつの開閉弁
対32a、32bを介して冷却水経路Rと前記廃熱回収
温水系統Hを構成する経路に選択的に接続する構成とし
ている。
Reference numeral A indicates an adsorption refrigerator, and an appropriate number of adsorption refrigerators A are installed in the space below the platform PL of the subway station building. This adsorption refrigerator A is, for example, a second
As shown in the figure, it consists of an adsorption regenerator 18 consisting of a pair of adsorbent filling parts a and b that operate alternately as an adsorber and a regenerator, a condenser 19, and an evaporator 20. A refrigerant liquid tank 22 connected by a siphon pipe 21 is provided between the evaporator 20 and the evaporator 20, and the refrigerant liquid in the refrigerant liquid tank 22 is transferred to a pump 23, a flow rate adjustment valve 24, and a refrigerant injection unit 25.
It is configured to be introduced into the evaporator 20 through the. Further, the pair of adsorbent filling parts a and b each have a pair of on-off valves 26a,
a refrigerant vapor path 27 leading to the condenser 19 via 26b;
The refrigerant vapor path 28 from the evaporator 20 is selectively connected to the refrigerant vapor path 28 . The condenser 19, evaporator 20 and adsorbent filling parts a and b have heat exchange parts 29 and 30.31a, respectively.
31b, the heat exchange part 29 is connected to the cooling water path R1, the heat exchange part 30 is connected to the cold water path wb connected to the cold water system W, and the heat exchange parts 31a, 31b are provided with two pairs of on-off valves 32a, 32b. It is configured to selectively connect to the cooling water path R and the path constituting the waste heat recovery hot water system H via the cooling water path R.

前記冷水経路wbは圧縮式冷凍機Cの蒸発器10の熱交
換部33を通る冷水経路Waと並列に接続して、冷水系
統Wを構成しており、この冷水系統Wには適数の空調用
熱交換部34を設けている。
The cold water path wb is connected in parallel with the cold water path Wa passing through the heat exchange section 33 of the evaporator 10 of the compression refrigerator C to constitute a cold water system W, and this cold water system W includes an appropriate number of air conditioners. A heat exchange section 34 is provided.

一方、前記冷却水経路Rは、地下鉄随道Tの適所の漏水
を冷却水源とする経路Rbと、適所に設置した冷却塔1
7bに連なる経路Reに連なる構成としている。尚、図
中pはポンプ、fはファン、■は開閉弁、35は地下鉄
車両、36はダンパを示すものである。
On the other hand, the cooling water route R includes a route Rb that uses leakage water at a proper location on the subway route T as a cooling water source, and a cooling tower 1 installed at a proper location.
It is configured to be connected to a route Re connected to 7b. In the figure, p indicates a pump, f indicates a fan, ■ indicates an on-off valve, 35 indicates a subway car, and 36 indicates a damper.

以上の構成に於いて、冷房期にはクラッチ13を連結し
て内燃機関1を運転し、発電機2を駆動すると共に、圧
縮器7を駆動して圧縮式冷凍機Cを動作させる。発電機
2により発電された電力は駅舎や陽道Tの換気ファン、
排水ポンプ等の補機動力の電源として使用する。また圧
縮式冷凍機Cの動作により蒸発器10に於いて発生ずる
冷水は冷水経路Waを経て冷水系統Wの熱交換器34に
至り、冷房に供される。一方、内燃機関1の運転により
発生する廃熱は、ジャケット熱交換器3及び排ガス熱交
換器5から成る廃熱回収部6を通る経路を介して廃熱回
収温水系統Hの温水に回収され、また圧縮式冷凍機Cの
動作により、凝縮器8に発生する熱も、この凝縮器8の
熱交換部15を通る経路を介して廃熱回収温水系統Hの
温水に回収される。そしてこの廃熱回収温水系統Hの温
水は吸着式冷凍機Aに供給される。尚、熱交換部15を
流れる温水だけでは凝縮器8に発生する熱を十分に除去
できない場合には、必要に応じて冷却塔17aへの冷却
水経路Raを動作させることにより、圧縮式冷凍機Cの
動作を阻害する凝縮熱の除去を行うことができる。
In the above configuration, during the cooling period, the clutch 13 is engaged to operate the internal combustion engine 1, drive the generator 2, and drive the compressor 7 to operate the compression refrigerator C. The electricity generated by generator 2 is used for ventilation fans in the station building and Yodo T,
Used as a power source for auxiliary equipment such as drainage pumps. Further, the cold water generated in the evaporator 10 by the operation of the compression refrigerator C passes through the cold water path Wa to the heat exchanger 34 of the cold water system W, and is used for cooling. On the other hand, waste heat generated by the operation of the internal combustion engine 1 is recovered into hot water of a waste heat recovery hot water system H via a path passing through a waste heat recovery section 6 consisting of a jacket heat exchanger 3 and an exhaust gas heat exchanger 5, Furthermore, the heat generated in the condenser 8 by the operation of the compression refrigerator C is also recovered into hot water of the waste heat recovery hot water system H via a path passing through the heat exchange section 15 of the condenser 8. The hot water from the waste heat recovery hot water system H is then supplied to the adsorption refrigerator A. Note that if the heat generated in the condenser 8 cannot be removed sufficiently by the hot water flowing through the heat exchanger 15, the cooling water path Ra to the cooling tower 17a may be operated as necessary to remove the The heat of condensation that inhibits the operation of C can be removed.

前述した通り、廃熱回収温水系統Hの温水は吸着式冷凍
機Aに至り、その再生器を流れて吸着剤の再生に供され
る。第2図に示すように図中ハツチングを施した開閉弁
及び開閉弁対を開、これを施していない開閉弁及び開閉
弁対を閉として吸着式冷凍機Aを運転している状態に於
いては、廃熱回収温水系統Hの温水は、吸着剤充填部a
の熱交換部31aを流れてこの吸着剤を加熱し、吸着さ
れている冷媒蒸気を放出させて再生する。放出された冷
媒蒸気は、開閉弁26aを経て冷媒蒸気経路27から凝
縮器19に導入され、熱交換部29を流れている冷却水
により冷却されて液化し、サイフオン管21を介して冷
媒液タンク22に至る。
As described above, the hot water from the waste heat recovery hot water system H reaches the adsorption refrigerator A, flows through the regenerator, and is used to regenerate the adsorbent. As shown in Figure 2, when the adsorption refrigerator A is operated with the on-off valves and on-off valve pairs marked with hatching in the figure open, and the on-off valves and on-off valve pairs that are not hatched closed. The hot water of the waste heat recovery hot water system H is transferred to the adsorbent filling section a.
The adsorbent is heated by flowing through the heat exchanger 31a, and the adsorbed refrigerant vapor is released and regenerated. The released refrigerant vapor is introduced into the condenser 19 from the refrigerant vapor path 27 via the on-off valve 26a, is cooled and liquefied by the cooling water flowing through the heat exchange section 29, and is sent to the refrigerant liquid tank via the siphon pipe 21. It reaches 22.

次いでポンプ23、流量調整弁24を経て、冷媒噴出部
25から蒸発器20内に導入されて蒸発し、この際、熱
交換部30を流れている冷水経路wbの冷水から熱を奪
い、これを冷却する。そして、このように冷却された冷
水経路wbの冷水は、前記圧縮式冷凍機Cの蒸発器10
に於いて発生した冷水と共に冷水系統Wの熱交換器34
に至り、冷房に供される。一方、蒸発器20内の冷媒蒸
気は1 冷媒蒸気経路28から開閉弁26bを経て、他の吸着剤
充填部すに至り、ここで吸着剤に吸着される。かかる吸
着に際して発生する吸着熱は、熱交換部31bを流れる
冷却水、即ち地下鉄の漏水や冷却塔17bからの冷却水
経路Rの冷却水により除去される。これらの冷却水は運
転時の条件により適宜選択され、または同時に使用され
る。このような運転により、一方側の吸着剤充填部すの
吸着能力が所定以下に低下した場合には開閉弁及び開閉
弁対を、前述と逆に第2図に於いてハツチングを施した
ものを閉、施していないものを開として、いままで再生
器として動作していた吸着剤充填部aを吸着器、吸着器
として動作していた吸着剤充填部すを再生器として動作
させることにより、冷水の発生を継続することができる
Next, the refrigerant is introduced into the evaporator 20 from the refrigerant jet section 25 through the pump 23 and the flow rate adjustment valve 24, and is evaporated. Cooling. The cold water cooled in this way in the cold water path wb is then transferred to the evaporator 10 of the compression refrigerator C.
The heat exchanger 34 of the cold water system W together with the cold water generated in
It is then placed in the air conditioner. On the other hand, the refrigerant vapor in the evaporator 20 passes through the on-off valve 26b from the refrigerant vapor path 28 and reaches another adsorbent filling section, where it is adsorbed by the adsorbent. The adsorption heat generated during such adsorption is removed by the cooling water flowing through the heat exchange section 31b, that is, the cooling water in the cooling water path R from the subway leakage or the cooling tower 17b. These cooling waters are appropriately selected depending on the operating conditions, or are used simultaneously. If the adsorption capacity of the adsorbent filling section on one side decreases below the specified level due to such operation, replace the on-off valve and the on-off valve pair with hatching in Fig. 2, contrary to the above. By opening the parts that have not been closed or being used, and by operating the adsorbent filling part a, which had been operating as a regenerator, as an adsorber, and the adsorbent filling part A, which had been operating as an adsorber, as a regenerator, cold water can be regenerated. can continue to occur.

次に冷水負荷が小さく、圧縮式冷凍機Cのみで必要量の
冷水を賄える場合には、吸着式冷凍機Aの吸着剤充填部
a、bは、前述した再生器としての動作のみを行わせ、
所定の再生後は、前記開閉弁26a、26b及び開閉弁
対32a、32bを2 閉に維持して、次の運転まで待機させる。
Next, if the chilled water load is small and the necessary amount of chilled water can be supplied only by the compression chiller C, the adsorbent filling parts a and b of the adsorption chiller A will operate only as the regenerator described above. ,
After the predetermined regeneration, the on-off valves 26a, 26b and the on-off valve pair 32a, 32b are kept closed until the next operation.

そして冷房負荷が増大して圧縮式冷凍機Cのみでは必要
量の冷水が得られない場合には、前述したように予め再
生されている吸着剤により冷媒蒸気の吸着を行うことに
より冷水発生能力を増大させることができ、冷水負荷の
増大に対処することができ、また同時に前述した通り、
廃熱回収温水系統Hの温水により、他の吸着剤充填部の
再生を行うことができる。前述した通り、吸着式冷凍機
Aは、所要の冷水負荷や将来の冷水負荷の増大等の条件
を加味して、複数を設置することができ、またこれらの
運転方法は、順次に切り替えて運転を行ったり、同時に
運転を行う等適宜である。
When the cooling load increases and the necessary amount of chilled water cannot be obtained using compression chiller C alone, the chilled water generation capacity is increased by adsorbing refrigerant vapor using the previously regenerated adsorbent as described above. can be increased to cope with the increase in chilled water load, and at the same time, as mentioned above,
The hot water from the waste heat recovery hot water system H can regenerate other adsorbent filling parts. As mentioned above, multiple adsorption chillers A can be installed, taking into account conditions such as the required chilled water load and future chilled water load increase, and these operating methods can be switched sequentially. This may be done as appropriate, such as doing so or driving at the same time.

次に、冬期や中間期、または冷房期に於ける夜間のよう
に冷房を必要としない場合に於いては、クラッチ13を
外した状態で内燃機関lを運転して、圧縮式冷凍機Cは
動作させず、発電機2のみを駆動して発電を行う。発電
機2により発電された電力は前述と同様に駅舎や隈道の
換気ファン、排水ポンプ等の補機動力の電源として使用
する。
Next, when air conditioning is not required, such as during winter, mid-season, or at night during the cooling season, the internal combustion engine l is operated with the clutch 13 disengaged, and the compression refrigerator C is operated. It does not operate, and only the generator 2 is driven to generate electricity. The electric power generated by the generator 2 is used as a power source for auxiliary equipment such as ventilation fans and drainage pumps in the station building and underpass, as described above.

また、かかる運転により発生する廃熱は専ら前述と同様
に吸着式冷凍機Aの吸着剤の再生に供したり、土中蓄熱
を除去する程度の冷房運転に供する。
Further, the waste heat generated by such operation is exclusively used for regenerating the adsorbent of the adsorption refrigerator A as described above, or for cooling operation to the extent that heat accumulated in the soil is removed.

また場合によっては吸着式冷凍機Aは、それのみで冷房
運転を行うように制御することもできることは勿論であ
る。
It goes without saying that in some cases, the adsorption refrigerator A can be controlled to perform cooling operation by itself.

前述した通り吸着式冷凍機Aは、吸収式冷凍機に於ける
吸収剤の析出というような不都合がなく、再生器に於け
る吸着剤の再生に必要な熱源の温度が低いことに加えて
、熱源の熱量の変動に対しての能力の変動が少なく、ま
た熱量を吸着式冷凍機Aの吸着再生器18内の吸着剤の
再生という形態で蓄熱することができるので、時間的に
ずれがあっても熱を冷水発生に有効利用することができ
、こうして内燃機関1及び圧縮式冷凍機Cの凝縮器8に
発生する廃熱を有効利用することができる。
As mentioned above, the adsorption refrigerator A does not have the disadvantages of absorption refrigerating machines such as precipitation of absorbent, and in addition to the fact that the temperature of the heat source required for regenerating the adsorbent in the regenerator is low, There is little variation in the capacity in response to changes in the heat amount of the heat source, and the heat can be stored in the form of regenerating the adsorbent in the adsorption regenerator 18 of the adsorption refrigerator A, so there is no time lag. However, the heat can be effectively used to generate cold water, and thus the waste heat generated in the internal combustion engine 1 and the condenser 8 of the compression refrigerator C can be effectively used.

また、吸着式冷凍機Aに使用するシリカゲル、ゼアライ
ト等の吸着剤は、吸着反応時でも体積変化がなく、無毒
、無臭、非腐食性という性質を有し、長期間の使用でも
保守、管理が容易であるので、吸着式冷凍機Aを地下鉄
駅舎のプラットフォームPL下のスペースや地下鉄隨道
Tのデッドスペース等に設置することにより容易に、そ
して万一の破損でも安全な地下鉄用の冷房装置を構成す
ることができる。尚、本発明は、このように地下鉄の冷
房装置に適用する他、地下街や一般のビルに於ける冷水
発生用コージェネレーシヨン装置として利用することが
でき、省エネルギーを図ることができるものである。
In addition, the adsorbents used in adsorption refrigerator A, such as silica gel and zealite, do not change in volume even during adsorption reactions, are non-toxic, odorless, and non-corrosive, and are easy to maintain and manage even after long-term use. Since it is easy to use, by installing the adsorption chiller A in the space under the platform PL of a subway station building or in the dead space of the subway tunnel T, it is possible to easily create a subway cooling system that is safe even in the event of damage. Can be configured. In addition to being applied to a subway cooling system as described above, the present invention can also be used as a cogeneration system for generating cold water in underground malls and general buildings, thereby saving energy.

(発明の効果) 本発明は以上の通り、コージェネレーシヨン装置と圧縮
式冷凍機及び吸着式冷凍機を合理的に組み合わせて冷水
を発生させるので、吸収式冷凍機を利用したもののよう
に吸収剤の析出というような不都合がなく、50℃程度
以上あれば発生熱量が変動する廃熱であっても有効に冷
水の発生に利用することができ、従ってコージェネレー
シヨン装置の内燃機関の運転に際して発生する廃熱を有
効に利用して効率的に冷水を発生することができるとい
う効果がある。特に本発明では、吸着式冷5 凍機に於ける吸着剤の再生という形態で蓄熱を行えるの
で、冷水の需要時点に於いて冷水負荷が小さいために余
剰熱量が生じる場合や、熱の発生時点と冷水の需要時点
とに時間的なずれがある場合にも、これらの熱量を無駄
にせず、そして圧縮式冷凍機だけでは対応できない大き
な冷水負荷の発生時点に於いて冷水の発生に有効に利用
することができるという効果がある。かくして本発明は
、地下鉄の冷房装置に適用する他、地下街や一般のビル
に於ける冷水発生用コージェネレーシヨン装置として利
用することができ、省エネルギーを図ることができ、ま
た吸着式冷凍機は、無振動、無騒音であって、シリカゲ
ルやゼオライト等の吸着剤も無毒、無臭、無公害、無腐
食性であるので災害時等の万一の場合でも環境汚染等を
起こさず安全であり、保守や管理等も非常にやりやすい
という効果がある。
(Effects of the Invention) As described above, the present invention generates cold water by rationally combining a cogeneration device, a compression refrigerator, and an adsorption refrigerator. There is no inconvenience such as precipitation of water, and even waste heat whose amount of heat fluctuates at temperatures above 50°C can be effectively used to generate cold water. This has the effect of making it possible to efficiently generate cold water by effectively utilizing the waste heat generated. In particular, in the present invention, heat can be stored in the form of regenerating the adsorbent in the adsorption chiller. Even if there is a time difference between the amount of heat and the point of demand for chilled water, this amount of heat is not wasted and can be used effectively to generate chilled water when a large chilled water load is generated that cannot be handled by compression chillers alone. The effect is that it can be done. In this way, the present invention can be applied to cooling systems in subways, and can also be used as cogeneration systems for generating cold water in underground malls and general buildings, and can save energy. There is no vibration or noise, and adsorbents such as silica gel and zeolite are non-toxic, odorless, non-polluting, and non-corrosive, so even in the event of a disaster, it is safe and does not cause environmental pollution, and is easy to maintain. This has the effect that it is very easy to manage and manage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を地下鉄冷房装置に適用した全体構成の
実施例を表した構成説明図であり、また6 第2図は吸着式冷凍機Aの構成の一例を表した系統説明
図である。 符号A・・・吸着式冷凍機、C・・・圧縮式冷凍機、H
・・・廃熱回収温水系統、R(Ra、Rb、Rc)・・
冷却水経路、W・・・冷水系統、Wa、Wb・・・冷水
経路、1・・・内燃機関、2・・・発電機、3・・ジャ
ケット冷却器、4・・・排ガス経路、5・・・排気ガス
熱交換器、6・・・廃熱回収部、7・・・圧縮器、8.
19・・・凝縮器、9・・・膨張弁、10.20・・・
蒸発器、11・・・駆動軸、12・・・出力軸、13・
・・クラッチ、14・・・回転軸、15.16.29.
30,31a、31b、33・・・熱交換部、17 a
、  17 b・・冷却塔、18・・・吸着再生器、2
1・・・サイフオン管、22・・・冷媒液タンク、23
・・・ポンプ、24・・・流量調整弁、25・・・冷媒
噴射部、26a、26b−・・開閉弁、27.28・・
・冷媒蒸気経路、32a、32b・・・開閉弁対、34
・・・空調用熱交換部、35・・・地下鉄車両、36・
・・ダンパ、PL・・・プラットホーム、T・・・地下
鉄随道、p・・・ポンプ、f・・ファン、■・・・開閉
弁。
FIG. 1 is a configuration explanatory diagram showing an example of the overall configuration in which the present invention is applied to a subway cooling system, and 6 FIG. 2 is a system explanatory diagram showing an example of the configuration of an adsorption refrigerator A. . Code A: Adsorption refrigerator, C: Compression refrigerator, H
...Waste heat recovery hot water system, R (Ra, Rb, Rc)...
Cooling water route, W... Chilled water system, Wa, Wb... Chilled water route, 1... Internal combustion engine, 2... Generator, 3... Jacket cooler, 4... Exhaust gas route, 5... ... Exhaust gas heat exchanger, 6. Waste heat recovery section, 7. Compressor, 8.
19... Condenser, 9... Expansion valve, 10.20...
Evaporator, 11... Drive shaft, 12... Output shaft, 13.
...Clutch, 14... Rotating shaft, 15.16.29.
30, 31a, 31b, 33... heat exchange section, 17 a
, 17 b...Cooling tower, 18...Adsorption regenerator, 2
1... Siphon tube, 22... Refrigerant liquid tank, 23
...Pump, 24...Flow rate adjustment valve, 25...Refrigerant injection part, 26a, 26b-...Opening/closing valve, 27.28...
- Refrigerant vapor path, 32a, 32b...opening/closing valve pair, 34
...Heat exchange part for air conditioning, 35...Subway car, 36.
...Damper, PL...Platform, T...Subway route, p...Pump, f...Fan, ■...Opening/closing valve.

Claims (5)

【特許請求の範囲】[Claims] (1)内燃機関により駆動する発電機と、圧縮式冷凍機
と、吸着式冷凍機を構成要素とし、前記内燃機関の廃熱
回収部及び前記圧縮式冷凍機の凝縮器を通る廃熱回収温
水系統の温水を再生用熱源として前記吸着式冷凍機を動
作させる構成としたことを特徴とする冷水発生用コージ
ェネレーシヨン装置
(1) The components include a generator driven by an internal combustion engine, a compression refrigerator, and an adsorption refrigerator, and waste heat recovery hot water passes through the waste heat recovery section of the internal combustion engine and the condenser of the compression refrigerator. A cogeneration device for generating cold water, characterized in that the adsorption refrigerator is operated using hot water in the system as a heat source for regeneration.
(2)請求項1の圧縮器は、その駆動軸を発電機駆動用
の内燃機関により駆動する構成とし、該駆動軸と内燃機
関を断続自在に構成したことを特徴とする冷水発生用コ
ージェネレーシヨン装置
(2) The compressor according to claim 1 is a cogeneration system for generating cold water, characterized in that the drive shaft thereof is driven by an internal combustion engine for driving a generator, and the drive shaft and the internal combustion engine are configured to be disconnectable. sion device
(3)請求項1の吸着式冷凍機は、複数設けたことを特
徴とする冷水発生用コージェネレーシヨン装置
(3) The adsorption refrigerator according to claim 1 is a cogeneration device for generating cold water, characterized in that a plurality of adsorption refrigerators are provided.
(4)請求項1の吸着式冷凍機を地下鉄駅舎のプラット
フォーム下のスペースに設置したことを特徴とする地下
鉄冷房装置
(4) A subway cooling device characterized in that the adsorption refrigerator according to claim 1 is installed in a space under a platform of a subway station building.
(5)請求項1の吸着式冷凍機を地下鉄隧道のデッドス
ペースに設置したことを特徴とする地下鉄冷房装置
(5) A subway cooling device characterized in that the adsorption refrigerator according to claim 1 is installed in a dead space of a subway tunnel.
JP2094454A 1990-04-10 1990-04-10 Co-generation device for cold water production and subway air cooling device used the same Pending JPH03294764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2094454A JPH03294764A (en) 1990-04-10 1990-04-10 Co-generation device for cold water production and subway air cooling device used the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2094454A JPH03294764A (en) 1990-04-10 1990-04-10 Co-generation device for cold water production and subway air cooling device used the same

Publications (1)

Publication Number Publication Date
JPH03294764A true JPH03294764A (en) 1991-12-25

Family

ID=14110715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2094454A Pending JPH03294764A (en) 1990-04-10 1990-04-10 Co-generation device for cold water production and subway air cooling device used the same

Country Status (1)

Country Link
JP (1) JPH03294764A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147783A (en) * 2013-02-20 2013-06-12 武汉星田热环境控制技术有限公司 Mining winter cooling and mine heat utilization system
CN104005784A (en) * 2014-06-12 2014-08-27 中煤科工集团重庆研究院有限公司 Cold and hot water pressure exchange system applied to deep heat-damaged mine
CN104234736A (en) * 2013-06-14 2014-12-24 江苏金安盾救援装备有限公司 Refrigeration and dehumidification system of novel escape capsule
CN106052194A (en) * 2016-03-25 2016-10-26 西安建筑科技大学 Module type metro heat recovery system and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187569A (en) * 1981-05-12 1982-11-18 Misawa Homes Co Natural-synthetic zeolite type air cooling device utilizing waste heat
JPS63189754A (en) * 1987-01-30 1988-08-05 株式会社全眞電力エンジニヤリング Composite refrigeration system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187569A (en) * 1981-05-12 1982-11-18 Misawa Homes Co Natural-synthetic zeolite type air cooling device utilizing waste heat
JPS63189754A (en) * 1987-01-30 1988-08-05 株式会社全眞電力エンジニヤリング Composite refrigeration system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147783A (en) * 2013-02-20 2013-06-12 武汉星田热环境控制技术有限公司 Mining winter cooling and mine heat utilization system
CN104234736A (en) * 2013-06-14 2014-12-24 江苏金安盾救援装备有限公司 Refrigeration and dehumidification system of novel escape capsule
CN104005784A (en) * 2014-06-12 2014-08-27 中煤科工集团重庆研究院有限公司 Cold and hot water pressure exchange system applied to deep heat-damaged mine
CN106052194A (en) * 2016-03-25 2016-10-26 西安建筑科技大学 Module type metro heat recovery system and control method thereof

Similar Documents

Publication Publication Date Title
JP4089187B2 (en) Thermoelectric supply system
JP6028799B2 (en) Carbon dioxide supply device
CN101140089B (en) Humiture independent control air conditioner system
CN100541050C (en) Utilize CO 2Heat pump and operation method thereof as cold-producing medium
JP2005257127A (en) Natural refrigerant heat pump system
KR100827570B1 (en) Heatpump for waste heat recycle of adsorption type refrigerator
CN103453689B (en) Composite refrigeration system and control method thereof
JP3719581B2 (en) Combined air conditioner
JP2000304375A (en) Latent heat recovery type absorption water cooler heater
JPH03294764A (en) Co-generation device for cold water production and subway air cooling device used the same
JPH03294765A (en) Co-generation device for cold water production and subway air cooling device used the same
JP5808105B2 (en) Heat source system and control method thereof
JP4152140B2 (en) Waste heat absorption refrigerator
JPH11117713A (en) Chemical heat-accumulating type intake air cooling device
JP2002250573A (en) Air conditioner
JPH05272833A (en) Control method for freezing output of adsorption type freezer and adsorption type freezer capable of controlling freezing output
JPH07111286B2 (en) Cold water generator
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
CN201050908Y (en) Highly effective multifunctional air energy resource apparatus
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JPH07111285B2 (en) Cold water generator
JP3892689B2 (en) Combined cooling device and cooling operation method thereof
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
JP3999874B2 (en) Air conditioning system
JP4202057B2 (en) Combined system using waste heat of nuclear reactor plant