JP2010077087A - Method for producing acrylic acid - Google Patents

Method for producing acrylic acid Download PDF

Info

Publication number
JP2010077087A
JP2010077087A JP2008249035A JP2008249035A JP2010077087A JP 2010077087 A JP2010077087 A JP 2010077087A JP 2008249035 A JP2008249035 A JP 2008249035A JP 2008249035 A JP2008249035 A JP 2008249035A JP 2010077087 A JP2010077087 A JP 2010077087A
Authority
JP
Japan
Prior art keywords
reaction
acrylic acid
temperature
gas
inert packing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008249035A
Other languages
Japanese (ja)
Other versions
JP5232584B2 (en
Inventor
Shinji Okada
慎司 岡田
Toshiaki Kaneko
利明 金子
Tatsuhiko Kuragami
竜彦 倉上
Hiroyoshi Soto
裕義 埜渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Nippon Kayaku Co Ltd
Original Assignee
Toagosei Co Ltd
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd, Nippon Kayaku Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2008249035A priority Critical patent/JP5232584B2/en
Publication of JP2010077087A publication Critical patent/JP2010077087A/en
Application granted granted Critical
Publication of JP5232584B2 publication Critical patent/JP5232584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing acrylic acid, which can be suitably used for suppressing formation and deposition of solids stemming from impurities or the like contained in a reaction feedstock gas to enable the pressure rise in the reaction tubes to be suppressed. <P>SOLUTION: The method for producing acrylic acid includes the following process: when acrolein contained in a reaction feedstock gas is subjected to a vapor-phase catalytic oxidation reaction using a multitubular fixed bed reactor, a catalytically inert packing material layer including an inert packing material(s) (e.g. ceramics based on silica and/or alumina) is formed on the upstream side of the vapor-phase oxidative catalyst layer; and the temperature at the boundary between the vapor-phase oxidative catalyst layer and the inert packing material layer is set within the temperature range between the set temperature of a heat transfer medium (e.g. a molten salt) being in contact with the outer side of the reaction tubes and a temperature lower than the set temperature by 20°C (preferably, lower than the set temperature by 5-15°C). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はアクリル酸の製造方法に関する。更に詳しくは、本発明は、アクリル酸製造時に、原料ガスに含有される不純物及び反応時に生成する副生物等に起因する化合物の生成、並びに充填された触媒及び反応管内壁等に化合物が付着、堆積して固形化することを抑えることができ、反応管内の圧力損失の増加及び温度上昇等を抑制することができるため、触媒の活性が低下することがなく、且つ反応の継続が容易であり、収率が高いアクリル酸の製造方法に関する。   The present invention relates to a method for producing acrylic acid. More specifically, the present invention relates to the production of a compound resulting from impurities contained in the raw material gas and by-products produced during the reaction during the production of acrylic acid, and the compound adhered to the packed catalyst and the inner wall of the reaction tube, Since it is possible to suppress the accumulation and solidification, the increase in pressure loss in the reaction tube and the increase in temperature can be suppressed, the activity of the catalyst does not decrease and the reaction can be continued easily. The present invention relates to a method for producing acrylic acid having a high yield.

プロピレンを出発原料とし、二段階の気相接触酸化反応によりアクリル酸を製造する方法において、原料ガスに含有される不純物、又は一段目のプロピレン酸化反応において生成する副生物等に起因して発生する化合物が、二段目の反応ガス入口部の気相酸化触媒層に堆積し、固形化することが知られている。そして、この固形物の付着、堆積により、反応管の圧力損失が増加し、反応収率が低下し、場合によっては、反応管が閉塞して、反応の継続が困難になることもあり、高収率維持の妨げとなることがある。   Generated due to impurities contained in the raw material gas or by-products generated in the first stage propylene oxidation reaction in a method of producing acrylic acid by propylene as a starting material by a two-stage gas phase catalytic oxidation reaction It is known that a compound is deposited and solidified in a gas phase oxidation catalyst layer at the second-stage reaction gas inlet. Then, due to the adhesion and deposition of this solid matter, the pressure loss of the reaction tube increases, the reaction yield decreases, and in some cases, the reaction tube may be blocked, making it difficult to continue the reaction. It may interfere with yield maintenance.

上記のような問題の発生を抑えるため、反応の継続により触媒層を含む反応器内のガス流路の各々の場所に付着し、堆積した固形の有機物及び炭化物等を、スチームを含む空気で処理することによって、その一部又は全部を除去する固体有機物の除去方法が知られている(例えば、特許文献1参照。)。また、固形有機物及び炭化物の除去のため、処理剤を配置し、少なくとも年1回以上の頻度で処理剤を交換する気相接触酸化方法が知られている(例えば、特許文献2参照。)。   In order to suppress the occurrence of the above-mentioned problems, the solid organic substances and carbides deposited on the gas passages in the reactor including the catalyst layer by the continuation of the reaction are treated with air containing steam. By doing so, a method of removing a solid organic substance that removes part or all of the same is known (see, for example, Patent Document 1). Further, there is known a gas phase catalytic oxidation method in which a treatment agent is arranged for removing solid organic substances and carbides, and the treatment agent is exchanged at least once a year (for example, see Patent Document 2).

特開平6−263689号公報Japanese Patent Application Laid-Open No. 6-263689 特開2008−24644号公報JP 2008-24644 A

しかし、特許文献1に記載された除去方法では、反応を停止して長時間高温で処理するため、触媒の性能及び寿命に悪影響を及ぼす懸念があり、触媒の使用経緯及び固形物の堆積の程度によって処理の効果が一定でない等の問題がある。また、特許文献2に記載された気相接触酸化方法によれば、高温処理による触媒性能に対する悪影響を回避できるという利点があるが、少なくとも年1回以上、好ましくは年2回以上処理剤の一部又は全量を交換する必要があり、処理剤の新品を再充填する場合は、少なからぬ費用が発生すること、及び処理剤の再生品を使用する場合は、熱処理及び溶剤を用いた洗浄等の煩雑な処理を必要とするなどの問題がある。   However, in the removal method described in Patent Document 1, since the reaction is stopped and the treatment is performed at a high temperature for a long time, there is a concern that the performance and life of the catalyst may be adversely affected. There is a problem that the effect of processing is not constant. Further, according to the gas phase catalytic oxidation method described in Patent Document 2, there is an advantage that the adverse effect on the catalyst performance due to the high temperature treatment can be avoided, but at least once a year, preferably twice a year. It is necessary to replace the entire part or the entire amount. When refilling with a new treatment agent, there is a considerable cost. When using a recycled treatment agent, heat treatment and cleaning with a solvent are required. There are problems such as requiring complicated processing.

本発明は上記の従来技術の問題点に鑑みてなされたものであり、アクリル酸製造時に、原料ガスに含有される不純物及び反応時に生成する副生物等に起因する化合物の生成、並びに充填された触媒及び反応管内壁等に化合物が付着、堆積し、固形化した有機物及び/又はその炭化物等の発生を抑えることができ、反応管内の圧力損失の増加等を抑制することができるため、触媒の活性が低下することがなく、且つ反応の継続が容易であり、収率が高いアクリル酸の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and at the time of acrylic acid production, the compounds contained in the raw material gas, the generation of compounds due to by-products generated during the reaction, and the like were filled. Since the compound adheres to and deposits on the catalyst and the inner wall of the reaction tube, and the generation of solidified organic substances and / or carbides thereof can be suppressed, and the increase in pressure loss in the reaction tube can be suppressed. It is an object of the present invention to provide a method for producing acrylic acid which does not decrease in activity, can be easily continued, and has a high yield.

本発明は以下のとおりである。
1.多管式固定床反応器を用いて、反応原料ガスに含有されるアクロレインを気相接触酸化反応させるアクリル酸の製造方法において、気相酸化触媒層の上流側に触媒活性を有さない不活性充填物が充填されてなる不活性充填物層を形成し、該気相酸化触媒層と該不活性充填物層との境界部の温度を、反応管の外部に接触している熱媒の設定温度から該設定温度を20℃下回る温度までの温度範囲とすることを特徴とするアクリル酸の製造方法。
2.上記反応管の空塔速度が0.6〜2.5m/秒であり、且つ実速度が1.0〜6.0m/秒である上記1.に記載のアクリル酸の製造方法。
3.一段目反応器でプロピレンを酸化させて上記アクロレインを生成させ、その後、該一段目反応器からの出口ガスを上記反応原料ガスとして二段目反応器に導入し、該二段目反応器の該反応原料ガスの入口部に上記不活性充填物層を形成する上記1.又は2.に記載のアクリル酸の製造方法。
4.上記不活性充填物としてシリカ及び/又はアルミナを主成分とするセラミックを用いる上記1.乃至3.のうちのいずれか1項に記載のアクリル酸の製造方法。
The present invention is as follows.
1. In the method for producing acrylic acid in which acrolein contained in the reaction raw material gas is subjected to gas phase catalytic oxidation reaction using a multitubular fixed bed reactor, the inertness having no catalytic activity upstream of the gas phase oxidation catalyst layer An inert packing layer formed by packing a packing is formed, and the temperature of the boundary between the gas phase oxidation catalyst layer and the inert packing layer is set to a heat medium in contact with the outside of the reaction tube. A method for producing acrylic acid, characterized in that the temperature ranges from a temperature to a temperature 20 ° C. below the set temperature.
2. The above-mentioned 1. in which the superficial velocity of the reaction tube is 0.6 to 2.5 m / sec and the actual velocity is 1.0 to 6.0 m / sec. A method for producing acrylic acid as described in 1. above.
3. Propylene is oxidized in the first stage reactor to produce the acrolein, and then the outlet gas from the first stage reactor is introduced into the second stage reactor as the reaction raw material gas, and the second stage reactor The above-mentioned 1. forming the inert packing layer at the inlet of the reaction raw material gas. Or 2. A method for producing acrylic acid as described in 1. above.
4). The above-mentioned 1. using a ceramic mainly composed of silica and / or alumina as the inert filler. To 3. The manufacturing method of acrylic acid of any one of these.

本発明のアクリル酸の製造方法によれば、反応原料ガスに含有されるアクロレインを気相接触酸化反応させてアクリル酸を製造する場合に、反応原料ガスの入口側に不活性充填物が充填されてなる不活性充填物層を形成し、この不活性充填物層と気相酸化触媒層との境界部の温度が、反応管の外部に接触している熱媒の設定温度から、この設定温度を少し下回る温度までの温度範囲となるようにすることで、反応原料ガス、反応原料ガスに含有される不純物、又は気相接触酸化反応により生成する副生物等に起因する化合物の生成、及び触媒粒子、反応管壁等に化合物が付着、堆積し、固形化することを十分に防止することができる。そのため、圧力損失の増加等を抑えることができ、反応の継続が容易であり、且つ高い収率でアクリル酸を製造することができる。
また、反応管の空塔速度が0.6〜2.5m/秒であり、且つ実速度が1.0〜6.0m/秒である場合は、化合物の生成、及び触媒等への付着、堆積、固形化をより十分に防止することができ、付着したときも、付着物が容易に剥離し、圧力損失の増加等が抑えられる。
更に、一段目反応器でプロピレンを酸化させてアクロレインを生成させ、その後、一段目反応器からの出口ガスを反応原料ガスとして二段目反応器に導入し、二段目反応器の反応原料ガスの入口部に不活性充填物層を形成する場合は、一段目反応器内で発生した不純物等を含有する反応原料ガスが二段目反応器に導入されるため、通常、二段目反応器内での化合物等の触媒等への付着、堆積、及び固形化を生じ易いが、本発明の方法であれば、化合物等の触媒等への付着、堆積、及び固形化、それによる圧力損失の増加等を十分に抑えることができ、反応の継続が容易であるとともに、高い収率でアクリル酸を製造することができる。
また、不活性充填物としてシリカ及び/又はアルミナを主成分とするセラミックを用いる場合は、化合物等の触媒等への付着、堆積、及び固形化を、より十分に抑えることができ、反応の継続がより容易であり、且つより高い収率でアクリル酸を製造することができる。
According to the method for producing acrylic acid of the present invention, when acrylic acid is produced by subjecting acrolein contained in a reaction raw material gas to a gas phase catalytic oxidation reaction, an inert filler is filled on the inlet side of the reaction raw material gas. The temperature of the boundary portion between the inert packing layer and the gas phase oxidation catalyst layer is determined from the set temperature of the heat medium in contact with the outside of the reaction tube. The reaction source gas, impurities contained in the reaction source gas, or by-product produced by the gas phase catalytic oxidation reaction, and the catalyst. It is possible to sufficiently prevent the compound from adhering to, depositing and solidifying on the particles, reaction tube wall and the like. Therefore, an increase in pressure loss or the like can be suppressed, the reaction can be easily continued, and acrylic acid can be produced with a high yield.
Further, when the superficial velocity of the reaction tube is 0.6 to 2.5 m / sec and the actual velocity is 1.0 to 6.0 m / sec, formation of a compound and adhesion to a catalyst, Accumulation and solidification can be prevented more sufficiently, and even when adhered, the adhered matter is easily peeled off, and an increase in pressure loss is suppressed.
Further, acrolein is generated by oxidizing propylene in the first stage reactor, and then the outlet gas from the first stage reactor is introduced into the second stage reactor as a reaction source gas, and the reaction source gas of the second stage reactor is introduced. When an inert packing layer is formed at the inlet of the reactor, the reaction raw material gas containing impurities generated in the first stage reactor is introduced into the second stage reactor. However, in the method of the present invention, adhesion, deposition, and solidification of a compound etc. on the catalyst, etc. An increase or the like can be sufficiently suppressed, the continuation of the reaction is easy, and acrylic acid can be produced in a high yield.
In addition, when a ceramic mainly composed of silica and / or alumina is used as an inert filler, adhesion, deposition, and solidification of a compound or the like to a catalyst or the like can be more sufficiently suppressed, and the reaction is continued. Is easier and acrylic acid can be produced in higher yields.

以下、本発明を詳しく説明する。
本発明のアクリル酸の製造方法は、多管式固定床反応器を用いて、反応原料ガスに含有されるアクロレインを気相接触酸化反応させるアクリル酸の製造方法において、気相酸化触媒層の上流側に触媒活性を有さない不活性充填物が充填されてなる不活性充填物層を形成し、気相酸化触媒層と不活性充填物層との境界部の温度を、反応管の外部に接触する熱媒の設定温度から、この設定温度を20℃下回る温度までの温度範囲とすることを特徴とする。
The present invention will be described in detail below.
The method for producing acrylic acid according to the present invention is a method for producing acrylic acid in which acrolein contained in a reaction raw material gas is subjected to a gas phase catalytic oxidation reaction using a multi-tube fixed bed reactor. Forming an inert packing layer filled with an inert packing having no catalytic activity on the side, and setting the temperature at the boundary between the gas phase oxidation catalyst layer and the inert packing layer to the outside of the reaction tube The temperature range is from the set temperature of the contacting heat medium to a temperature 20 ° C. below this set temperature.

上記「多管式固定床反応器」は特に限定されず、アクリル酸の製造に用いられる通常の反応器を使用することができる。この反応器を用いた気相接触酸化反応は、アクロレインを含有する反応原料ガスを反応器(反応管)に導入し、アクロレインを気相接触酸化反応させてアクリル酸を製造し、その後、生成したアクリル酸を回収し、他の成分、即ち、窒素を主成分とし、酸素及び未反応プロピレン等を含有する副生ガス(以下、オフガスと略記する。)を、所定の方法で無害化処理し、系外に排出する、所謂、単流通法でもよく、上記のオフガスの一部又は全部を反応原料ガスとして再使用する、所謂、オフガスリサイクル法でもよい。また、反応器の構造も特に限定されず、例えば、独立した一段目反応器と二段目反応器とを配管で接続した、所謂、タンデム反応器を採用することができる。   The “multi-tubular fixed bed reactor” is not particularly limited, and a normal reactor used for production of acrylic acid can be used. In the gas phase catalytic oxidation reaction using this reactor, a raw material gas containing acrolein was introduced into the reactor (reaction tube), and acrolein was subjected to a gas phase catalytic oxidation reaction to produce acrylic acid, and then produced. Acrylic acid is recovered, and other components, that is, a by-product gas containing nitrogen as a main component and containing oxygen, unreacted propylene, and the like (hereinafter abbreviated as off-gas) is detoxified by a predetermined method, A so-called single flow method for discharging out of the system may be used, or a so-called off-gas recycle method in which a part or all of the off-gas described above is reused as a reaction raw material gas. Also, the structure of the reactor is not particularly limited, and for example, a so-called tandem reactor in which an independent first-stage reactor and a second-stage reactor are connected by piping can be employed.

反応条件も特に限定されず、プロピレンを二段階の気相接触酸化反応により酸化させてアクリル酸とするときの一般的な反応条件を採用することができる。例えば、原料ガスであるプロピレン1〜12容量%、好ましくは4〜10容量%、分子状酸素3〜20容量%、好ましくは4〜18容量%、水蒸気0〜60容量%、好ましくは1.6〜50容量%、不活性ガス(窒素、二酸化炭素等)20〜80容量%、好ましくは30〜60容量%等からなる混合ガスを、一段目の反応管内を流通させ、酸化させてアクロレインを生成させる。   The reaction conditions are not particularly limited, and general reaction conditions when propylene is oxidized to acrylic acid by a two-stage gas phase catalytic oxidation reaction can be employed. For example, the raw material gas is propylene 1 to 12% by volume, preferably 4 to 10% by volume, molecular oxygen 3 to 20% by volume, preferably 4 to 18% by volume, water vapor 0 to 60% by volume, preferably 1.6. Acrolein is produced by circulating a mixed gas consisting of -50% by volume and 20-80% by volume, preferably 30-60% by volume of inert gas (nitrogen, carbon dioxide, etc.) through the first stage reaction tube. Let

その後、出口ガスに必要に応じて分子状酸素及び不活性ガス等を追加し、上記「反応原料ガス」として二段目反応管に供給し、反応原料ガスに含有されるアクロレインを酸化させてアクリル酸を製造することができる。反応温度は250℃〜450℃、特に250〜350℃、反応圧力は20〜100kPa、特に25〜80kPaとすることができ、混合ガス及び反応原料ガスの空間速度(ガス流量/充填した触媒のみかけの容量)は300〜5000hr−1とすることができる。 After that, molecular oxygen, inert gas, etc. are added to the outlet gas as necessary, and the above-mentioned “reaction raw material gas” is supplied to the second stage reaction tube to oxidize acrolein contained in the reaction raw material gas and Acid can be produced. The reaction temperature can be 250 to 450 ° C., particularly 250 to 350 ° C., the reaction pressure can be 20 to 100 kPa, particularly 25 to 80 kPa, and the space velocity of the mixed gas and the reaction raw material gas (gas flow rate / filled catalyst only is applied Capacity) can be 300-5000 hr −1 .

アクロレインを生成させるためのプロピレンの気相接触酸化反応には、この用途に用いられる一般的な触媒を特に限定されることなく使用することができる。この触媒としては、モリブデン、ビスマス及びニッケル等を必須成分として含有する複合金属酸化物を用いることができ、このような触媒としては、例えば、式(1)により表される組成を有する触媒が挙げられる。   In the gas phase catalytic oxidation reaction of propylene for producing acrolein, a general catalyst used for this purpose can be used without any particular limitation. As this catalyst, a composite metal oxide containing molybdenum, bismuth, nickel and the like as essential components can be used. Examples of such a catalyst include a catalyst having a composition represented by the formula (1). It is done.

Mo12BiNiCoFe (1)
[上記式(1)において、Mo、Bi、Ni、Co、Fe及びOは、それぞれモリブデン、ビスマス、ニッケル、コバルト、鉄及び酸素を表す。また、Yは錫、亜鉛、タングステン、クロム、マンガン、マグネシウム、セリウム、アンチモン及びチタンからなる群より選ばれる少なくとも1種の元素、Zはカリウム、ルビジウム、タリウム及びセシウムからなる群より選ばれる少なくとも1種の元素を表す。更に、a、b、c、d、e、f及びgは各々の元素の原子比を表し、モリブデン原子12に対して、aは0.1≦a≦7、b+cは0.5≦b+c≦20、dは0.5≦d≦8、eは0≦e≦2、fは0≦f≦1である。また、gはそれぞれの元素の酸化状態により定まる数値である。]
Mo 12 Bi a Ni b Co c Fe d Y e Z f O g (1)
[In the above formula (1), Mo, Bi, Ni, Co, Fe and O represent molybdenum, bismuth, nickel, cobalt, iron and oxygen, respectively. Y is at least one element selected from the group consisting of tin, zinc, tungsten, chromium, manganese, magnesium, cerium, antimony and titanium, and Z is at least one selected from the group consisting of potassium, rubidium, thallium and cesium. Represents a seed element. Further, a, b, c, d, e, f, and g represent atomic ratios of the respective elements. With respect to the molybdenum atom 12, a is 0.1 ≦ a ≦ 7, and b + c is 0.5 ≦ b + c ≦. 20, d is 0.5 ≦ d ≦ 8, e is 0 ≦ e ≦ 2, and f is 0 ≦ f ≦ 1. G is a numerical value determined by the oxidation state of each element. ]

上記「気相酸化触媒層」は、反応管に触媒を充填することにより形成される。この触媒としては、アクロレインの気相接触酸化反応の用途に用いられる一般的な触媒を特に限定されることなく使用することができる。この触媒としては、モリブデン、バナジウム、銅及びアンチモン等を必須成分として含有する複合金属酸化物を用いることができ、このような触媒としては、例えば、式(2)により表される組成を有する触媒が挙げられる。   The “gas phase oxidation catalyst layer” is formed by filling a reaction tube with a catalyst. As this catalyst, a general catalyst used for a gas phase catalytic oxidation reaction of acrolein can be used without any particular limitation. As this catalyst, a composite metal oxide containing molybdenum, vanadium, copper, antimony and the like as essential components can be used. As such a catalyst, for example, a catalyst having a composition represented by the formula (2) Is mentioned.

Mo12CuSb (2)
[上記式(2)において、Mo、V、W、Cu、Sb及びOは、それぞれモリブデン、バナジウム、タングステン、銅、アンチモン及び酸素を表す。また、Xはアルカリ金属及びタリウムからなる群より選ばれる少なくとも1種の元素、Yはマグネシウム、カルシウム、ストロンチウム、バリウム及び亜鉛からなる群より選ばれる少なくとも1種の元素、Zはニオブ、セリウム、スズ、クロム、マンガン、鉄、コバルト、サマリウム、ゲルマニウム、チタン及び砒素からなる群より選ばれる少なくとも1種の元素を表す。更に、h、i、j、k、l、m、n及びoは各々の元素の原子比を表し、モリブデン原子12に対して、hは0<h≦10、iは0≦i≦10、jは0<j≦6、kは0<k≦10、lは0≦l≦0.5、mは0≦m≦1、nは0≦n≦6である。また、oはそれぞれの元素の酸化状態により定まる数値である。]
Mo 12 V h W i Cu j Sb k X l Y m Z n O o (2)
[In the above formula (2), Mo, V, W, Cu, Sb and O represent molybdenum, vanadium, tungsten, copper, antimony and oxygen, respectively. X is at least one element selected from the group consisting of alkali metals and thallium, Y is at least one element selected from the group consisting of magnesium, calcium, strontium, barium and zinc, Z is niobium, cerium, tin Represents at least one element selected from the group consisting of chromium, manganese, iron, cobalt, samarium, germanium, titanium and arsenic. Furthermore, h, i, j, k, l, m, n, and o represent the atomic ratio of each element. For molybdenum atom 12, h is 0 <h ≦ 10, i is 0 ≦ i ≦ 10, j is 0 <j ≦ 6, k is 0 <k ≦ 10, l is 0 ≦ l ≦ 0.5, m is 0 ≦ m ≦ 1, and n is 0 ≦ n ≦ 6. Further, o is a numerical value determined by the oxidation state of each element. ]

触媒は、多管式固定床反応器において使用し易いように所定形状に成形される。この触媒の形状は特に限定されないが、例えば、球状、断面円形の扁平形状、円柱状、円筒状、角柱状等のいずれであってもよい。また、触媒の成形方法としては、打錠成形、押出成形、造粒機による成形等の各種の方法が挙げられる。   The catalyst is formed into a predetermined shape so that it can be easily used in a multitubular fixed bed reactor. The shape of the catalyst is not particularly limited, and may be any of a spherical shape, a flat shape with a circular cross section, a columnar shape, a cylindrical shape, a prismatic shape, and the like. Examples of the method for molding the catalyst include various methods such as tableting, extrusion, and granulation.

上記「不活性充填物層」は、反応管に不活性充填物を充填することにより形成される。上記「不活性充填物」は、気相接触酸化反応時にアクロレイン及びアクリル酸に対して実質的に反応活性を有さない物質であればよく、特に限定されない。この不活性充填物としては、各種金属元素の酸化物及び複合酸化物を用いることができる。酸化物としては、アルミナ(α−アルミナ等、研磨材であるアランダムでもよい。)、シリカ、ジルコニア、炭化ケイ素(研磨材であるカーボランダムでもよい。)等が挙げられる。また、複合酸化物としては、ケイ素/アルミニウム複合酸化物(ムライト)、ケイ素/チタン複合酸化物、ケイ素/ジルコニウム複合酸化物、アルミニウム/チタン複合酸化物、アルミニウム/ジルコニウム複合酸化物等が挙げられる。更に、不活性充填物としては、ステンレススチール、アルミニウム等の金属を用いることもできる。この不活性充填物としては、アルミナ、シリカ、ジルコニア等の酸化物、及びムライト等の複合酸化物が好ましく、アルミナ及び/又はシリカを主成分とする不活性充填物が特に好ましい。不活性充填物は1種のみ用いてもよく、2種以上を併用してもよい。
尚、上記「主成分」とは、不活性充填物の全量を100質量%とした場合に、アルミナ及びシリカの合計含有量が85質量%以上であることを意味する。
The “inert packing layer” is formed by filling the reaction tube with an inert packing. The “inert filler” is not particularly limited as long as it is a substance that has substantially no reaction activity with respect to acrolein and acrylic acid during the gas phase catalytic oxidation reaction. As the inert filler, oxides and composite oxides of various metal elements can be used. Examples of the oxide include alumina (α-alumina and the like, which may be an alundum which is an abrasive), silica, zirconia, silicon carbide (which may be a carborundum which is an abrasive) and the like. Examples of the composite oxide include silicon / aluminum composite oxide (mullite), silicon / titanium composite oxide, silicon / zirconium composite oxide, aluminum / titanium composite oxide, and aluminum / zirconium composite oxide. Furthermore, metals such as stainless steel and aluminum can be used as the inert filler. As the inert filler, oxides such as alumina, silica and zirconia, and composite oxides such as mullite are preferable, and inert fillers mainly composed of alumina and / or silica are particularly preferable. Only one inert filler may be used, or two or more inert fillers may be used in combination.
The above “main component” means that the total content of alumina and silica is 85% by mass or more when the total amount of the inert filler is 100% by mass.

不活性充填物の形状も特に限定されず、球状、リング状、線状、帯状、その他の形状等のいずれでもよいが、不活性充填物の入れ替え等における抜き出し時の作業性などを考慮すると球状であることが好ましい。また、不活性充填物の最大寸法は、気相接触酸化反応に用いる反応管の内径にもよるが、2〜10mmであることが好ましい。更に、不活性充填物層の空隙率[(充填層の空間部分の容積/充填層全体の容積)×100]は、30〜95%であることが好ましい。   The shape of the inert filler is not particularly limited, and may be any of a spherical shape, a ring shape, a linear shape, a strip shape, and other shapes. However, considering the workability at the time of extraction in replacement of the inert filler, etc., it is spherical. It is preferable that Moreover, although the maximum dimension of an inert packing is based also on the internal diameter of the reaction tube used for a gaseous-phase catalytic oxidation reaction, it is preferable that it is 2-10 mm. Furthermore, the porosity of the inert filler layer [(volume of the space portion of the filler layer / volume of the entire filler layer) × 100] is preferably 30 to 95%.

不活性充填物層は、気相酸化触媒層の上流側に形成され、配置される。この上流側とは、反応原料ガスが導入される反応管の入口側を意味し、不活性充填物層は、通常、鉛直方向に立設される反応管の上部(反応原料ガスの流れ方向がダウンフローになるように導入される場合)、又は下部(反応原料ガスの流れ方向がアップフローになるように導入される場合)に形成され、配置される。   The inert packing layer is formed and arranged on the upstream side of the gas phase oxidation catalyst layer. The upstream side means the inlet side of the reaction tube into which the reaction raw material gas is introduced, and the inert packing layer is usually an upper part of the reaction tube erected in the vertical direction (the flow direction of the reaction raw material gas is It is formed and arranged at the lower part (when introduced so that the flow direction of the reaction raw material gas becomes upflow).

本発明では、気相酸化触媒層と不活性充填物層との境界部の温度を、反応管の外部に接触する熱媒の設定温度から、この設定温度を20℃下回る温度までの温度範囲となるようにして気相接触酸化反応を継続する。この境界部の温度は、熱媒の設定温度を2〜18℃、特に5〜15℃下回る温度範囲であることが好ましい。境界部の温度を、熱媒の設定温度から、この設定温度を20℃下回る温度までの温度範囲となるように維持することにより、不活性充填物層が熱媒により加熱されて昇温し、反応原料ガスに含有される化合物等が、不活性充填物に付着、堆積し、固形化することなく、下流側の気相酸化触媒層に移送され、酸化反応の発熱によって熱媒の設定温度より高温になっている気相酸化触媒層において燃焼し、ガスとなって反応管から排出されると推定される。そのため、反応管内の圧力損失の増加を抑えることができ、安定な反応を長期に渡って容易に継続させることができ、高い収率でアクリル酸を製造することができる。   In the present invention, the temperature at the boundary between the gas phase oxidation catalyst layer and the inert packing layer is a temperature range from the set temperature of the heat medium contacting the outside of the reaction tube to a temperature 20 ° C. below this set temperature. In this way, the gas phase catalytic oxidation reaction is continued. It is preferable that the temperature of this boundary part is a temperature range which falls below the set temperature of the heat medium by 2 to 18 ° C, particularly 5 to 15 ° C. By maintaining the temperature of the boundary portion so as to be in the temperature range from the set temperature of the heat medium to a temperature that is 20 ° C. below this set temperature, the inert filler layer is heated by the heat medium and heated up, The compounds contained in the reaction raw material gas are transferred to the downstream gas phase oxidation catalyst layer without adhering to, depositing, and solidifying on the inert packing, and from the set temperature of the heat medium due to the heat generated by the oxidation reaction. It is presumed that the gas phase oxidation catalyst layer at a high temperature burns and becomes a gas and is discharged from the reaction tube. Therefore, an increase in pressure loss in the reaction tube can be suppressed, a stable reaction can be easily continued over a long period of time, and acrylic acid can be produced with a high yield.

反応管の外部に接触する熱媒は、反応管の内部を所定の反応温度に保持することができればよく、特に限定されない。例えば、反応温度が250〜450℃である場合、熱媒の温度も同様の温度範囲であることが好ましい。そのため、熱媒としては、使用温度範囲が広く、熱容量が大きく、比較的低粘度である溶融塩が用いられることが多い。この溶融塩は特に限定されないが、アルカリ溶融塩などを用いることができる。   The heat medium that contacts the outside of the reaction tube is not particularly limited as long as the inside of the reaction tube can be maintained at a predetermined reaction temperature. For example, when the reaction temperature is 250 to 450 ° C., the temperature of the heat medium is preferably in the same temperature range. Therefore, a molten salt having a wide use temperature range, a large heat capacity, and a relatively low viscosity is often used as the heat medium. Although this molten salt is not specifically limited, An alkali molten salt etc. can be used.

更に、この気相接触酸化反応では、反応管における空塔速度が0.6〜2.5m/秒に維持されることが好ましい。この空塔速度が0.6m/秒未満であると、不活性充填物に化合物等が付着、堆積し、固形化することがある。一方、空塔速度が2.5m/秒を越えると、触媒層の差圧が大きくなり、アクリル酸の収率が低下することがあり好ましくない。また、空塔速度が0.6〜2.5m/秒であり、且つ実速度が1.0〜6.0m/秒であることがより好ましい。この範囲の空塔速度及び実速度であれば、不活性充填物への化合物等の付着、堆積、固形化が十分に抑えられ、且つ気相接触酸化反応が容易に進行し、アクリル酸の収率をより向上させることができる。
尚、空塔速度及び実速度は、それぞれ式(3)、式(4)のように定義する。
空塔速度(m/秒)=反応管1本当たりの通過ガス流量(Nm/秒)
×(熱媒の設定温度(℃)+273.15)/273.15
×101.3/(反応器入口圧力(kPaG)+101.3)
÷反応管1本当たりの触媒充填断面積(m) (3)
実速度(m/秒)=空塔速度(m/秒)÷空隙率(%)×100 (4)
Furthermore, in this gas phase catalytic oxidation reaction, the superficial velocity in the reaction tube is preferably maintained at 0.6 to 2.5 m / sec. When the superficial velocity is less than 0.6 m / sec, a compound or the like may adhere to and deposit on the inert packing and solidify. On the other hand, when the superficial velocity exceeds 2.5 m / sec, the differential pressure of the catalyst layer increases and the yield of acrylic acid may decrease, which is not preferable. Moreover, it is more preferable that the superficial velocity is 0.6 to 2.5 m / sec and the actual velocity is 1.0 to 6.0 m / sec. If the superficial velocity and the actual velocity are within this range, the adhesion, deposition, and solidification of the compound or the like to the inert packing can be sufficiently suppressed, and the gas phase catalytic oxidation reaction can easily proceed, and the acrylic acid can be collected. The rate can be further improved.
Note that the superficial velocity and the actual velocity are defined as in Equation (3) and Equation (4), respectively.
Superficial velocity (m / sec) = Passing gas flow rate per reaction tube (Nm 3 / sec)
× (Set temperature of heat medium (° C.) + 273.15) /273.15
× 101.3 / (Reactor inlet pressure (kPaG) +101.3)
÷ Cross sectional area of catalyst per reaction tube (m 2 ) (3)
Actual speed (m / sec) = superficial velocity (m / sec) ÷ porosity (%) x 100 (4)

以下、本発明を実施例により具体的に説明する。
尚、以下の実施例、比較例における「部」は質量部を、「%」は特に断りのない限りは質量%を意味し、プロピレン転化率、アクリル酸収率は下記の式(5)、(6)のように定義する。
プロピレン転化率(モル%)=[(反応したプロピレンのモル数)/(供給したプロピレンのモル数)]×100 (5)
アクリル酸収率(モル%)=[(生成したアクリル酸のモル数)/(供給したプロピレンのモル数)]×100 (6)
Hereinafter, the present invention will be specifically described by way of examples.
In the following examples and comparative examples, “part” means part by mass, “%” means mass% unless otherwise specified, and propylene conversion rate and acrylic acid yield are the following formulas (5), It is defined as (6).
Propylene conversion rate (mol%) = [(mol number of reacted propylene) / (mol number of supplied propylene)] × 100 (5)
Acrylic acid yield (mol%) = [(mol number of generated acrylic acid) / (mol number of supplied propylene)] × 100 (6)

(1)プロピレン酸化触媒(1)の調製
蒸留水3000mlを加熱攪拌しながらモリブデン酸アンモニウム423.8gと硝酸カリウム2.02gを溶解して水溶液(A)を調製した。これとは別に、硝酸コバルト302.7g、硝酸ニッケル162.9g及び硝酸第二鉄145.4gを蒸留水1000mlに溶解して水溶液(B)を調製した。また、濃硝酸25mlを加えて酸性にした蒸留水200mlに硝酸ビスマス164.9gを溶解して水溶液(C)を調製した。その後、水溶液(B)と(C)とを混合し、この混合液を、水溶液(A)に激しく攪拌しながら滴下した。
(1) Preparation of propylene oxidation catalyst (1) Aqueous solution (A) was prepared by dissolving 423.8 g of ammonium molybdate and 2.02 g of potassium nitrate while heating and stirring 3000 ml of distilled water. Separately, 302.7 g of cobalt nitrate, 162.9 g of nickel nitrate, and 145.4 g of ferric nitrate were dissolved in 1000 ml of distilled water to prepare an aqueous solution (B). Further, 164.9 g of bismuth nitrate was dissolved in 200 ml of distilled water acidified by adding 25 ml of concentrated nitric acid to prepare an aqueous solution (C). Then, aqueous solution (B) and (C) were mixed and this liquid mixture was dripped, stirring vigorously to aqueous solution (A).

次いで、生成した懸濁液をスプレードライヤを用いて乾燥させ、440℃で3時間予備焼成し、予備焼成粉末570gを作製した。その後、この予備焼成粉末200gと、成形助剤である結晶性セルロース10gとを混合して混合物を得た。次いで、平均粒径3.5mmのアルミナ担体300gを転動造粒器に投入し、その後、上記混合物と、バインダである33%グリセリン水溶液90gとを同時に添加し、担体に混合物を担持させた担持率40%の活性成分担持粒子を得た。次いで、この活性成分担持粒子を室温で15時間乾燥し、その後、空気流通下、560℃で5時間焼成してプロピレン酸化触媒(1)を調製した。得られた触媒の平均粒径は4.0mmであり、触媒活性成分の酸素を除いた組成は、原子比でMo;12、Bi;1.7、Ni;2.8、Fe;1.8、Co;5.2、K;0.1であった。   Next, the resulting suspension was dried using a spray dryer and pre-baked at 440 ° C. for 3 hours to prepare 570 g of pre-baked powder. Thereafter, 200 g of this pre-fired powder and 10 g of crystalline cellulose as a molding aid were mixed to obtain a mixture. Next, 300 g of an alumina carrier having an average particle size of 3.5 mm was put into a rolling granulator, and then the above mixture and 90 g of a 33% glycerin aqueous solution as a binder were added simultaneously to carry the mixture on the carrier. 40% active ingredient-supported particles were obtained. Next, the active component-carrying particles were dried at room temperature for 15 hours, and then calcined at 560 ° C. for 5 hours under air flow to prepare a propylene oxidation catalyst (1). The obtained catalyst had an average particle size of 4.0 mm, and the composition excluding oxygen as a catalytically active component had an atomic ratio of Mo; 12, Bi; 1.7, Ni; 2.8, Fe; 1.8. , Co; 5.2, K; 0.1.

(2)プロピレン酸化触媒(2)の調製
上記プロピレン酸化触媒(1)の調製において得られた予備焼成粉末300gと、成形助剤である結晶性セルロース15gとを混合して混合物を得た。その後、平均粒径3.5mmのアルミナ担体300gを転動造粒器に投入し、次いで、上記混合物と、バインダである33%グリセリン水溶液135gとを同時に添加し、担体に混合物を担持させた担持率50%の活性成分担持粒子を得た。その後、この活性成分担持粒子を室温で15時間乾燥し、次いで、空気流通下、520℃で5時間焼成しプロピレン酸化触媒(2)を調製した。得られた触媒の平均粒径は4.1mmであり、触媒活性成分の酸素を除いた組成は、原子比でMo;12、Bi;1.7、Ni;2.8、Fe;1.8、Co;5.2、K;0.1であった。
(2) Preparation of propylene oxidation catalyst (2) 300 g of the pre-fired powder obtained in the preparation of the propylene oxidation catalyst (1) and 15 g of crystalline cellulose as a molding aid were mixed to obtain a mixture. Thereafter, 300 g of an alumina carrier having an average particle diameter of 3.5 mm was put into a rolling granulator, and then the above mixture and 135 g of 33% glycerin aqueous solution as a binder were added simultaneously to carry the mixture on the carrier. Active component-carrying particles with a rate of 50% were obtained. Thereafter, the active component-carrying particles were dried at room temperature for 15 hours, and then calcined at 520 ° C. for 5 hours under air flow to prepare a propylene oxidation catalyst (2). The average particle diameter of the obtained catalyst was 4.1 mm, and the composition excluding oxygen of the catalytically active component was Mo: 12, Bi; 1.7, Ni; 2.8, Fe; 1.8 in atomic ratio. , Co; 5.2, K; 0.1.

(3)アクロレイン酸化触媒の調製
撹拌モーターを備える調合槽(A)に、95℃の脱イオン水600部とタングステン酸アンモニウム16.26部とを加え、撹拌した。その後、メタバナジン酸アンモニウム18.22部及びモリブデン酸アンモニウム110部を溶解させ、次いで、酢酸アンチモン7.75部を加えた。一方、脱イオン水96部が投入された調合槽(B)に、硫酸銅15.56部を溶解させ、この溶液を調合槽(A)に加えてスラリー溶液を得た。次いで、スプレードライヤの出口温度が約100℃になるように送液量を調整してスラリー溶液を乾燥させた。
(3) Preparation of Acrolein Oxidation Catalyst 600 parts of deionized water at 95 ° C. and 16.26 parts of ammonium tungstate were added to a preparation tank (A) equipped with a stirring motor and stirred. Thereafter, 18.22 parts of ammonium metavanadate and 110 parts of ammonium molybdate were dissolved, and then 7.75 parts of antimony acetate was added. On the other hand, 15.56 parts of copper sulfate was dissolved in a preparation tank (B) charged with 96 parts of deionized water, and this solution was added to the preparation tank (A) to obtain a slurry solution. Subsequently, the amount of liquid feeding was adjusted so that the outlet temperature of a spray dryer might be about 100 degreeC, and the slurry solution was dried.

その後、得られた顆粒を加熱炉に収容し、加熱炉の温度を室温から毎時約60℃で390℃まで昇温させ、390℃で約5時間予備焼成した。次いで、この予備焼成顆粒をボールミルで粉砕して予備焼成粉体とし、転動造粒機を用いて、気孔率40容量%、吸水率19.8%、平均粒径4mmのアランダム担体36部に、グリセリンの20%水溶液2.4部を散布しながら、予備焼成粉体12部を担持させた。その後、得られた成形品を加熱炉の温度を室温より毎時約70℃で390℃まで昇温させ、390℃で5時間焼成してアクロレイン酸化触媒を調製した。得られたアクロレイン酸化触媒の活性成分の酸素を除いた組成は、原子比でMo;12、V;3、W;1.2、Cu;1.2、Sb;0.5であった。また、この触媒の摩損度は、0.1%以下であった。   Then, the obtained granule was accommodated in a heating furnace, the temperature of the heating furnace was increased from room temperature to 390 ° C. at about 60 ° C./hour, and pre-baked at 390 ° C. for about 5 hours. Next, this pre-fired granule was pulverized with a ball mill to obtain a pre-fired powder, and using a tumbling granulator, 36 parts of an alundum carrier having a porosity of 40 volume%, a water absorption of 19.8%, and an average particle diameter of 4 mm. Then, 12 parts of pre-fired powder was supported while 2.4 parts of a 20% aqueous solution of glycerin was sprayed. Thereafter, the temperature of the heating furnace was raised from room temperature to about 390 ° C. at about 70 ° C./hour, and the resulting molded product was calcined at 390 ° C. for 5 hours to prepare an acrolein oxidation catalyst. The composition of the obtained acrolein oxidation catalyst excluding oxygen as an active component was Mo: 12, V; 3, W; 1.2, Cu; 1.2, Sb; Further, the friability of this catalyst was 0.1% or less.

実施例1
出口部にアフタークーラーが付設されたプロピレン酸化用の一段目反応器の反応管(内径25mm、長さ460mm)に、プロピレン酸化触媒(2)を250cm高さに充填し、更にその上にプロピレン酸化触媒(1)を100cm高さに充填した。これにより、一段目のプロピレン酸化触媒層の合計長さは350cmになる。一方、アクロレイン酸化用の二段目反応器の反応管(内径27mm、長さ350cm)に、アクロレイン酸化触媒を300cm高さに充填し、更にその上に球状セラミック充填物を30cm高さに充填した。これにより二段目反応器の反応管における合計充填長さは330cmになる。
Example 1
A propylene oxidation catalyst (2) is filled to a height of 250 cm in a reaction tube (inner diameter 25 mm, length 460 mm) of a first stage reactor for propylene oxidation having an aftercooler attached to the outlet, and further propylene oxidation is performed thereon. Catalyst (1) was packed to a height of 100 cm. As a result, the total length of the first stage propylene oxidation catalyst layer is 350 cm. On the other hand, the reaction tube (inner diameter 27 mm, length 350 cm) of the second stage reactor for acrolein oxidation was filled with an acrolein oxidation catalyst at a height of 300 cm, and further a spherical ceramic packing was filled at a height of 30 cm. . As a result, the total filling length in the reaction tube of the second stage reactor is 330 cm.

上記のようにして触媒等を充填した後、二段目反応器に導入される反応原料ガスの流れ方向がダウンフローになるように一段目反応器を接続し、モル比で、プロピレン/空気/水蒸気=1/8.1(酸素に換算すると1.7になる。)/3の組成の原料ガスを、二段目触媒充填量に対する空間速度1210h−1の条件で導入し、反応させた。反応開始時点での一段目反応浴の熱媒の温度は335℃、二段目反応浴の熱媒の温度は267℃であった。また、二段目反応器の反応管における気相酸化触媒層と不活性充填物層との境界部の温度は259〜262℃であり、熱媒の設定温度(267℃)より5〜8℃低かった。更に、二段目反応器の入口圧力は52kPa、二段目反応器の出口圧力は34kPaであった。 After filling the catalyst and the like as described above, the first-stage reactor is connected so that the flow direction of the reaction raw material gas introduced into the second-stage reactor is downflow, and in terms of molar ratio, propylene / air / A raw material gas having a composition of water vapor = 1 / 8.1 (converted to oxygen becomes 1.7) / 3 was introduced and reacted under the condition of a space velocity of 1210 h −1 with respect to the second stage catalyst charge. The temperature of the heating medium in the first stage reaction bath at the start of the reaction was 335 ° C., and the temperature of the heating medium in the second stage reaction bath was 267 ° C. The temperature at the boundary between the gas phase oxidation catalyst layer and the inert packing layer in the reaction tube of the second-stage reactor is 259 to 262 ° C., and 5 to 8 ° C. from the set temperature (267 ° C.) of the heat medium. It was low. Further, the inlet pressure of the second stage reactor was 52 kPa, and the outlet pressure of the second stage reactor was 34 kPa.

上記のようにして反応させたときの反応成績は、プロピレン転化率97.4%、未反応アクロレイン1.05%、アクリル酸収率87.5%であった。また、16000時間反応を継続した後の一段目反応浴の熱媒の温度は343℃、二段目反応浴の熱媒の温度は277℃であった。また、二段目反応器の反応管における気相酸化触媒層と不活性充填物層との境界部の温度は267〜270℃であり、熱媒の設定温度(277℃)より7〜10℃低かった。更に、二段目反応器の入口圧力は61kPa、二段目反応器の出口圧力は34kPaであった。このように、長時間反応を継続しても、反応温度の大きな上昇はなく、且つ大きな圧力損失の増加もなかった。また、この長時間反応継続後の反応成績は、プロピレン転化率98.4%、未反応アクロレイン0.55%、アクリル酸収率86.5%であった。このように、長時間反応を継続した後も、反応成績の低下は僅かであり安定な反応を継続させることができた。   The reaction results when the reaction was carried out as described above were propylene conversion rate 97.4%, unreacted acrolein 1.05%, and acrylic acid yield 87.5%. The temperature of the heating medium in the first stage reaction bath after continuing the reaction for 16000 hours was 343 ° C., and the temperature of the heating medium in the second stage reaction bath was 277 ° C. Further, the temperature at the boundary between the gas phase oxidation catalyst layer and the inert packing layer in the reaction tube of the second stage reactor is 267 to 270 ° C., which is 7 to 10 ° C. from the set temperature (277 ° C.) of the heat medium. It was low. Furthermore, the inlet pressure of the second stage reactor was 61 kPa, and the outlet pressure of the second stage reactor was 34 kPa. As described above, even if the reaction was continued for a long time, the reaction temperature did not increase significantly and the pressure loss did not increase significantly. The reaction results after continuing the reaction for a long time were a propylene conversion of 98.4%, an unreacted acrolein of 0.55%, and an acrylic acid yield of 86.5%. As described above, even after the reaction was continued for a long time, a decrease in the reaction result was slight and a stable reaction could be continued.

実施例2
アクロレイン酸化用反応器の反応管(内径27mm、長さ350cm)に、球状セラミック充填物を30cm高さに充填し、更にその上にアクロレイン酸化触媒を300cm高さに充填した。これにより、二段目反応器の反応管における合計充填長さは330cmになる。その後、アクロレイン酸化反応器に導入される反応原料ガスがアップフローになるように接続した他は、実施例1と同様にして反応させた。
Example 2
The reaction tube (inner diameter: 27 mm, length: 350 cm) of the reactor for acrolein oxidation was filled with a spherical ceramic filler at a height of 30 cm, and further, an acrolein oxidation catalyst was filled at a height of 300 cm. As a result, the total filling length in the reaction tube of the second stage reactor is 330 cm. Thereafter, the reaction was conducted in the same manner as in Example 1 except that the reaction raw material gas introduced into the acrolein oxidation reactor was connected so as to be up-flowed.

上記の反応では、反応開始時点での一段目反応浴の熱媒の温度は338℃、二段目反応浴の熱媒の温度は270℃であった。また、二段目反応器の反応管における気相酸化触媒層と不活性充填物層との境界部の温度は260〜264℃であり、熱媒の設定温度(270℃)より6〜10℃低かった。更に、二段目反応器の入口圧力は50kPa、二段目反応器の出口圧力は34kPaであった。   In the above reaction, the temperature of the heating medium in the first stage reaction bath at the start of the reaction was 338 ° C., and the temperature of the heating medium in the second stage reaction bath was 270 ° C. The temperature at the boundary between the gas phase oxidation catalyst layer and the inert packing layer in the reaction tube of the second stage reactor is 260 to 264 ° C., and 6 to 10 ° C. from the set temperature (270 ° C.) of the heat medium. It was low. Furthermore, the inlet pressure of the second stage reactor was 50 kPa, and the outlet pressure of the second stage reactor was 34 kPa.

上記のようにして反応させたときの反応成績は、プロピレン転化率97.6%、未反応アクロレイン0.70%、アクリル酸収率87.7%であった。また、16000時間反応を継続した後の一段目反応浴の熱媒の温度は344℃、二段目反応浴の熱媒の温度は277℃であった。また、二段目反応器の反応管における気相酸化触媒層と不活性充填物層との境界部の温度は266〜270℃であり、熱媒の設定温度(277℃)より7〜11℃低かった。更に、二段目反応器の入口圧力は58kPa、二段目反応器の出口圧力は34kPaであった。このように、長時間反応を継続しても、反応温度の大きな上昇はなく、且つ大きな圧力損失の増加もなかった。また、この長時間反応継続後の反応成績は、プロピレン転化率98.5%、未反応アクロレイン0.62%、アクリル酸収率86.5%であった。このように、長時間反応を継続した後も、反応成績の低下は僅かであり安定な反応を継続させることができた。   The reaction results when the reaction was carried out as described above were propylene conversion 97.6%, unreacted acrolein 0.70%, and acrylic acid yield 87.7%. The temperature of the heating medium in the first stage reaction bath after continuing the reaction for 16000 hours was 344 ° C., and the temperature of the heating medium in the second stage reaction bath was 277 ° C. The temperature at the boundary between the gas phase oxidation catalyst layer and the inert packing layer in the reaction tube of the second stage reactor is 266 to 270 ° C., and 7 to 11 ° C. from the set temperature (277 ° C.) of the heat medium. It was low. Furthermore, the inlet pressure of the second stage reactor was 58 kPa, and the outlet pressure of the second stage reactor was 34 kPa. As described above, even if the reaction was continued for a long time, the reaction temperature did not increase significantly and the pressure loss did not increase significantly. The reaction results after the long-time reaction were as follows: propylene conversion 98.5%, unreacted acrolein 0.62%, acrylic acid yield 86.5%. As described above, even after the reaction was continued for a long time, a decrease in the reaction result was slight and a stable reaction could be continued.

本発明は、プロピレンを出発原料とし、二段階の酸化反応によりアクリル酸を製造する場合に、反応器の形態、触媒の種類、温度、圧力等の反応条件などにかかわりなく、利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used regardless of reaction conditions such as the form of a reactor, the type of catalyst, temperature, pressure, etc., when propylene is used as a starting material to produce acrylic acid by a two-stage oxidation reaction. .

Claims (4)

多管式固定床反応器を用いて、反応原料ガスに含有されるアクロレインを気相接触酸化反応させるアクリル酸の製造方法において、
気相酸化触媒層の上流側に触媒活性を有さない不活性充填物が充填されてなる不活性充填物層を形成し、該気相酸化触媒層と該不活性充填物層との境界部の温度を、反応管の外部に接触している熱媒の設定温度から該設定温度を20℃下回る温度までの温度範囲とすることを特徴とするアクリル酸の製造方法。
In a method for producing acrylic acid, in which acrolein contained in a reaction raw material gas is subjected to a gas phase catalytic oxidation reaction using a multitubular fixed bed reactor,
Forming an inert packing layer filled with an inert packing having no catalytic activity on the upstream side of the gas phase oxidation catalyst layer, and a boundary portion between the gas phase oxidation catalyst layer and the inert packing layer; The acrylic acid is produced in a temperature range from the set temperature of the heat medium in contact with the outside of the reaction tube to a temperature 20 ° C. below the set temperature.
上記反応管における空塔速度が0.6〜2.5m/秒であり、且つ実速度が1.0〜6.0m/秒である請求項1に記載のアクリル酸の製造方法。   The method for producing acrylic acid according to claim 1, wherein a superficial velocity in the reaction tube is 0.6 to 2.5 m / sec and an actual velocity is 1.0 to 6.0 m / sec. 一段目反応器でプロピレンを酸化させて上記アクロレインを生成させ、その後、該一段目反応器からの出口ガスを上記反応原料ガスとして二段目反応器に導入し、該二段目反応器の該反応原料ガスの入口部に上記不活性充填物層を形成する請求項1又は2に記載のアクリル酸の製造方法。   Propylene is oxidized in the first stage reactor to produce the acrolein, and then the outlet gas from the first stage reactor is introduced into the second stage reactor as the reaction raw material gas, and the second stage reactor The method for producing acrylic acid according to claim 1 or 2, wherein the inert packing layer is formed at the inlet of the reaction raw material gas. 上記不活性充填物としてシリカ及び/又はアルミナを主成分とするセラミックを用いる請求項1乃至3のうちのいずれか1項に記載のアクリル酸の製造方法。   The method for producing acrylic acid according to any one of claims 1 to 3, wherein a ceramic mainly composed of silica and / or alumina is used as the inert filler.
JP2008249035A 2008-09-26 2008-09-26 Acrylic acid production method Active JP5232584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008249035A JP5232584B2 (en) 2008-09-26 2008-09-26 Acrylic acid production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008249035A JP5232584B2 (en) 2008-09-26 2008-09-26 Acrylic acid production method

Publications (2)

Publication Number Publication Date
JP2010077087A true JP2010077087A (en) 2010-04-08
JP5232584B2 JP5232584B2 (en) 2013-07-10

Family

ID=42207955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008249035A Active JP5232584B2 (en) 2008-09-26 2008-09-26 Acrylic acid production method

Country Status (1)

Country Link
JP (1) JP5232584B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077088A (en) * 2008-09-26 2010-04-08 Nippon Kayaku Co Ltd Method for producing methacrylic acid
JP2018529515A (en) * 2015-09-14 2018-10-11 ノヴァ ケミカルズ(アンテルナショナル)ソシエテ アノニム Heat dissipating diluent in a fixed bed reactor.
US10857525B2 (en) 2013-05-24 2020-12-08 Lg Chem, Ltd. Catalyst for preparing acrolein and acrylic acid, and preparation method thereof
WO2024080203A1 (en) * 2022-10-12 2024-04-18 日本化薬株式会社 Method for producing unsaturated aldehyde, and apparatus for producing unsaturated aldehyde
WO2024080208A1 (en) * 2022-10-12 2024-04-18 日本化薬株式会社 Method for producing unsaturated aldehyde and device for producing unsaturated aldehyde

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294239A (en) * 1990-04-11 1991-12-25 Nippon Shokubai Co Ltd Production of acrolein and acrylic acid
JPH083093A (en) * 1994-06-20 1996-01-09 Sumitomo Chem Co Ltd Production of acrolein and acrylic acid
JPH09194409A (en) * 1996-12-12 1997-07-29 Nippon Shokubai Co Ltd Production of methacrolein and methacrylic acid
JPH09202741A (en) * 1996-12-12 1997-08-05 Nippon Shokubai Co Ltd Production of methacrolein and methacrylic acid
JPH11130722A (en) * 1997-10-27 1999-05-18 Nippon Shokubai Co Ltd Production of acrylic acid
WO2006091005A1 (en) * 2005-02-25 2006-08-31 Lg Chem, Ltd. Method of producing unsaturated aldehyde and/or unsaturated acid
JP2007523054A (en) * 2003-12-24 2007-08-16 エルジー・ケム・リミテッド Process for producing unsaturated acids with improved thermal control system in fixed bed catalytic oxidation reactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294239A (en) * 1990-04-11 1991-12-25 Nippon Shokubai Co Ltd Production of acrolein and acrylic acid
JPH083093A (en) * 1994-06-20 1996-01-09 Sumitomo Chem Co Ltd Production of acrolein and acrylic acid
JPH09194409A (en) * 1996-12-12 1997-07-29 Nippon Shokubai Co Ltd Production of methacrolein and methacrylic acid
JPH09202741A (en) * 1996-12-12 1997-08-05 Nippon Shokubai Co Ltd Production of methacrolein and methacrylic acid
JPH11130722A (en) * 1997-10-27 1999-05-18 Nippon Shokubai Co Ltd Production of acrylic acid
JP2007523054A (en) * 2003-12-24 2007-08-16 エルジー・ケム・リミテッド Process for producing unsaturated acids with improved thermal control system in fixed bed catalytic oxidation reactor
WO2006091005A1 (en) * 2005-02-25 2006-08-31 Lg Chem, Ltd. Method of producing unsaturated aldehyde and/or unsaturated acid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077088A (en) * 2008-09-26 2010-04-08 Nippon Kayaku Co Ltd Method for producing methacrylic acid
US10857525B2 (en) 2013-05-24 2020-12-08 Lg Chem, Ltd. Catalyst for preparing acrolein and acrylic acid, and preparation method thereof
JP2018529515A (en) * 2015-09-14 2018-10-11 ノヴァ ケミカルズ(アンテルナショナル)ソシエテ アノニム Heat dissipating diluent in a fixed bed reactor.
WO2024080203A1 (en) * 2022-10-12 2024-04-18 日本化薬株式会社 Method for producing unsaturated aldehyde, and apparatus for producing unsaturated aldehyde
WO2024080208A1 (en) * 2022-10-12 2024-04-18 日本化薬株式会社 Method for producing unsaturated aldehyde and device for producing unsaturated aldehyde

Also Published As

Publication number Publication date
JP5232584B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
KR100590135B1 (en) Method for the Catalytic Gas Phase Oxidation of Propene Into Acrylic Acid
US6395936B1 (en) Method for the catalytic gas phase oxidation of propene into acrolein
JP5845337B2 (en) Method for producing acrylic acid using a fixed bed multitubular reactor
US7132384B2 (en) Process for producing composite oxide catalyst
KR101115085B1 (en) Long-Life Method For Heterogeneously-Catalysed Gas Phase Partial Oxidation Of Propene Into Acrylic Acid
JP5192619B2 (en) Catalytic gas phase oxidation of propene to acrylic acid
TWI378916B (en) Process for heterogeneously catalyzed partial gas phase oxidation of propylene to acrylic acid
KR100626131B1 (en) A process for producing acrylic acid
JP4677527B2 (en) A method for long-term operation of gas phase partial oxidation with heterogeneous catalysts that generate acrolein from propene
JP5940045B2 (en) Process for heterogeneously catalyzed partial gas phase oxidation of propylene to form acrylic acid
US7211692B2 (en) Long-term operation of a heterogeneously catalyzed gas phase partial oxidation of propene to acrylic acid
JP5678476B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JPWO2009017074A1 (en) Method for producing acrylic acid by two-stage catalytic gas phase oxidation
JP5232584B2 (en) Acrylic acid production method
JP5450591B2 (en) Method for producing oxidized organic compound
KR101265357B1 (en) Method for the production of at least one organic target compound by means of heterogeneously catalyzed partial gas phase oxidation
WO2020203266A1 (en) Method for producing unsaturated aldehyde
US20050096487A1 (en) Long-term operation of a heterogeneously catalyzed gas phase partial oxidation of propene to acrolein
JP2003171340A (en) Method for producing acrylic acid
JP5314983B2 (en) Method for producing methacrylic acid
CN108884006B (en) Restarting method
JP5171031B2 (en) Reactor for catalytic gas phase oxidation and method for producing acrylic acid using the same
JP2010241700A (en) Method for producing acrylic acid
JP2006218434A (en) Method for re-filling with molded body
JP2006521317A (en) Heterogeneous catalytic partial gas phase oxidation of propene to acrolein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5232584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250