JPH03294239A - Production of acrolein and acrylic acid - Google Patents

Production of acrolein and acrylic acid

Info

Publication number
JPH03294239A
JPH03294239A JP2094069A JP9406990A JPH03294239A JP H03294239 A JPH03294239 A JP H03294239A JP 2094069 A JP2094069 A JP 2094069A JP 9406990 A JP9406990 A JP 9406990A JP H03294239 A JPH03294239 A JP H03294239A
Authority
JP
Japan
Prior art keywords
catalyst
catalysts
acrylic acid
element selected
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2094069A
Other languages
Japanese (ja)
Other versions
JP2809476B2 (en
Inventor
Tatsuya Kawajiri
達也 川尻
Michio Tanimoto
道雄 谷本
Hiroyuki Tazaki
博之 田崎
Masahiro Wada
正大 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2094069A priority Critical patent/JP2809476B2/en
Publication of JPH03294239A publication Critical patent/JPH03294239A/en
Application granted granted Critical
Publication of JP2809476B2 publication Critical patent/JP2809476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the subject compound in high yield by preparing plural specific molybdenum-based catalysts having different activity under specific conditions in subjecting propylene to vapor phase catalytic oxidation, dividing each catalyst layer to >=2 layers and charging said catalysts under specific conditions. CONSTITUTION:The subject compound is produced by vapor phase catalytic oxidation of propylene with molecular oxygen or a molecular oxygen-containing gas using a fixed bed and multitube-type reactor. In said process, a specific Mo-based catalyst is used and species and/or quantity of at least a species of element selected from alkaline earth metal in the catalyst component is varied to prepare plural catalysts having different activity and simultaneously, catalyst layers in every reaction tubes are divided to >=2 layers in the tube axis direction to provide plural reaction zones. Then, the above-mentioned plural catalysts having different activity are charged in the tubes so as the activity to become higher from inlet part to exit part of raw material gas, thus heat reserve at a hot spot part in the catalyst layer is suppressed, yield of the aimed compound is increased and deterioration of the catalysts is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プロピレンを分子状酸素または分子状酸素含
有ガスにより気相接触酸化してアクロレインおよびアク
リル酸を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing acrolein and acrylic acid by gas phase catalytic oxidation of propylene with molecular oxygen or a molecular oxygen-containing gas.

(従来の技術) プロピレンを高温気相酸化してアクロレインおよびアク
リル酸を製造する際に用いられる触媒に間してζ=数多
くの提案がなされている。これらは主として触媒を構成
する成分およびその比率の選択にかかわるものである。
(Prior Art) Numerous proposals have been made regarding catalysts used when producing acrolein and acrylic acid by high-temperature gas phase oxidation of propylene. These mainly concern the selection of the components constituting the catalyst and their ratios.

上記酸化反応は非常な発熱を伴う反応であるため、触媒
層での蓄熱が大きく、特にホットスポットと呼ばれる局
所的異常高温帯では過度の酸化反応により収率が低下す
るのみならず、熱負荷による触媒の劣化により触媒寿命
が大きな影響を受けることになる。このため、工業的実
施においては、ホットスポット部における蓄熱が重大な
問題となり、特に生産性を上げるために出発原料濃度を
高めたり、空間速度を高めたりすると(以下、 「高負
荷反応条件下」という場合もある)、ホットスポット部
における蓄熱が顕著となる傾向があることから、反応条
件に間しかなりの制約を受けているのが現状である。
Since the above oxidation reaction is a reaction accompanied by extremely high heat, a large amount of heat is accumulated in the catalyst layer. Especially in locally abnormally high temperature zones called hot spots, the yield not only decreases due to excessive oxidation reaction, but also due to heat load. Catalyst life is greatly affected by catalyst deterioration. Therefore, in industrial implementation, heat accumulation in hot spots becomes a serious problem, especially when the concentration of starting materials is increased or the space velocity is increased in order to increase productivity (hereinafter referred to as "high-load reaction conditions"). (In some cases, heat accumulation in hot spots tends to be significant.) At present, there are considerable restrictions on reaction conditions.

従って、このホットスポット部での蓄熱を抑えることは
、工業的に高収率でアクロレインおよびアクリル酸を生
産する上でも、また触媒の劣化を抑えて長訪問にわたり
安定した運転を可能とする上でも非常に重要なことであ
る。特に、モリブデン系触媒の場合、モリブデン成分が
容易に昇華しやすいことからホットスポット部での蓄熱
を防止することは重要である。
Therefore, suppressing heat accumulation in this hot spot is important for industrially producing acrolein and acrylic acid in high yields, and also for suppressing catalyst deterioration and enabling stable operation over long periods of time. This is very important. Particularly in the case of a molybdenum-based catalyst, it is important to prevent heat accumulation in hot spots because the molybdenum component is easily sublimed.

ホットスポット部での蓄熱を抑える方法として、過去に
いくつかの提案がなされている0例えば、特公昭62−
36740号公報には、触媒形状をリング状にすること
が提案されている。この公報には、プロピレン、あるい
はイソブチレンおよび/′またはt−ブタノールの酸化
用触媒として通常用いられている成型触媒において、形
状を球状あるいは円柱状からリング状にかえることによ
り、ホットスポット部での蓄熱を抑え、過度の酸化反応
を抑えることができるために、収率の向上に大きな効果
があると述べられている。しかし、この方法は、熱負荷
を低減させる効果は認められるものの、特に高負荷反応
条件下では充分満足のいく結果が得られるとはいえない
Several proposals have been made in the past as a method of suppressing heat accumulation in hot spots.
Japanese Patent No. 36740 proposes that the catalyst be shaped into a ring. This publication describes that in a shaped catalyst commonly used as a catalyst for the oxidation of propylene, isobutylene, and /' or t-butanol, the shape of the shaped catalyst is changed from a spherical or cylindrical shape to a ring shape to improve heat storage at hot spots. It is said that this method has a great effect on improving yields because it can suppress excessive oxidation reactions. However, although this method is effective in reducing the heat load, it cannot be said to yield sufficiently satisfactory results, particularly under high load reaction conditions.

そのほか、触媒層を分割して複数個の反応帯を設け、こ
の複数個の反応帯に活性の異なる触媒を充填して酸化反
応に供する方法も、例えばプロピレンからアクロレイン
およびアクリル酸を製造する方法として、特公昭63−
38331号公報によって知られている。
In addition, a method of dividing the catalyst layer to provide multiple reaction zones, filling the multiple reaction zones with catalysts with different activities, and subjecting them to the oxidation reaction is also used, for example, as a method for producing acrolein and acrylic acid from propylene. , special public official 1986-
It is known from Publication No. 38331.

しかし、この触媒においては、アルカリ金属の添加量を
変えることによって活性のm1niを行フているが、ア
ルカリ金属成分の添加量が他の成分に比べて非常に少な
いことから判るようにその添加効果が極めて大きい、こ
のため、触媒の調製に際しては、細心の注意が必要であ
り、触媒活性の制御といった面からは必ずしも実用的か
つ適切な触媒ということはできない。
However, in this catalyst, the activity m1ni is achieved by changing the amount of alkali metal added, but as can be seen from the fact that the amount of the alkali metal component added is very small compared to other components, the effect of addition is Therefore, great care must be taken when preparing the catalyst, and it cannot necessarily be said to be a practical and appropriate catalyst from the standpoint of controlling catalyst activity.

また、特開昭51−127013号公報には、プロピレ
ンおよびイソブチレンから不飽和アルデヒドおよび酸を
製造する方法として、本質的に同一組成からなる担持型
触媒と成型触媒との朝合せが開示されている。
Additionally, JP-A-51-127013 discloses a method for producing unsaturated aldehydes and acids from propylene and isobutylene, in which a supported catalyst and a shaped catalyst having essentially the same composition are combined. .

この触媒系もまた工業的実施に使用するには十分満足の
いくものとはいえない。
This catalyst system is also not sufficiently satisfactory for use in industrial practice.

(発明が解決しようとする課題) 本発明の一つの目的は、プロピレンを気相接触酸化して
アクロレインおよびアクリル酸を高収率でil造する方
法を提供することである。
(Problems to be Solved by the Invention) One object of the present invention is to provide a method for producing acrolein and acrylic acid in high yield by vapor phase catalytic oxidation of propylene.

本発明の他の目的は、プロピレンを気相接触酸化してア
クロレインおよびアクリル酸を製造する際、触媒層内の
ホットスポット部にお心する蓄熱を抑制し、アクロレイ
ンおよびアクリル酸の収率の向上を図るとともに触媒の
劣化を防止して触媒を長時間にわたって安定に使用でき
るようにしたアクロレインおよびアクリル酸の製造方法
を提供することである。
Another object of the present invention is to suppress heat accumulation in hot spots in the catalyst layer when producing acrolein and acrylic acid by vapor phase catalytic oxidation of propylene, thereby improving the yield of acrolein and acrylic acid. It is an object of the present invention to provide a method for producing acrolein and acrylic acid, which prevents deterioration of the catalyst and enables stable use of the catalyst over a long period of time.

本発明の他の目的は、プロピレンを高負荷反応条件下に
おいて気相接触酸化してアクロレインおよびアクリル酸
を製造する際、触媒層内のホットスポット部における蓄
熱を抑制し、アクロレインおよびアクリル酸の収率の向
上をはかるとともに触媒の劣化を防止して触媒を長時間
にわたって安定に使用できるようにし、ひいては生産性
を著しく向上させたアクロレインおよびアクリル酸の製
造方法を提供することである。
Another object of the present invention is to suppress heat accumulation in hot spots in the catalyst layer when producing acrolein and acrylic acid by gas-phase catalytic oxidation of propylene under high-load reaction conditions, and to recover acrolein and acrylic acid. To provide a method for producing acrolein and acrylic acid, which improves productivity, prevents catalyst deterioration, allows stable use of the catalyst over a long period of time, and significantly improves productivity.

(課題を解決するための手段) 本発明者らは、複数個の活性の異なる特定のモリブデン
系触媒をrlI製し、一方触媒層を2層以上に分割して
複数個の反応帯を設け、これら複数個の反応帯に上記活
性の異なる複数個のモリブデン系触媒を原料ガス入口部
から出口部に向かって活性がより高くなるように充填す
ることにより上記目的が達成できることを知り、この知
見に基づいて本発明を完成するに至った。
(Means for Solving the Problem) The present inventors manufactured a plurality of specific molybdenum-based catalysts with different activities, and on the other hand, divided the catalyst layer into two or more layers to provide a plurality of reaction zones, I learned that the above objective could be achieved by filling these multiple reaction zones with a plurality of molybdenum catalysts with different activities so that the activity becomes higher from the raw material gas inlet to the outlet. Based on this, the present invention has been completed.

すなわち、本発明は、固定床多管型反応器を用いてプロ
ピレンを分子状酸素または分子状酸素含有ガスにより気
相接触酸化によりアクロレインおよびアクリル酸を製造
する方法において、(イ)触媒として、下記−数式(1
) %式% (式中、Moはモリブデン、Wはタングステン、Biは
ビスマス、Feは鉄、Aはニッケルおよびコバルトから
選ばれる少なくとも1種の元素、Bはアルカリ金属およ
びタリウムから選ばれる少なくとも1種の元素、Cはア
ルカリ土類金属から選ばれる少なくとも1種の元素、D
はリン、テルル、アンチモン、スズ、セリウム、鉛、ニ
オブ、マンガン、ヒ紫および亜鉛から選ばれる少なくと
も1種の元素、Eはシリコン、アルミニウム、チタニウ
ムおよびジルコニウムから選ばれる少なくとも1種の元
素、Oは酸素を表し、またa、  b、  c、d、 
 e、  f、  g、h、1およびXはそれぞれMO
5W、  B1.  Fe、 A、  BSC,D、 
 EおよびOの原子数を表し、a=12としたとき、b
=o〜10、c=0.1〜10、d=0.1〜20、e
=2〜20.f=0〜10、g=0.001〜10、h
=0〜4、i=0〜30.x=各々の元素の酸化状態に
よって定まる数値である) で表される複合酸化物を使用し、 (ロ)各反応管内の触媒層を管軸方向に2層以上に分割
して設けた複数個の反応帯に、(ハ)上記(イ)の触媒
において、−数式(1)におけるC群元素の種類および
/または量を変更して調製した活性の異なる複数個の触
媒を原料ガス入口部から出口部に向かって活性がより高
くなるように充填することを特徴とするアクロレインお
よびアクリル酸の製造方法に関する。
That is, the present invention provides a method for producing acrolein and acrylic acid by vapor phase catalytic oxidation of propylene using molecular oxygen or a molecular oxygen-containing gas using a fixed bed multitubular reactor. - Formula (1
) % formula % (In the formula, Mo is molybdenum, W is tungsten, Bi is bismuth, Fe is iron, A is at least one element selected from nickel and cobalt, and B is at least one element selected from alkali metals and thallium. element, C is at least one element selected from alkaline earth metals, D
is at least one element selected from phosphorus, tellurium, antimony, tin, cerium, lead, niobium, manganese, amber, and zinc; E is at least one element selected from silicon, aluminum, titanium, and zirconium; O is at least one element selected from silicon, aluminum, titanium, and zirconium; Represents oxygen, and also a, b, c, d,
e, f, g, h, 1 and X are each MO
5W, B1. Fe, A, BSC, D,
Representing the number of atoms of E and O, and when a=12, b
=o~10, c=0.1~10, d=0.1~20, e
=2~20. f=0~10, g=0.001~10, h
=0-4, i=0-30. x = a numerical value determined by the oxidation state of each element) using a composite oxide expressed by (b) a plurality of catalyst layers in each reaction tube divided into two or more layers in the tube axis direction; (c) In the catalyst of (a) above, a plurality of catalysts with different activities prepared by changing the type and/or amount of the group C element in formula (1) are added from the raw material gas inlet to the reaction zone. The present invention relates to a method for producing acrolein and acrylic acid, characterized in that the filling is performed so that the activity becomes higher toward the outlet.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で使用する触媒は、上記−数式(1)によって表
される複合酸化物である。この触媒の調製方法および原
料については特に制限はなく、この種の触媒のrA製に
一般に使用されている方法および原料を用いて調製する
ことができる。
The catalyst used in the present invention is a composite oxide represented by the above formula (1). There are no particular restrictions on the preparation method and raw materials for this catalyst, and it can be prepared using methods and raw materials commonly used for producing rA catalysts of this type.

本発明においては、−数式(1)で表される、活性の異
なる複数個の触媒をI!I製して、これら複数個の触媒
を特定の配列で充填するが、活性の異なる触媒は一般式
(I)においてC群元素の種類および/または量を変え
ることによって容易に調製することができる。すなわち
、ベリリウム、マグネシウム、カルシウム、ストロンチ
ウムなとのアルカリ土類金属から選ばれる少なくとも1
種の元素の種類および/または量(但し、−数式(1)
において、gによって規定される原子比内で)を変える
ことによって活性の異なる触媒が得られる。
In the present invention, - I! I and packed with these multiple catalysts in a specific arrangement, catalysts with different activities can be easily prepared by changing the type and/or amount of group C elements in general formula (I). . That is, at least one selected from alkaline earth metals such as beryllium, magnesium, calcium, and strontium.
The type and/or amount of the element in the species (however, - formula (1)
(within the atomic ratio defined by g), catalysts with different activities can be obtained.

本発明で使用する触媒は、−数式(1)で表される元素
成分から構成され、これら元素成分の朝合せによって本
発明の目的が達成されるが、これら元素成分のうち、特
にタングステン成分は触媒活性の向上に有効であり、こ
れをC群元素と併用することによフて触媒の選択性を低
下させることなく触媒活性の著しい向上が認められる。
The catalyst used in the present invention is composed of elemental components represented by formula (1), and the object of the present invention is achieved by combining these elemental components. Among these elemental components, the tungsten component is particularly It is effective in improving the catalytic activity, and by using it in combination with the C group element, a significant improvement in the catalytic activity is observed without reducing the selectivity of the catalyst.

このりングステン成分の添加割合は、モリブデン成分を
12としたとき、0〜10、好ましくは0.5〜10で
ある。
The addition ratio of the phosphorus component is 0 to 10, preferably 0.5 to 10, when the molybdenum component is 12.

なお、本発明における「活性」とは、出発原料の転化率
を意味する。
In addition, "activity" in this invention means the conversion rate of a starting material.

本発明で使用する触媒は、通常の成型法、例えば押出成
型法あるいは打錠成型法などによって成型してもよく、
また触媒成分としての一般式(Iによって表される複合
酸化物を、炭化ケイ業、アルミナ、酸化ジルコニウム、
酸化チタンなどの一般に担体として使用されている不活
性な担体に担持してもよい。
The catalyst used in the present invention may be molded by a conventional molding method, such as an extrusion molding method or a tablet molding method.
In addition, the composite oxide represented by the general formula (I) as a catalyst component can be selected from silicon carbide, alumina, zirconium oxide,
It may be supported on an inert carrier that is generally used as a carrier, such as titanium oxide.

本発明で使用する触媒の形状については、特に制限はな
く、球状、円柱状、リング状などいずれでもよい、特に
、リング状触媒を使用するとホットスポット部における
蓄熱が防止され、収率の向上、触媒劣化の防止などの他
、触媒層での圧力損失の低下など種々の利点が得られる
ことから、本発明においてはリング状触媒が好適に使用
される。
The shape of the catalyst used in the present invention is not particularly limited and may be spherical, cylindrical, ring-shaped, etc. In particular, when a ring-shaped catalyst is used, heat accumulation in hot spots is prevented, yield is improved, A ring-shaped catalyst is preferably used in the present invention because it provides various advantages such as prevention of catalyst deterioration and reduction of pressure loss in the catalyst layer.

リング状触媒としては、外径が3〜10mm、長さが外
径の0.5〜2倍、長さ方向への貫通孔の内径が外径の
0.5〜2倍となるようなリング状触媒が好適に使用さ
れる。
The ring-shaped catalyst is a ring with an outer diameter of 3 to 10 mm, a length of 0.5 to 2 times the outer diameter, and an inner diameter of the through hole in the length direction of 0.5 to 2 times the outer diameter. catalysts are preferably used.

本発明においては、各反応管内の触媒層を管軸方向に2
層以上に分割して複数個の反応帯を設け、これら反応帯
に上記活性の異なる複数個の触媒を原料ガスの入口部か
ら出口部に向かって活性が順次高くなるように配置する
。すなわち、活性が最も低い触媒を入口部に、一方活性
が最も高い触媒を出口部に配置する。このように活性の
異なる複数個の触媒を配列することによ)て、ホットス
ポット部における蓄熱を抑え、また高選択率で目的物を
得ることができる。
In the present invention, the catalyst layer in each reaction tube is divided into two parts in the tube axis direction.
A plurality of reaction zones are provided by dividing into layers or more, and a plurality of catalysts having different activities are arranged in these reaction zones so that the activity increases successively from the inlet to the outlet of the raw material gas. That is, the catalyst with the lowest activity is placed at the inlet, while the catalyst with the highest activity is placed at the outlet. By arranging a plurality of catalysts with different activities in this way, it is possible to suppress heat accumulation in hot spots and obtain the target product with high selectivity.

触媒層の分割は数多くするほど、触媒層の温度分布を制
御しやすくなるが、工業的には2〜3F+にすることに
よって充分目的とする効果を得ることができる。また、
分割比については、各層の触媒をいかなる組成、形状な
どにするかによフて左右されるため一概に特定できず、
全体としての最適な活性、選択率が得られるように適宜
選択すればよい。
The more the catalyst layer is divided, the easier it is to control the temperature distribution of the catalyst layer, but industrially the desired effect can be sufficiently obtained by dividing the catalyst layer into 2 to 3F+. Also,
The splitting ratio cannot be determined unambiguously because it depends on the composition and shape of the catalyst in each layer.
It may be selected appropriately so as to obtain the overall optimum activity and selectivity.

本発明における気相接触酸化反応は、通常の単流適法で
も、あるいはリサイクル法であってもよく、またこの種
の反応に一般に用いられている条件下に実施することが
できる0例えば、プロピレン1〜10容鳳%、分子状酸
素3〜20容置%、水蒸気0〜60容鳳%、窒素、炭酸
ガスなどの不活性ガス20〜80容量%などからなる混
合ガスを前記触媒上に250〜450℃の温度範囲、常
圧〜10気圧の圧力下、空間速度300〜5000hr
=(STP)で導入する。
The gas phase catalytic oxidation reaction in the present invention may be an ordinary single flow method or a recycling method, and can be carried out under conditions generally used for this type of reaction. For example, propylene 1 A mixed gas consisting of ~10% by volume, 3 to 20% by volume of molecular oxygen, 0 to 60% by volume of water vapor, and 20 to 80% by volume of an inert gas such as nitrogen or carbon dioxide is poured onto the catalyst at 250% to 200% by volume. Temperature range of 450℃, under pressure of normal pressure to 10 atm, space velocity 300 to 5000 hr
= (STP).

本発明の方法によれば、生産性を上げることを目的とし
た高負荷反応条件下、例えばより高い原料濃度、あるい
はより高い空間速度の条件下において、従来法に比へて
、特に著しい好結果が得られる。
According to the method of the present invention, particularly under high-load reaction conditions aimed at increasing productivity, for example, under conditions of higher raw material concentration or higher space velocity, compared to conventional methods, remarkable results are obtained. is obtained.

(発明の効果) 本発明においては、活性の異なる複数個の特定のモリブ
デン系触媒を複数個に分割した触媒層に原料ガス入口部
から出口部に向かって活性がより高くなるように充填す
ることによフて、(a)高収率でアクロレインおよびア
クリル酸が得られる、 (b)ホットスポット部における蓄熱を効果的に抑制で
きる、 (C)ホットスポット部における過度の酸化反応が防止
され、高収率で目的とするアクロレインおよびアクリル
酸を得ることができる、(d)熱負荷による触媒の劣化
が防止され、触媒を長期間安定して使用することができ
る、(e)高原料濃度、高空間速度など高負荷反応条件
下でも目的とするアクr3L/インおよびアクリル酸を
高収率で得られることから生産性を大幅に上げることが
できるなどの効果が得られる。
(Effects of the Invention) In the present invention, a plurality of specific molybdenum-based catalysts having different activities are filled into a plurality of divided catalyst layers so that the activity becomes higher from the raw material gas inlet to the outlet. As a result, (a) acrolein and acrylic acid can be obtained in high yield, (b) heat accumulation in the hot spot can be effectively suppressed, (C) excessive oxidation reaction in the hot spot can be prevented, The desired acrolein and acrylic acid can be obtained in high yields; (d) deterioration of the catalyst due to heat load is prevented and the catalyst can be used stably for a long period of time; (e) high raw material concentration; Even under high-load reaction conditions such as high space velocity, the desired acr3L/yne and acrylic acid can be obtained in high yields, resulting in effects such as a significant increase in productivity.

さらに、リング状触媒を使用することによフて、上記の
効果の他に (f)触媒層での圧力損失の低下によって消費電力を低
減することができる などの効果も得られる。
Furthermore, by using a ring-shaped catalyst, in addition to the above-mentioned effects, it is also possible to obtain effects such as (f) power consumption can be reduced due to a reduction in pressure loss in the catalyst layer.

従って、本発明の方法は、アクロレインおよびアクリル
酸の工業的生産に極めて有用な方法である。
Therefore, the method of the present invention is extremely useful for industrial production of acrolein and acrylic acid.

(実施例) 以下、 実施例を挙げて本発明を更に具体的に説明する。(Example) below, The present invention will be explained in more detail with reference to Examples.

なお、 転化率、 選択率および合計単流収率は次 の式によって定義される。In addition, conversion rate, The selectivity and total single stream yield are is defined by the formula.

転化率(モル%)= 選択率(モル%)= 生成したアクロレインまたは 合計単流収率 (モル%) 生成したアクロレインおよび 実施例1 水1000IIl12に硝酸コバルト436gおよび硝
酸第二鉄202gを溶解1/た。また、硝酸ビスマス2
43gと硝酸ニッケル291gとを濃硝[30−と水1
20a9との硝酸水溶液に溶解した。
Conversion rate (mol%) = Selectivity (mol%) = Produced acrolein or total single stream yield (mol%) Produced acrolein and Example 1 436 g of cobalt nitrate and 202 g of ferric nitrate were dissolved in 1000 IIl12 of water. Ta. Also, bismuth nitrate 2
43g of nickel nitrate and 291g of nickel nitrate were mixed with concentrated nitrogen [30g and water 1
20a9 was dissolved in a nitric acid aqueous solution.

別に、水3000−を加熱溶解しつつその中にバラモリ
ブデン酸アンモニウム1059gおよびパラタングステ
ン酸アンモニウム265g1を溶解し、得られた水溶液
に上記別途調製した2つの水溶液を滴下、混合し、次い
で硝酸セシウム5.8gと硝酸バリウム13.1gとを
水400+aI2に溶解した水溶液、更に20重量%濃
度のシリカゾル203gを順次添加し、混合した。
Separately, 1059 g of ammonium paramolybdate and 265 g of ammonium paratungstate were dissolved in 3000 g of water while heating, and the above two separately prepared aqueous solutions were added dropwise to the obtained aqueous solution and mixed, and then 55 g of cesium nitrate was dissolved. An aqueous solution prepared by dissolving .8 g of barium nitrate and 13.1 g of barium nitrate in 400+aI2 of water, and further 203 g of 20% by weight silica sol were sequentially added and mixed.

このようにして得られた懸濁液を加熱撹拌し、蒸発乾固
した後、外径6mm、長さ3mmの円柱状に成型し、空
気流通下に480℃で4時間焼成して触媒(1)を得た
。この触媒(1)の組成は、酸素を除いた原子比で MO12W2B i+Fe+C03N i2c SIl
、l!6B a@、+S i 1.3s であった。
The suspension thus obtained was heated and stirred, evaporated to dryness, and then molded into a cylinder with an outer diameter of 6 mm and a length of 3 mm. ) was obtained. The composition of this catalyst (1) is MO12W2B i+Fe+C03N i2c SIl in atomic ratio excluding oxygen.
,l! 6B a@, +S i 1.3s.

上記触媒(1)の調製法において、硝酸バリウムの量を
65.3gとした以外は触媒(1)と同様にして触媒(
2)を調製した。この触媒(2)の結成は、酸素を除い
た原子比で MO12W2B i +F e+C03N i 2CS
@、116B as5S 11.35 であった。
In the method for preparing catalyst (1) above, the catalyst (1) was prepared in the same manner as in catalyst (1) except that the amount of barium nitrate was changed to 65.3 g.
2) was prepared. The formation of this catalyst (2) is MO12W2B i +F e +C03N i 2CS in atomic ratio excluding oxygen.
@, 116B as5S 11.35.

上記触媒(1)、 (2)の活性については、後記比較
r!4】、2の結果から明らかなように、触媒(2)の
ほうが触媒(1)よりも活性が高い。
Regarding the activity of the above catalysts (1) and (2), please refer to the comparison r! As is clear from the results of 4] and 2, catalyst (2) has higher activity than catalyst (1).

直径25.4mmの鋼鉄製反応管の原料ガス入口部に上
記触媒(1)750dを充填し、一方原料ガス出口部に
上記触媒(2)750−を充填した。
The raw material gas inlet of a steel reaction tube having a diameter of 25.4 mm was filled with the above catalyst (1) 750d, while the raw material gas outlet was filled with the above catalyst (2) 750-.

上記反応管入口からプロピレン8容量%、酸素14.1
容量%、水蒸気25容量%および窒素52.9容量%か
らなる組成の混合ガスを導入し、反応温度310℃、空
間速度1600hr−’ (STP)で反応を行った。
Propylene 8% by volume, oxygen 14.1% from the inlet of the reaction tube
A mixed gas having a composition of 25% by volume of water vapor and 52.9% by volume of nitrogen was introduced, and the reaction was carried out at a reaction temperature of 310°C and a space velocity of 1600 hr-' (STP).

結果を表1に示す。The results are shown in Table 1.

比較例1 実施例】において、触媒(2)を使用することなく触媒
(1)のみを150〇−充填した以外は実施例1と同様
に反応を行った。結果を表1に示す。
Comparative Example 1 In Example 1, the reaction was carried out in the same manner as in Example 1, except that catalyst (1) alone was charged at 1,500 kg without using catalyst (2). The results are shown in Table 1.

比較例2 実施例1において、触媒(1)を使用することなく触媒
(2)のみを150〇−充填した以外は実施例1と同様
に反応を行った。結果を表1に示す。
Comparative Example 2 The reaction was carried out in the same manner as in Example 1, except that the catalyst (1) was not used and only the catalyst (2) was charged at 1,500 kg. The results are shown in Table 1.

比較例3 実施例1の触媒(1)の調製において、硝酸バリウムの
使用量を39.2gとした以外は触媒(1)と同様にし
て触媒(3)を調製した。この触媒(3)の結成は、酸
素を除いた原子比でMOI2W2B i +F e+C
03N r 2CSe、56Ba@、3si1.3s てあった。
Comparative Example 3 Catalyst (3) was prepared in the same manner as catalyst (1) in Example 1, except that the amount of barium nitrate used was 39.2 g. The formation of this catalyst (3) is MOI2W2B i +F e+C in atomic ratio excluding oxygen.
03N r 2CSe, 56Ba@, 3si1.3s.

実施例1において、上記触媒(3)1500dのみを反
応管に充填した以外は実施例1と同様に反応を行った。
In Example 1, the reaction was carried out in the same manner as in Example 1, except that only 1500 d of the catalyst (3) was filled into the reaction tube.

結果を表1に示す。The results are shown in Table 1.

表1の結果から、触媒(1)の活性は非常に低く、一方
触媒(2)は高活性であるが選択率が低く、いずれも合
計単流収率が低いのに対し、これら触媒(1)、 (2
)を組み合わせた本発明の触媒系においては合計単流収
率が高く、目的とするアクロレインおよびアクリル酸が
高収率で得られることが理解される。
From the results in Table 1, the activity of catalyst (1) is very low, while catalyst (2) has high activity but low selectivity. ), (2
) It is understood that the total single-stream yield is high in the catalyst system of the present invention in which the following are combined, and the desired acrolein and acrylic acid can be obtained in high yield.

また、触媒(1)と触媒(2)との中間的組成を有する
触媒(3)と触媒(1)、 (2)を胡み合わせた本発
明の触媒系とを比較すると、触媒(3)では合計単流収
率が低く、さらには反応温度と触媒層最高温度との温度
差(ΔT)が非常に大きいことから熱負荷による触媒劣
化が著しいものと考えられる。すなわち、本発明の触媒
系と組成をほぼ同一にした単一の触媒(3)を単独で使
用しても本発明の効果を達成することができないことが
理解される。
Furthermore, when comparing catalyst (3) having an intermediate composition between catalyst (1) and catalyst (2), and the catalyst system of the present invention in which catalysts (1) and (2) are combined, catalyst (3) In this case, the total single-stream yield was low, and furthermore, the temperature difference (ΔT) between the reaction temperature and the maximum temperature of the catalyst layer was very large, so it is thought that the catalyst deteriorated significantly due to heat load. That is, it is understood that the effects of the present invention cannot be achieved even if a single catalyst (3) having substantially the same composition as the catalyst system of the present invention is used alone.

実施例2 実施例1の触媒(1)の*Uにおいて、硝酸セシウムの
代わりに水酸化ナトリウムを、硝酸バリウムの代わりに
硝酸カルシウムを、またA群元素としてコバルトのみを
用いた以外は、触媒(1)の1illi1と同様にして
触媒(4)および触媒(5)を調製した。
Example 2 The catalyst ( Catalyst (4) and catalyst (5) were prepared in the same manner as in 1illi1 of 1).

触媒(4)および触媒(5)の組成は、酸素を除いた原
子比で次の通りであフた。
The compositions of catalyst (4) and catalyst (5) in atomic ratio excluding oxygen were as follows.

触媒(4) MOtzWzB il、2Fe+cosNa@、+Ca
*、ts i +、as 触媒(5) Mo+2W2B j+、2Fe+cosNa@、+Ca
@、es i +、3s 以下、原料ガス入口部に触媒(4)750d、原料ガス
出口部に触媒(5)750dを充填した以外は実施例1
と同様に反応を行フた。結果を表1に示す。
Catalyst (4) MOtzWzB il, 2Fe+cosNa@, +Ca
*, ts i +, as Catalyst (5) Mo+2W2B j+, 2Fe+cosNa@, +Ca
@, es i +, 3s Example 1 except that 750 d of catalyst (4) was filled in the inlet of the raw material gas and 750 d of catalyst (5) was filled in the outlet of the raw gas.
The reaction was carried out in the same way. The results are shown in Table 1.

比較例4 実施例2において、触媒(5)を使用することなく触媒
(4)のみを1500d充填した以外は実施例2と同様
に反応を行った。結果を表1に示す。
Comparative Example 4 The reaction was carried out in the same manner as in Example 2, except that the catalyst (4) alone was charged for 1500 d without using the catalyst (5). The results are shown in Table 1.

比較例5 実施例2において、触媒(4)を使用することなく触媒
(5)のみを150〇−充填した以外は実施例2と同様
に反応を行った。結果を表1に示す。
Comparative Example 5 The reaction was carried out in the same manner as in Example 2, except that the catalyst (5) alone was charged at 1,500 kg without using the catalyst (4). The results are shown in Table 1.

比較例6 実施例2の触媒(4)の調製において、硝酸カルシウム
の量を変えた以外は触媒(4)の調製と同様にして触媒
(6)を調製した。
Comparative Example 6 Catalyst (6) was prepared in the same manner as catalyst (4) in Example 2, except that the amount of calcium nitrate was changed.

触媒(6)の組成は、酸素を除いた原子比でMOI2W
2B il、2Fe+cOsNa*、+Ca@、aS 
i +、3s であった。
The composition of the catalyst (6) is MOI2W in atomic ratio excluding oxygen.
2B il, 2Fe+cOsNa*, +Ca@, aS
i +, 3s.

以下、触媒(4)および触媒(5)の代わりに触媒(6
)を1500−充填した以外は実施例2と同様に反応を
行った。結果を表1に示す。
Hereinafter, catalyst (6) is replaced with catalyst (4) and catalyst (5).
The reaction was carried out in the same manner as in Example 2, except that 1,500 μg of 1,500 μg of ) was charged. The results are shown in Table 1.

実施例3 実施例1の触媒(1)の調製において、硝酸セシウムの
代わりに水酸化カリウムを用い、C群元素としてバリウ
ムを加え、また硝酸ストロンチウムを用いた以外は触媒
(1)と同様にして触媒(7)および触媒(8)を調製
した。
Example 3 Catalyst (1) of Example 1 was prepared in the same manner as catalyst (1) except that potassium hydroxide was used instead of cesium nitrate, barium was added as a C group element, and strontium nitrate was used. Catalyst (7) and catalyst (8) were prepared.

触媒(7)および触媒(8)の組成は、酸素を除いた原
子比で次の通りであった。
The compositions of catalyst (7) and catalyst (8) in atomic ratio excluding oxygen were as follows.

触媒(7) MOI2W2B i +F e+C03N 12Ks、
ssB al!、1触媒(8) MOI2W2B i+Fe+CoxNi2に@、@8B
ae、a以下、原料ガス入口部に触媒(7)600+d
、出口部に触媒(8)900−を充填した以外は実施例
1と同様に反応を行った。結果を表1に示す。
Catalyst (7) MOI2W2B i +F e+C03N 12Ks,
ssB al! , 1 catalyst (8) MOI2W2B i+Fe+CoxNi2 @, @8B
ae, below a, catalyst (7) 600+d at raw gas inlet
The reaction was carried out in the same manner as in Example 1 except that the outlet portion was filled with catalyst (8) 900-. The results are shown in Table 1.

比較例7 実施例3において、触媒(7)のみを1500−使用し
た以外は実施例3と同様に反応を行った。
Comparative Example 7 The reaction was carried out in the same manner as in Example 3, except that only the catalyst (7) was used at 150%.

結果を表1に示す 比較例8 実施例3において、触媒(8)のみを1500−使用し
た以外は実施例3と同様に反応を行った。
Comparative Example 8 The results are shown in Table 1. The reaction was carried out in the same manner as in Example 3 except that only the catalyst (8) was used at 150%.

結果を表1に示す。The results are shown in Table 1.

比較例9 実施例3において、バリウム量を変更して触媒(7)と
同様にして触媒(9)を調製した。
Comparative Example 9 Catalyst (9) was prepared in the same manner as catalyst (7) in Example 3, except that the amount of barium was changed.

触媒(9)の組成は、vl秦を除く原子比でMOI2W
2B i +F e+C03N i 2K1.lIgB
 &++、sであった。
The composition of the catalyst (9) is MOI2W in atomic ratio excluding vl Qin.
2B i +F e+C03N i 2K1. lIgB
&++,s.

実施例3において、触媒(9)のみを1500−使用し
た以外は実施例3と同様に反応を行った。
In Example 3, the reaction was carried out in the same manner as in Example 3, except that only catalyst (9) was used.

結果を表1に示す。The results are shown in Table 1.

実施例4 実施例1の触媒(1)の調製において、タングステン、
コバルト、鉄およびビスマスの含有量を変え、C群元素
としてナトリウムおよびカリウムを用い、さらに二酸化
チタン6gおよび二酸化セリウム43gを添加し、球状
に成型し、空気流通下にて465℃で8時閉焼成した以
外は触媒(1)と同様にして触媒(10)、 (11)
および(12)をyA製した。
Example 4 In the preparation of catalyst (1) of Example 1, tungsten,
The contents of cobalt, iron, and bismuth were changed, sodium and potassium were used as group C elements, and 6 g of titanium dioxide and 43 g of cerium dioxide were added, molded into a sphere, and closed and fired at 465°C under air circulation at 8 o'clock. Catalysts (10) and (11) were prepared in the same manner as catalyst (1) except that
and (12) were produced by yA.

触媒(10)、 (11)および(12)の組成は、酸
素を除いた原子比として次の通りであった。
The compositions of catalysts (10), (11) and (12) were as follows in atomic ratio excluding oxygen.

触媒(10) Mo+2W@、sB i +、sF e2c osN 
am、+に*、ssCes、sS  i +、zsT 
 i s、+sB &1.1触媒(II) Mo+2W@、11B i t、sF e2c osN
 as、+Ks、ssCes、sS i l 3sT 
 i 1I68 am、3触媒(12) Mo+2W@、sB  i  +、sF  e2c o
eN as、+Ks、−sCe@、sS i 1.3S
T i s、+sB as、s内径30mmの反応管に
原料ガス人口側から出口側に向かフで触媒(] 0”)
400d、触媒(]1)400dおよび触媒(12)1
000−を充填し、実施例1と同じ組成の混合ガスを空
間速度2000hr−I(STP>にて導入して反応を
行った0反応温度325℃でプロピレン転化率98.5
モル%、アクリル酸とアクロレインとの合計単流収率は
92.1モル%であった。結果を表1に示す。
Catalyst (10) Mo+2W@, sB i +, sF e2c osN
am, + to *, ssCes, sS i +, zsT
i s, +sB &1.1 catalyst (II) Mo+2W@, 11B it, sF e2c osN
as, +Ks, ssCes, sS i l 3sT
i 1I68 am, 3 catalysts (12) Mo+2W@, sB i +, sF e2co
eN as, +Ks, -sCe@, sS i 1.3S
T i s, +s B as, s In a reaction tube with an inner diameter of 30 mm, a catalyst (] 0") is placed from the raw material gas intake side to the outlet side.
400d, catalyst (] 1) 400d and catalyst (12) 1
000-, and a mixed gas having the same composition as in Example 1 was introduced at a space velocity of 2000 hr-I (STP>) to carry out the reaction.The propylene conversion rate was 98.5 at a reaction temperature of 325°C.
The total single flow yield of acrylic acid and acrolein was 92.1 mol%. The results are shown in Table 1.

比較例10 実施例4において、触媒(10)〜触媒(12)の代わ
りに触媒(10)のみを180〇−充填した以外は実施
例4と同様に反応を行った。結果を表1に示す。
Comparative Example 10 The reaction was carried out in the same manner as in Example 4, except that instead of catalysts (10) to (12), only catalyst (10) was charged. The results are shown in Table 1.

比較例11 実施例4において、触媒(1o)〜触媒(12)の代わ
りに触媒(11)のみを1800−充填した以外は実施
例4と同様に反応を行った。結果を表1に示す。
Comparative Example 11 The reaction was carried out in the same manner as in Example 4, except that instead of catalysts (1o) to (12), only catalyst (11) was charged at 1800 kg. The results are shown in Table 1.

比較例】2Comparative example] 2

Claims (3)

【特許請求の範囲】[Claims] (1)固定床多管型反応器を用いてプロピレンを分子状
酸素または分子状酸素含有ガスにより気相接触酸化して
アクロレインおよびアクリル酸を製造する方法において
、 (イ)触媒として、下記一般式( I ) Mo_aW_bBi_cFe_dA_eB_fC_gD
_hE_iO_x(式中、Moはモリブデン、Wはタン
グステン、Biはビスマス、Feは鉄、Aはニッケルお
よびコバルトから選ばれる少なくとも1種の元素、Bは
アルカリ金属およびタリウムから選ばれる少なくとも1
種の元素、Cはアルカリ土類金属から選ばれる少なくと
も1種の元素、Dはリン、テルル、アンチモン、スズ、
セリウム、鉛、ニオブ、マンガン、ヒ素および亜鉛から
選ばれる少なくとも1種の元素、Eはシリコン、アルミ
ニウム、チタニウムおよびジルコニウムから選ばれる少
なくとも1種の元素、Oは酸素を表し、またa、b、c
、d、e、f、g、h、iおよびxは、それぞれ、Mo
、W、Bi、Fe、A、B、C、D、EおよびOの原子
数を表し、a=12としたとき、b=0〜10、c=0
.1〜10、d=0.1〜20、e=2〜20、f=0
〜10、g=0.001〜10、h=0〜4、i=0〜
30、x=各々の元素の酸化状態によって定まる数値で
ある) で表される複合酸化物を使用し、 (ロ)各反応管内の触媒層を管軸方向に2層以上に分割
して設けた複数個の反応帯に、 (ハ)上記(イ)の触媒において、一般式 ( I )におけるC群元素の種類および/または量を変
更して調製した活性の異なる複数個の触媒を原料ガス入
口部から出口部に向かって活性がより高くなるように充
填することを特徴とするアクロレインおよびアクリル酸
の製造方法。
(1) In a method for producing acrolein and acrylic acid by gas phase catalytic oxidation of propylene with molecular oxygen or molecular oxygen-containing gas using a fixed bed multi-tubular reactor, (a) as a catalyst, the following general formula is used: (I) Mo_aW_bBi_cFe_dA_eB_fC_gD
_hE_iO_x (wherein Mo is molybdenum, W is tungsten, Bi is bismuth, Fe is iron, A is at least one element selected from nickel and cobalt, and B is at least one element selected from alkali metals and thallium).
seed element, C is at least one element selected from alkaline earth metals, D is phosphorus, tellurium, antimony, tin,
At least one element selected from cerium, lead, niobium, manganese, arsenic and zinc, E is at least one element selected from silicon, aluminum, titanium and zirconium, O represents oxygen, and a, b, c
, d, e, f, g, h, i and x are respectively Mo
, represents the number of atoms of W, Bi, Fe, A, B, C, D, E and O, and when a=12, b=0 to 10, c=0
.. 1-10, d=0.1-20, e=2-20, f=0
~10, g=0.001~10, h=0~4, i=0~
(b) The catalyst layer in each reaction tube was divided into two or more layers in the tube axis direction. (c) In the catalyst of (a) above, a plurality of catalysts with different activities prepared by changing the type and/or amount of group C elements in general formula (I) are placed in multiple reaction zones at the raw material gas inlet. 1. A method for producing acrolein and acrylic acid, the method comprising filling the acrolein and acrylic acid so that the activity becomes higher from the outlet toward the outlet.
(2)反応帯の数が2または3である請求項(1)に記
載のアクロレインおよびアクリル酸の製造方法。
(2) The method for producing acrolein and acrylic acid according to claim (1), wherein the number of reaction zones is 2 or 3.
(3)触媒が、外径が3〜10mm、長さが外径の0.
5〜2倍、長さ方向への貫通孔の内径が外径の0.1〜
0.7倍のリング状触媒である請求項(1)または(2
)に記載のアクロレインおよびアクリル酸の製造方法。
(3) The catalyst has an outer diameter of 3 to 10 mm and a length of 0.0 mm to the outer diameter.
5 to 2 times the inner diameter of the through hole in the length direction is 0.1 to the outer diameter
Claim (1) or (2) which is a ring-shaped catalyst of 0.7 times
) The method for producing acrolein and acrylic acid.
JP2094069A 1990-04-11 1990-04-11 Method for producing acrolein and acrylic acid Expired - Fee Related JP2809476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2094069A JP2809476B2 (en) 1990-04-11 1990-04-11 Method for producing acrolein and acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2094069A JP2809476B2 (en) 1990-04-11 1990-04-11 Method for producing acrolein and acrylic acid

Publications (2)

Publication Number Publication Date
JPH03294239A true JPH03294239A (en) 1991-12-25
JP2809476B2 JP2809476B2 (en) 1998-10-08

Family

ID=14100219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2094069A Expired - Fee Related JP2809476B2 (en) 1990-04-11 1990-04-11 Method for producing acrolein and acrylic acid

Country Status (1)

Country Link
JP (1) JP2809476B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024746A1 (en) * 1996-12-03 1998-06-11 Nippon Kayaku Kabushiki Kaisha Process for the preparation of acrolein and acrylic acid
EP1156027A1 (en) * 2000-05-19 2001-11-21 Nippon Shokubai Co., Ltd. A process for producing unsaturated aldehydes and unsaturated carboxylic acids
US6337424B1 (en) 2000-04-28 2002-01-08 Saudi Basic Industries Corporation Catalysts oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
US6395936B1 (en) 1999-03-10 2002-05-28 Basf Aktiengesellschaft Method for the catalytic gas phase oxidation of propene into acrolein
SG89327A1 (en) * 1999-05-13 2002-06-18 Nippon Catalytic Chem Ind Catalysts for production of unsaturated aldehyde and unsaturated carboxylic acid and a process for producing unsaturated aldehyde and unsaturated carboxylic acid using the catalysts
JP2002539101A (en) * 1999-03-10 2002-11-19 ビーエーエスエフ アクチェンゲゼルシャフト Method for catalytic gas phase oxidation of propene to acrylic acid
WO2003055835A1 (en) * 2001-12-27 2003-07-10 Mitsubishi Chemical Corporation Process for vapor-phase catalytic oxidation and process for production of (meth)acrolein or (meth)acrylic acid
WO2004009525A1 (en) 2002-07-18 2004-01-29 Basf Aktiengesellschaft Method for the heterogeneously-catalysed gas phase partial oxidation of at least one organic compound
US6960684B2 (en) 2002-03-29 2005-11-01 Nippon Shokubai Co., Ltd. Production process for unsaturated aldehyde
US6998504B1 (en) 1999-03-10 2006-02-14 Basf Aktiengesellschaft Method for the catalytic gas phase oxidation of propene into acrylic acid
US7045657B2 (en) 2002-04-03 2006-05-16 Nippon Shokubai Co., Ltd. Catalytic gas phase oxidation process
JP2010077087A (en) * 2008-09-26 2010-04-08 Toagosei Co Ltd Method for producing acrylic acid
DE102010048405A1 (en) 2010-10-15 2011-05-19 Basf Se Long term operation of heterogeneously catalyzed partial gas phase oxidation of propene to acrolein, comprises conducting reaction gas input mixture containing propene, molecular oxygen and inert gas, through solid catalyst bed
WO2012163931A1 (en) 2011-06-03 2012-12-06 Basf Se Aqueous solution comprising acrylic acid and the conjugate base thereof
WO2017010159A1 (en) * 2015-07-10 2017-01-19 日本化薬株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024746A1 (en) * 1996-12-03 1998-06-11 Nippon Kayaku Kabushiki Kaisha Process for the preparation of acrolein and acrylic acid
US6028220A (en) * 1996-12-03 2000-02-22 Nippon Kayaku Kabushiki Kaisha Producing acrolein and acrylic acid using a supported dual activity molybdenum, iron, and bismuth based catalyst in a fixed bed multitubular reactor
US6998504B1 (en) 1999-03-10 2006-02-14 Basf Aktiengesellschaft Method for the catalytic gas phase oxidation of propene into acrylic acid
US6395936B1 (en) 1999-03-10 2002-05-28 Basf Aktiengesellschaft Method for the catalytic gas phase oxidation of propene into acrolein
JP2002539101A (en) * 1999-03-10 2002-11-19 ビーエーエスエフ アクチェンゲゼルシャフト Method for catalytic gas phase oxidation of propene to acrylic acid
JP2014185164A (en) * 1999-03-10 2014-10-02 Basf Se Method for catalytic gas-phase oxidation of propene to acrylic acid
JP2011074085A (en) * 1999-03-10 2011-04-14 Basf Se Method for catalytic gas-phase oxidation of propene to acrylic acid
SG89327A1 (en) * 1999-05-13 2002-06-18 Nippon Catalytic Chem Ind Catalysts for production of unsaturated aldehyde and unsaturated carboxylic acid and a process for producing unsaturated aldehyde and unsaturated carboxylic acid using the catalysts
US6337424B1 (en) 2000-04-28 2002-01-08 Saudi Basic Industries Corporation Catalysts oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
US6620973B2 (en) 2000-04-28 2003-09-16 Saudi Basic Industries Corporation Catalysts for oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
EP1156027A1 (en) * 2000-05-19 2001-11-21 Nippon Shokubai Co., Ltd. A process for producing unsaturated aldehydes and unsaturated carboxylic acids
SG96216A1 (en) * 2000-05-19 2003-05-23 Nippon Catalytic Chem Ind A process for producing unsaturated aldehydes and unsaturated carboxylic acids
WO2003055835A1 (en) * 2001-12-27 2003-07-10 Mitsubishi Chemical Corporation Process for vapor-phase catalytic oxidation and process for production of (meth)acrolein or (meth)acrylic acid
EA008097B1 (en) * 2001-12-27 2007-02-27 Мицубиси Кемикал Корпорейшн Process for vapor-phase catalytic oxidation
US6960684B2 (en) 2002-03-29 2005-11-01 Nippon Shokubai Co., Ltd. Production process for unsaturated aldehyde
US7045657B2 (en) 2002-04-03 2006-05-16 Nippon Shokubai Co., Ltd. Catalytic gas phase oxidation process
WO2004009525A1 (en) 2002-07-18 2004-01-29 Basf Aktiengesellschaft Method for the heterogeneously-catalysed gas phase partial oxidation of at least one organic compound
JP2010077087A (en) * 2008-09-26 2010-04-08 Toagosei Co Ltd Method for producing acrylic acid
DE102010048405A1 (en) 2010-10-15 2011-05-19 Basf Se Long term operation of heterogeneously catalyzed partial gas phase oxidation of propene to acrolein, comprises conducting reaction gas input mixture containing propene, molecular oxygen and inert gas, through solid catalyst bed
WO2012049246A2 (en) 2010-10-15 2012-04-19 Basf Se Method for long-term operation of a heterogeneously catalyzed partial gas phase oxidation of propene to obtain acrolein
WO2012163931A1 (en) 2011-06-03 2012-12-06 Basf Se Aqueous solution comprising acrylic acid and the conjugate base thereof
US9150483B2 (en) 2011-06-03 2015-10-06 Basf Se Aqueous solution comprising acrylic acid and the conjugate base thereof
JPWO2017010159A1 (en) * 2015-07-10 2018-04-19 日本化薬株式会社 Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
WO2017010159A1 (en) * 2015-07-10 2017-01-19 日本化薬株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Also Published As

Publication number Publication date
JP2809476B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
US6563000B1 (en) Process for producing acrylic acid
US5276178A (en) Process for producing methacrolein and methacrylic acid
US7772442B2 (en) Method of producing unsaturated aldehyde and/or unsaturated acid
JP3775872B2 (en) Method for producing acrolein and acrylic acid
JP3537253B2 (en) Method for producing acrylic acid
JP4426069B2 (en) Acrylic acid production method
JP4318367B2 (en) Method for producing acrolein and acrylic acid
JPH03294239A (en) Production of acrolein and acrylic acid
JP2574948B2 (en) Method for producing methacrylic acid
JP5134745B2 (en) Acrylic acid production method
JPH083093A (en) Production of acrolein and acrylic acid
JP4058270B2 (en) Method for producing methacrylic acid
JP4497442B2 (en) Method for producing methacrolein and methacrylic acid
JP2001011010A (en) Production of methacrylic acid
JP2003171340A (en) Method for producing acrylic acid
JP2988660B2 (en) Method for producing methacrolein and methacrylic acid
JP2659839B2 (en) Method for producing methacrolein and methacrylic acid
JP2638241B2 (en) Method for producing methacrolein and methacrylic acid
JP4824871B2 (en) Method for producing acrolein and acrylic acid
JP2934267B2 (en) Method for producing methacrolein and methacrylic acid
JP2863509B2 (en) Method for producing methacrolein and methacrylic acid
JP2756160B2 (en) Method for producing methacrolein and methacrylic acid
JPH09194409A (en) Production of methacrolein and methacrylic acid
JP2000351744A (en) Method for producing methacrolein and methacrylic acid
JP2005162744A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees