JPH03294419A - Production of high tensile strength steel plate having high fatigue limit from thin cast slab - Google Patents

Production of high tensile strength steel plate having high fatigue limit from thin cast slab

Info

Publication number
JPH03294419A
JPH03294419A JP9559590A JP9559590A JPH03294419A JP H03294419 A JPH03294419 A JP H03294419A JP 9559590 A JP9559590 A JP 9559590A JP 9559590 A JP9559590 A JP 9559590A JP H03294419 A JPH03294419 A JP H03294419A
Authority
JP
Japan
Prior art keywords
cooling rate
tensile strength
fatigue limit
transformation point
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9559590A
Other languages
Japanese (ja)
Other versions
JP2661768B2 (en
Inventor
Takehide Senuma
武秀 瀬沼
Satoshi Akamatsu
聡 赤松
Kaoru Kawasaki
薫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9559590A priority Critical patent/JP2661768B2/en
Publication of JPH03294419A publication Critical patent/JPH03294419A/en
Application granted granted Critical
Publication of JP2661768B2 publication Critical patent/JP2661768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce a high tensile strength steel plate having high fatigue limit at a low cost by directly and continuously casting a thin slab from a molten steel, applying heat treat ment to this thin cast slab under specific conditions, and carrying out hot rolling and coiling. CONSTITUTION:A molten steel having a composition consisting of, by weight, 0.02-0.4% C, 0.2-3% Mn, and 0.003-0.05% S is directly and continuously cast into a thin slab by a continuous casting method, and this thin cast slab is cooled from solidification down to the Ae3 transformation point at 0.5-30 deg.C/sec average cooling rate and further cooled from the Ae3 transformation point down to the higher temp. between 550 deg.C and a temp. T1 deg.C represented by an equation I or below at <=10 deg.C/sec cooling rate. Successively, the above thin cast slab is heated again up to a temp. in the region between the Ae3 transformation point and 1100 deg.C at >=5 deg.C/sec average temp. rise rate and hot-rolled in the austenite region at 20% reduction of area, and the resulting plate is cooled down to <=650 deg.C at >=20 deg.C/sec average cooling rate and coiled. By this method, the formation of lamellar pearlite can be inhibited and ferrite structure can be refined, and the high tensile strength steel plate having high fatigue limit can be produced at a low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶鋼から直接薄鋳帯を鋳造した後、熱間圧延
工程を簡略化するにもかかわらず、従来の製造方法に比
べ疲労限の高い高張力鋼板を製造する方法に関するもの
である。
Detailed Description of the Invention (Industrial Field of Application) The present invention enables casting of a thin cast strip directly from molten steel, and then simplifies the hot rolling process, yet has a lower fatigue limit than conventional manufacturing methods. The present invention relates to a method for manufacturing high-strength steel sheets with high strength.

(従来の技術) 自動車用の足回り部品のように動的な荷重を受ける鋼材
は疲労強度か重要な機械的性質となる。一般に疲労強度
を高めるには引張強度を高めればよいのであるが、強度
か上かれは延性か劣化するため、加工性を要求される部
品では単純に引張強度を高めることにより疲労強度を上
げることかできない。
(Prior Art) Steel materials that are subject to dynamic loads, such as automobile suspension parts, have important mechanical properties such as fatigue strength. Generally, to increase fatigue strength, it is sufficient to increase tensile strength, but as strength increases, ductility deteriorates, so for parts that require workability, it is recommended to increase fatigue strength simply by increasing tensile strength. Can not.

そこて、引張強度を上げずに、疲労強度だけを上げる、
すなわち、疲労限(疲労強度/引張強度)を高める方法
としてフェライトとマルテンサイトの複合組織をもつ複
合組織鋼板が製造されている。複合組織鋼板は確かに通
常のフェライト−パーライト鋼に比べると疲労限は高い
が製造方法は複雑で成分的にもコスト高となる欠点があ
る。
Therefore, we can increase only the fatigue strength without increasing the tensile strength.
That is, as a method of increasing the fatigue limit (fatigue strength/tensile strength), a composite structure steel sheet having a composite structure of ferrite and martensite is manufactured. Composite structure steel sheets certainly have a higher fatigue limit than ordinary ferrite-pearlite steels, but they have the disadvantage of being complicated in manufacturing method and high in cost due to their composition.

一方、本発明者らはフェライト−パーライト鋼の疲労限
が層状パーライトの生成状態と密接な関係があることを
加熱・熱延・冷却条件を種種変えた実験より明らかにし
、フェライト粒径が細かく層状パーライト組織の生成が
少ないほど疲労限が高くなることを見いだした。そのよ
うな組織を得るにはオーステナイトを細粒にすることが
有効であることを明らかにしたが、従来の熱延板の製造
方法ではフェライト−パーライト組織の高張力鋼から層
状パーライトを完全になくすことはできない。
On the other hand, the present inventors have clarified through experiments using various heating, hot rolling, and cooling conditions that the fatigue limit of ferrite-pearlite steel is closely related to the formation state of layered pearlite. It was found that the less pearlite structure formed, the higher the fatigue limit. It was revealed that it is effective to make the austenite into fine grains to obtain such a structure, but in the conventional manufacturing method of hot-rolled sheet, it is difficult to completely eliminate layered pearlite from high-strength steel with a ferrite-pearlite structure. It is not possible.

ところで、近年、薄膜製造工程の大幅な短縮化を図るた
め、新しい薄板製造プロセスとして溶鋼から直接薄鋳帯
を鋳造し、熱延を簡略する試みがなされている。
Incidentally, in recent years, in order to significantly shorten the thin film manufacturing process, attempts have been made to simplify hot rolling by directly casting a thin cast strip from molten steel as a new thin plate manufacturing process.

しかし、この方法は鋳片が薄いため必然的に熱延圧下率
が小さくなりオーステナイトの細粒化が十分に行なえず
γ/α変態後のフェライト粒径が粗大になり、強度−延
性バランス、疲労限などが同成分の従来の熱延鋼板に比
べ劣るのが実情である。
However, since the slab is thin, this method inevitably results in a small hot rolling reduction, which makes it impossible to sufficiently refine the austenite grains, resulting in coarse ferrite grains after γ/α transformation, resulting in poor strength-ductility balance and fatigue. The reality is that these materials are inferior to conventional hot-rolled steel sheets with the same composition.

(本発明が解決しようとするi!!l!i)本発明が解
決しようとする問題点は疲労限を劣化する層状パーライ
トの生成を抑制し、かつフェライト組織を細粒にする製
造方法を極力低コストで実現することである。
(i!!l!i to be solved by the present invention) The problem to be solved by the present invention is to suppress the formation of layered pearlite that deteriorates the fatigue limit, and to minimize the production method to make the ferrite structure as fine as possible. The aim is to realize this at low cost.

(課題を解決するための手段) 本発明者らは、上記の実情に鑑み鋭意検討した結果、薄
鋳帯に鋳造後、第1図に示すような適正な冷速で所定の
温度に冷却し、γ/α変態を行なわせた後、再び加熱し
、α/γ変態をさせ、そこで圧延により鋳片の形状及び
表面性状を改善すると共にオーステナイトの微細化を行
なった後、適正な冷却を行なうことにより、層状パーラ
イトの生成を抑制し、かつフェライト組織を微細化でき
ることを発見した。そして、このようにして得られた鋼
板は同成分の従来の熱延鋼板より優れた疲労限を示すこ
とが明らかになった。
(Means for Solving the Problems) As a result of intensive study in view of the above-mentioned circumstances, the inventors of the present invention found that after casting into a thin strip, it is cooled to a predetermined temperature at an appropriate cooling rate as shown in Fig. 1. After the γ/α transformation is carried out, it is heated again to cause the α/γ transformation, and then the shape and surface properties of the slab are improved by rolling, and the austenite is refined, followed by proper cooling. We have discovered that by doing so, we can suppress the formation of layered pearlite and refine the ferrite structure. It has also been revealed that the steel sheet obtained in this manner exhibits a fatigue limit superior to that of conventional hot-rolled steel sheets of the same composition.

本発明は次のように構成したものである。The present invention is constructed as follows.

C:  0.02wtk〜0.4wt9g、  Mn:
  0.2wt零〜3  wt%;S : 0.003
wt4〜0.05wt96を含む溶鋼を連続鋳造にて鋳
造後、凝固からAe3変態点までを平均冷却速度0.5
℃/s以上、30℃/s以下で、ざらにAe3変態点か
ら平均冷却速度:10℃/s以上で550℃あるいは(
1)式を満たす温度T1のどちらか高い温度以下まで冷
却し、続いて平均昇温速度5℃/s以上の昇温速度で再
びAe、変態点以上、1100℃以下の温度域まで加熱
し、オーステナイト域で20%以上の圧延を行なった後
、平均冷速20℃/s以上で再度650℃以下の巻取温
度まで冷却することを特徴とする疲労限の高い高張力鋼
板の製造方法。
C: 0.02wtk~0.4wt9g, Mn:
0.2 wt zero to 3 wt%; S: 0.003
After casting molten steel containing wt4 to 0.05wt96 by continuous casting, the average cooling rate from solidification to Ae3 transformation point is 0.5
℃/s or more and 30℃/s or less, average cooling rate from the Ae3 transformation point: 10℃/s or more to 550℃ or (
1) Cool to below whichever higher temperature T1 satisfies the formula, and then heat again at an average heating rate of 5°C/s or more to a temperature range of Ae, transformation point or above and 1100°C or below, A method for manufacturing a high tensile strength steel sheet with a high fatigue limit, which comprises rolling 20% or more in an austenite region and then cooling again to a coiling temperature of 650°C or less at an average cooling rate of 20°C/s or more.

T 1 (’e ) =Ae3 1000x (Cwt
%i)  (1)まず、本発明における化学成分の限定
理由について述べる。
T 1 ('e) = Ae3 1000x (Cwt
%i) (1) First, the reasons for limiting the chemical components in the present invention will be described.

Cは、鋼の強度を決める重要な元素であるとともにオー
ステナイトからフェライトへの変態において、その組織
形態を決定する最も重要な元素である。C量の下限をw
t96で0.02%としたのは、これ以下のC量ではパ
ーライトがほとんど生成せず、基本的に層状パーライト
生成による疲労限の劣化の問題がないためである。また
、上限を04%としたのは、これ以上Cか添加されると
パーライト率が増大し、全−面パーライト組織に近くな
り層状パーライト組織が生成しなくなるためである。
C is an important element that determines the strength of steel, and is also the most important element that determines the structural morphology in the transformation from austenite to ferrite. The lower limit of C amount w
The reason why t96 is set to 0.02% is that pearlite is hardly produced when the C content is less than this, and basically there is no problem of fatigue limit deterioration due to the formation of layered pearlite. Further, the reason why the upper limit is set to 04% is that if more C is added, the pearlite ratio increases and becomes close to an all-over pearlite structure, and no layered pearlite structure is generated.

Mn量の下限を0.2%としたのは、これ以下のMn量
では十分なフェライトの細粒化が達成できないと共に圧
下率が小さい場合組織が不均質になり疲労限が高くなら
ないためである。同様の現象がS量がQ、003%以下
になると認められる。そのため、S量の下限を0.00
3%とした。
The lower limit of the Mn content is set to 0.2% because if the Mn content is less than this, sufficient grain refinement of ferrite cannot be achieved, and if the rolling reduction rate is small, the structure becomes inhomogeneous and the fatigue limit does not become high. . A similar phenomenon is observed when the amount of S is Q,003% or less. Therefore, the lower limit of the amount of S is set to 0.00
It was set at 3%.

この原因は推論の域を越えないが、後記するオーステナ
イト中のMnSの析出と関連があると思われる。また、
Mn量の上限は製鋼工程における組成制御のコストが低
く抑えられ、また、加工性を劣化させないように3.0
%以下と限定する。S量の上限は熱間割れの防止や加工
性の維持のため0.05%と限定する。
Although the cause of this is beyond speculation, it is thought to be related to the precipitation of MnS in austenite, which will be described later. Also,
The upper limit of the Mn content is set at 3.0 to keep the cost of composition control in the steelmaking process low and to prevent deterioration of workability.
% or less. The upper limit of the amount of S is limited to 0.05% in order to prevent hot cracking and maintain workability.

なお本発明においては、前記した以外の成分は原則とし
て低く抑えられるべきであるが、他方、製品の強度を高
める等を目的として、必要に応じて適宜量のSi、P、
Ti、V、Nb、Cr、Ni、Mo、B等を添加しても
よく、特にSt、Pは強度を上げると共に層状パーライ
トの生成を抑える元素なので、加工性に劣化を来たさな
い51: 2%、P:0.15%以下の添加は本発明の
趣旨を損するものではない。また、Ti、Vなども粒内
フェライト変態を促進させる元素として積極的に添加さ
れることがあるが、本発明はこれによって何ら制限を受
けるものではない。
In the present invention, components other than those mentioned above should be kept low in principle, but on the other hand, appropriate amounts of Si, P,
Ti, V, Nb, Cr, Ni, Mo, B, etc. may be added, and in particular, St and P are elements that increase strength and suppress the formation of layered pearlite, so they do not cause deterioration in workability51: Addition of P: 0.15% or less does not impair the spirit of the present invention. Furthermore, Ti, V, and the like may be actively added as elements that promote intragranular ferrite transformation, but the present invention is not limited by this.

次に製造方法について述べる。Next, the manufacturing method will be described.

本発明においては、以上述べたような成分の鋼を鋳造後
、Ae、変態点までの平均6速を0.5t/s以上、3
0℃/s以下としたのは、この冷速範囲外では最終組織
の微細化および均買化が達成できないためである。この
理由は十分に明らかになフていないが、オーステナイト
中のMnSの析出に伴う析出物の近傍に生じるMnの枯
渇帯がγ/α変態時にフェライトの生成を促進し、オー
ステナイト組織が鋳造ままの粗大組織にもかかわらず粒
内のMnS近傍よりフェライト粒が多々生成し、微細な
フェライト組織が得られるためと考えられる。
In the present invention, after casting steel with the above-mentioned components, Ae, average 6 speeds up to the transformation point are 0.5 t/s or more, 3
The reason why the cooling rate is set to 0° C./s or less is that refinement of the final structure and equalization cannot be achieved outside this cooling rate range. The reason for this is not fully clear, but the Mn depletion zone that occurs near the precipitates due to the precipitation of MnS in austenite promotes the formation of ferrite during γ/α transformation, and the austenite structure remains as cast. This is thought to be because, despite the coarse structure, many ferrite grains are generated near the MnS inside the grains, resulting in a fine ferrite structure.

次に、Aes変態点から550℃あるいは(1)式を満
たす温度T1のどちらか高い温度以下まで冷却するとき
の平均冷却速度を10℃/s以上と限定したのは、これ
以下の6速ではフェライト組織が微細にならないためで
ある。また550℃あるいは(1)式を満たす温度T1
のどちらか高い温度まで冷却するという限定は、これ以
下の温度まで冷却をしないと、後述するようにAe3点
以上の温度域まで再加熱し冷却しても微細なフェライト
組織が得られないためである。また、第1図の模式図で
は上記の温度条件に冷却した後すぐに再加熱が行なわれ
るように示しであるが、この温度域で保持された後再び
加熱されても本発明はこれによって何ら制限を受けるも
のではない。
Next, we limited the average cooling rate to 10°C/s or more when cooling from the Aes transformation point to 550°C or the temperature T1 that satisfies equation (1), whichever is higher, because in 6 speeds below this, This is because the ferrite structure does not become fine. Also, 550℃ or the temperature T1 that satisfies equation (1)
The reason for the limitation of cooling to the higher temperature is that unless it is cooled to a temperature lower than this, a fine ferrite structure cannot be obtained even if it is reheated and cooled to a temperature range of Ae 3 or higher, as described later. be. Further, although the schematic diagram in FIG. 1 shows that reheating is performed immediately after cooling to the above temperature condition, the present invention does not affect the present invention even if it is heated again after being maintained in this temperature range. It is not subject to any restrictions.

次に、再度オーステナイト化する際、その昇温速度を5
℃/s以上としなければならない理由はこの加熱速度が
遅いと生成したオーステナイトが粗大化するためである
。また、これと同等の理由により加熱温度やその温度で
の保定は、組織か完全にオーステナイト化する範囲でで
きるたけ低くかつ短くすることが望ましく、加熱温度の
上限を1100℃と限定した。
Next, when austenitizing again, the temperature increase rate was increased to 5
The reason why the heating rate must be at least .degree. C./s is that if the heating rate is slow, the austenite produced will become coarse. Furthermore, for the same reason, it is desirable that the heating temperature and the retention period at that temperature be as low and short as possible within the range where the structure is completely austenitized, and the upper limit of the heating temperature was limited to 1100°C.

オーステナイト域での圧下率を20%以上と限定したの
は、これ以下の圧下率ではオーステナイト組織の微細化
が十分できず、γ/α変態後微細なフェライト組織が得
られないためである。
The reason why the rolling reduction in the austenite region is limited to 20% or more is because if the rolling reduction is lower than this, the austenite structure cannot be sufficiently refined and a fine ferrite structure cannot be obtained after the γ/α transformation.

ところて、鋳造後、−回目のγ/α変態前のオーステナ
イト域でも圧延を行なうことは本発明の必要条件ではな
いが最終組織の微細化に寄与するので、このような圧延
は本発明の趣旨を損するものではない。
However, although it is not a necessary condition of the present invention to perform rolling even in the austenite region before the -th γ/α transformation after casting, such rolling contributes to refinement of the final structure, so such rolling is not the gist of the present invention. It does not cause any loss.

最後に、最終の冷却条件を平均冷速を20”C/s以上
て650℃以下の巻取温度まで冷却するよう限定したの
は、平均6速が20℃/s以下だとフェライト組織が粗
粒になるためである。また、巻取温度を650℃以下と
したのは、これより高温の巻取を行なうとスケールの生
成が著しく酸洗コストが高くなるためである。
Finally, the reason why we limited the final cooling conditions to an average cooling rate of 20"C/s or more to a coiling temperature of 650℃ or less is because if the average cooling rate is 20"C/s or less, the ferrite structure will become coarse. In addition, the reason why the winding temperature is set to 650° C. or lower is that if winding is carried out at a higher temperature than this, scale formation will be significant and the pickling cost will increase.

(実 施 例) 実施例1 表1の化学成分の材料を用い、表2に示す通常熱延条件
で圧延された場合(1)と表3に示した模範的な本発明
の製造条件(II)で製造した鋼板の機械的性質を比較
した。その結果を表4にボす。この結果より明らかなよ
うに本発明鋼は鋼種に依存せず通常熱延材より高い疲労
限を示す。
(Example) Example 1 A case (1) in which a material having the chemical components shown in Table 1 was rolled under the normal hot rolling conditions shown in Table 2 and an exemplary manufacturing condition (II) of the present invention shown in Table 3. ) compared the mechanical properties of steel sheets manufactured by The results are shown in Table 4. As is clear from these results, the steel of the present invention exhibits a higher fatigue limit than the conventional hot-rolled material, regardless of the steel type.

実施例2 表1の材料Aを用いて、製造条件を変化させたときの鋼
板の機械的性貿を表5に示す。この結果より明らかなよ
うに、本発明鋼は優れた疲労限を示す。
Example 2 Table 5 shows the mechanical properties of the steel plate when the manufacturing conditions were changed using material A in Table 1. As is clear from these results, the steel of the present invention exhibits an excellent fatigue limit.

(発明の効果) 本発明によれば、薄鋳片を用い、熱延を簡略することに
より大幅な製造コストの低減か達成できるばかりでなく
、そのうえ、従来の高張力熱延鋼板より優れた疲労特性
が製造でき、その工業的意味は大きい。
(Effects of the Invention) According to the present invention, by using thin slabs and simplifying hot rolling, it is possible not only to achieve a significant reduction in manufacturing costs, but also to achieve better fatigue than conventional high tensile strength hot rolled steel sheets. The characteristics can be manufactured and its industrial significance is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋳造後の熱履歴を示した図である。 他4名 FIG. 1 is a diagram showing the thermal history after casting. 4 others

Claims (1)

【特許請求の範囲】 1 C:0.02wt%〜0.4wt%、 Mn:0.2wt%〜3wt%、 S:0.003wt%〜0.05wt% を含む溶鋼を連続鋳造にて鋳造後、凝固からAe_3変
態点までを平均冷却速度0.5℃/s以上、30℃/s
以下で、さらにAe_3変態点から平均冷却速度:10
℃/s以上で550℃あるいは(1)式を満たす温度T
1のどちらか高い温度以下まで冷却し、続いて平均昇温
速度5℃/s以上の昇温速度で再びAe_3変態点以上
、1100℃以下の温度域まで加熱し、オーステナイト
域で20%以上の圧延を行なった後、平均冷速20℃/
s以上で再度650℃以下の巻取温度まで冷却すること
を特徴とする疲労限の高い高張力鋼板の製造方法。 T1(℃)=Ae_3−1000×(Cwt%)(1)
[Claims] 1 After casting molten steel containing C: 0.02wt% to 0.4wt%, Mn: 0.2wt% to 3wt%, and S: 0.003wt% to 0.05wt% by continuous casting. , Average cooling rate from solidification to Ae_3 transformation point 0.5℃/s or more, 30℃/s
Below, further average cooling rate from Ae_3 transformation point: 10
Temperature T that satisfies equation (1) or 550℃ at ℃/s or more
1, and then heated again at an average temperature increase rate of 5°C/s or higher to a temperature range of Ae_3 transformation point or higher and 1100°C or lower, resulting in a temperature of 20% or more in the austenite region. After rolling, the average cooling rate is 20℃/
A method for producing a high tensile strength steel sheet with a high fatigue limit, which comprises cooling again to a coiling temperature of 650° C. or lower at a temperature of 650° C. or higher. T1 (°C) = Ae_3-1000×(Cwt%) (1)
JP9559590A 1990-04-11 1990-04-11 Manufacturing method of high strength steel sheet with high fatigue limit by thin cast strip Expired - Lifetime JP2661768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9559590A JP2661768B2 (en) 1990-04-11 1990-04-11 Manufacturing method of high strength steel sheet with high fatigue limit by thin cast strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9559590A JP2661768B2 (en) 1990-04-11 1990-04-11 Manufacturing method of high strength steel sheet with high fatigue limit by thin cast strip

Publications (2)

Publication Number Publication Date
JPH03294419A true JPH03294419A (en) 1991-12-25
JP2661768B2 JP2661768B2 (en) 1997-10-08

Family

ID=14141922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9559590A Expired - Lifetime JP2661768B2 (en) 1990-04-11 1990-04-11 Manufacturing method of high strength steel sheet with high fatigue limit by thin cast strip

Country Status (1)

Country Link
JP (1) JP2661768B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026840A1 (en) * 1994-04-04 1995-10-12 Nippon Steel Corporation Twin-roll type continuous casting method and device
EP0818545A1 (en) * 1996-01-26 1998-01-14 Nippon Steel Corporation Process for continuously casting sheet metal and apparatus for continuously producing sheet metal
US7975754B2 (en) 2007-08-13 2011-07-12 Nucor Corporation Thin cast steel strip with reduced microcracking

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026840A1 (en) * 1994-04-04 1995-10-12 Nippon Steel Corporation Twin-roll type continuous casting method and device
US5901777A (en) * 1994-04-04 1999-05-11 Nippon Steel Corporation Twin-roll continuous casting method
EP0818545A1 (en) * 1996-01-26 1998-01-14 Nippon Steel Corporation Process for continuously casting sheet metal and apparatus for continuously producing sheet metal
EP0818545A4 (en) * 1996-01-26 1999-02-24 Nippon Steel Corp Process for continuously casting sheet metal and apparatus for continuously producing sheet metal
US6051085A (en) * 1996-01-26 2000-04-18 Nippon Steel Corporation Process for continuously casting sheet metal and apparatus for continuously producing sheet metal
US7975754B2 (en) 2007-08-13 2011-07-12 Nucor Corporation Thin cast steel strip with reduced microcracking

Also Published As

Publication number Publication date
JP2661768B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
US4033789A (en) Method of producing a high strength steel having uniform elongation
US8440030B2 (en) Fine spheroidized steel sheet with excellent heat treatment characteristic and method for manufacturing the same
JPH0118968B2 (en)
US6673171B2 (en) Medium carbon steel sheet and strip having enhanced uniform elongation and method for production thereof
US5405463A (en) Continuous annealing process of producing cold rolled mild steel sheet excellent in deep drawability and aging resistibility
KR101318383B1 (en) Hot rolled steel sheet and methdo for manufacturing the same
JPH04358022A (en) Production of high strength steel
US4113523A (en) Process of making high tension cold-reduced al-killed steel excellent in accelerated aging property
JPH03294419A (en) Production of high tensile strength steel plate having high fatigue limit from thin cast slab
JPH04358023A (en) Production of high strength steel
JP2000336460A (en) Hot rolled wire rod and steel bar for machine structure and manufacture of the same
KR100903642B1 (en) A high carbon steel sheet superior in strenth and toughness and a manufacturing method thereof
JP3098064B2 (en) Improved austempering heat treatment method for thin leaf springs
JPH0813028A (en) Production of precipitation hardening steel material having high tensile strength and high toughness
JPS61276935A (en) Production of cold rolled steel sheet having non-aging characteristic by continuous annealing
JPS6299417A (en) Manufacture of high ductility and strength cold rolled steel sheet
JPH01176029A (en) Manufacture of high-tensile steel plate with low yield ratio by accelerated cooling method
JPS59177325A (en) Manufacture of hot rolled bainitic steel plate with high strength
KR100435466B1 (en) A method for manufacturing p added extra low carbon cold rolled steel sheet with superior deep drawability
GB2076425A (en) Dual-phase steel sheet
KR100368218B1 (en) A manufacturing process of a high strength steel with high temper soften resistance
JPS62139821A (en) Production of high-ductility high-strength cold rolled steel sheet
JPH0543779B2 (en)
JPS61264136A (en) Manufacture of al killed steel sheet for deep drawing with very low carbon content having reduced in-plane anisotropy
JPH09263838A (en) Production of high strength cold rolled steel sheet excellent in stretch-flange formability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 13

EXPY Cancellation because of completion of term