JPH0329349A - Material for ceramic substrate - Google Patents

Material for ceramic substrate

Info

Publication number
JPH0329349A
JPH0329349A JP1163549A JP16354989A JPH0329349A JP H0329349 A JPH0329349 A JP H0329349A JP 1163549 A JP1163549 A JP 1163549A JP 16354989 A JP16354989 A JP 16354989A JP H0329349 A JPH0329349 A JP H0329349A
Authority
JP
Japan
Prior art keywords
powder
glass
weight
zro2
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1163549A
Other languages
Japanese (ja)
Other versions
JP2872273B2 (en
Inventor
Kiichi Yoshiara
喜市 吉新
Kenji Toshida
賢二 利田
Isao Kitamura
北村 勲
Koji Yamada
浩嗣 山田
Yoshikazu Uchiumi
良和 内海
Masatomi Okumura
奥村 正富
Kiyoshi Saito
清 斉藤
Mitsuhiro Harima
播磨 三弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1163549A priority Critical patent/JP2872273B2/en
Publication of JPH0329349A publication Critical patent/JPH0329349A/en
Application granted granted Critical
Publication of JP2872273B2 publication Critical patent/JP2872273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To execute a sintering operation in the air or in a reducing atmosphere at 850 to 950 deg.C and to enhance an acid-resistant property and an alkali- resistant property by a method wherein a raw-material powder composed of a specific inorganic powder and of a glass powder containing ZrO2 is sintered. CONSTITUTION:A mixture composed of the following is sintered: 20 to 65wt.% of at least one kind of inorganic powder which is selected from a group of an alumina powder, a mullite powder, a quartz powder and a cordierite powder; 80 to 35wt.% of a glass powder containing ZrO2, or preferably a glass powder whose main components are SiO2, Al2O3, B2O3, MgO, CaO, BaO and ZrO2. That is to say, a glass composition such as the alumina powder, the mullite powder or the like whose sintering property is high and whose acid-resistant property after a sintering operation becomes high is used. Thereby, it is possible to obtain a dense ceramic substrate which can be sintered at a low temperature of about 900 deg.C and whose acid-resistant property and alkali-resistant property have been enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高速LSIを実装する低温焼成セラミック多
層基板材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low-temperature fired ceramic multilayer substrate material for mounting a high-speed LSI.

[従来の技術] 近年、電子機器の小型化傾向の要求にしたがい、Ic,
 LSIなどの半導体素子の集積度が向上し、素子の小
型化が進んでいる。それに伴い、素子を実装する基板の
小型化、高密度化が、システム全体の小型化、高速化の
点で重要となってきた。
[Prior Art] In recent years, in accordance with the demand for miniaturization of electronic devices, Ic,
2. Description of the Related Art The degree of integration of semiconductor devices such as LSIs is increasing, and devices are becoming smaller. Along with this, it has become important to downsize and increase the density of substrates on which elements are mounted, in terms of downsizing and speeding up the overall system.

従来より、高密度配線可能で高い信頼性の基板として一
般に使用されてきた実装基板は、90〜96%のアルミ
ナセラミックスを絶縁材料とした多層基板であった。し
かし、このアルミナ多層基板は、誘電率が大きいため配
線間容量が大きくなり、信号伝播遅延時間が長くなる欠
点があった。さらに、アルミナ多層板は焼成温度が高い
ため、導体材料としては高融点金属のWs Noなどを
使用せざるをえず、その高い導体抵抗は配線の微細化・
高密度化の障害となるだけでなく、信号伝播遅延時間の
短縮化における問題にもなっていた。
Conventionally, a mounting board that has been generally used as a highly reliable board capable of high-density wiring has been a multilayer board made of 90 to 96% alumina ceramics as an insulating material. However, this alumina multilayer substrate has a drawback that the capacitance between wirings becomes large due to its high dielectric constant, resulting in a long signal propagation delay time. Furthermore, since the firing temperature of alumina multilayer boards is high, it is necessary to use high-melting point metals such as Ws No.
This not only becomes an obstacle to increasing density, but also poses a problem in reducing signal propagation delay time.

そこで、以上の問題を解決すめため、アルミナ基板に代
えて、低融点ガラスにアルミナを添加してなるガラスア
ルミナ複合セラミックスにより、多層基板を構成するこ
とが提案されている。このガラスアルミナ複合セラミッ
ク多層基板(以下、低温焼成多層基板と記す)は、ガラ
スマトリックス中にアルミナフィラーが分散して存在す
るもので、ガラスの粘性焼結により緻密化が生じる。そ
のため、850℃から950℃での低温で焼成すること
が可能となり、低抵抗導体(Au, Ags Cuなど
)を配線導体として使用できる。さらにまた、ガラス成
分が多くなることから、基板の誘導率が低くなり、その
結果、信号伝送遅延時間も短くなり高速デバイスに対応
した実装基板がえられる。
Therefore, in order to solve the above problems, it has been proposed to construct a multilayer substrate using a glass-alumina composite ceramic made by adding alumina to low-melting glass in place of the alumina substrate. This glass-alumina composite ceramic multilayer substrate (hereinafter referred to as a low-temperature fired multilayer substrate) has an alumina filler dispersed in a glass matrix, and is densified by viscous sintering of the glass. Therefore, it becomes possible to bake at a low temperature of 850° C. to 950° C., and a low resistance conductor (Au, Ags Cu, etc.) can be used as a wiring conductor. Furthermore, since the glass component is increased, the inductivity of the substrate is reduced, and as a result, the signal transmission delay time is shortened, resulting in a mounting board compatible with high-speed devices.

これらの低温焼成多層基板のらち、とくに導体材料とし
てCuを使用した基板(以下、銅導体セラミック基板と
記す)は、前記の特性をすべて満足するだけでなく、配
線導体の特性もよくなり、とくに半田くわれ、マイグレ
ーション、信号伝送特性などの点において優れたものと
なる。
Among these low-temperature-fired multilayer substrates, substrates that use Cu as a conductor material (hereinafter referred to as copper conductor ceramic substrates) not only satisfy all of the above characteristics, but also have good wiring conductor characteristics, and especially It has excellent solderability, migration, signal transmission characteristics, etc.

ここで、この銅導体セラミック基板のプロセスについて
説明する。原料は、粒径を制御したガラス粉末とアルミ
ナ粉末とし、成形するためこれらに有機結合剤、可塑剤
、分散剤、有機溶剤などを加える。混合はボールミルに
より24時間から48時間スラリー状になるまで行ない
、そののち、これをドクターブレード法により有機フィ
ルム上にシ−ト成形してグリーンシ一トを作製する。有
機フィルムから剥離したグリーンシ一トは所望の寸法に
切断し、ドリルやピンなどによりスルーホールを形成し
、銅ペーストをスルーホール内へ充填したのち、上下面
の少なくとも一方に銅ペーストを印刷し、面内配線パタ
ーンを形成する。つぎに、これら印刷されたグリーンシ
一トを必要数枚重ねて、80℃から150℃の温度で、
120kg4から250kg4の圧力をかけて積層プレ
スにより一体化し、水蒸気、水素、微量酸素のうち少な
くとも一つ以上を含む.窒素雰囲気中で焼成し、最後に
必要に応じてメッキ、ピンのロウ付などを行なう。また
、一層の高密度配線を形成するため表面に銅ポリイミド
を形成することもある。この銅ポリイミドは写真製版法
により銅のファインパターンを形成し、層間絶縁膜とし
て感光性ポリイミドを使用するものであり、それにより
高密度で高い信頼性をもつ基板かえられる。しかし、銅
ポリイミドプロセスは、種々の表面処理を必要とするた
め、基板材料に対して、耐酸、耐アルカリ性を要求する
Here, the process for producing this copper conductor ceramic substrate will be explained. The raw materials are glass powder and alumina powder with controlled particle sizes, and organic binders, plasticizers, dispersants, organic solvents, etc. are added to these powders for molding. The mixture is mixed using a ball mill for 24 to 48 hours until it becomes a slurry, and then this is formed into a sheet on an organic film using a doctor blade method to prepare a green sheet. The green sheet that has been peeled off from the organic film is cut into desired dimensions, through-holes are formed using drills or pins, copper paste is filled into the through-holes, and then copper paste is printed on at least one of the top and bottom surfaces. , forming an in-plane wiring pattern. Next, stack the required number of these printed green sheets and heat them at a temperature of 80°C to 150°C.
It is integrated by lamination pressing under a pressure of 120 kg4 to 250 kg4, and contains at least one of water vapor, hydrogen, and a trace amount of oxygen. It is fired in a nitrogen atmosphere, and finally, plating, pin brazing, etc. are performed as necessary. In addition, copper polyimide may be formed on the surface to form one layer of high-density wiring. This copper polyimide is made by forming a fine pattern of copper by photolithography and using photosensitive polyimide as an interlayer insulating film, thereby making it possible to replace the substrate with high density and high reliability. However, since the copper polyimide process requires various surface treatments, the substrate material is required to have acid resistance and alkali resistance.

以上、低温焼成多層基板とくに銅導体セラミック基板の
特性とプロセスについて説明してきたが、つぎに従来か
ら使用されているガラス材料について説明する。
The characteristics and process of low-temperature fired multilayer substrates, particularly copper conductor ceramic substrates, have been explained above, and now the glass materials conventionally used will be explained.

ガラス材料は、そこに形成される配線導体の点から大別
すると、大気中焼成可能なAus Ags^g−Pd導
体用のpboを含むS102−8203 −PbO−R
O  (ただし、Rは■族または■族の金属元素)系ガ
ラスと中性または還元性雰囲気中での焼成を必要とする
Cu導体用のSl02 −820 s系、8102−t
hi3− A1203 −R゜0(ただし、R゜はアル
カリ土類元素)系、sto2−8203 − A120
3 −R’O−ZnO系ガラスなどの種類がある。
Glass materials can be broadly classified from the point of view of the wiring conductors formed therein: S102-8203-PbO-R, which includes pbo for Aus Ags^g-Pd conductors that can be fired in the atmosphere;
Sl02-820s series, 8102-t for O (where R is a metal element of group ■ or group II) glass and Cu conductor that requires firing in a neutral or reducing atmosphere
hi3-A1203-R゜0 (where R゜ is an alkaline earth element) system, sto2-8203-A120
There are various types such as 3-R'O-ZnO glass.

前記S102 −B20 3−PbO−RO系ガラスは
特公昭60−8229号公報に示された系に代表される
もので、セラミックの酸化物換算表記で酸化アルミニウ
ム5〜90重量%、酸化鉛1〜40重量%、酸化ホウ素
1〜30重量%、2酸化硅素2〜BO重量%、■族元素
酸化物0.05〜25重量%、■族元素(ただし炭素、
硅素、鉛を除く)酸化物0.01〜10重量%の組成範
囲で総ffi 100重量%となるように選んだ組成物
で構成されている。ここに示したセラミック組成により
、1400℃以下の温度でグリーンシ一ト積層の高密度
配線基板かえられる。しかし、このセラミックは大気中
で焼成して^uSAg, Ag−Pdを配線導体とする
際はよいが、本質的にPbOを含むため、Cu,Nlな
ど還元雰囲気での焼成を必要とするぱあいは、PbOの
還元反応が生じ金属pbが析出してセラミック層の絶縁
性をわるくするという問題が起こる。さらに、PbOは
人体にとって有害であるため切削加工時の粉体処理など
、環境問題が発生し、基板として使いづらいところがあ
る。
The S102-B20 3-PbO-RO glass is typified by the system shown in Japanese Patent Publication No. 60-8229, and contains 5 to 90% by weight of aluminum oxide and 1 to 90% by weight of lead oxide in terms of ceramic oxides. 40% by weight, boron oxide 1 to 30% by weight, silicon dioxide 2 to BO by weight, group Ⅰ element oxides 0.05 to 25% by weight, group Ⅰ elements (with the exception of carbon,
The composition is selected to have a total ffi of 100% by weight in a composition range of 0.01 to 10% by weight of oxides (excluding silicon and lead). With the ceramic composition shown here, a high-density wiring board with a green sheet laminate can be replaced at a temperature of 1400° C. or lower. However, although this ceramic is suitable for firing in the air to make uSAg and Ag-Pd wiring conductors, it is not suitable for firing in a reducing atmosphere such as Cu or Nl because it essentially contains PbO. However, a problem arises in that a reduction reaction of PbO occurs and metal PB precipitates, which deteriorates the insulation properties of the ceramic layer. Furthermore, since PbO is harmful to the human body, it causes environmental problems such as powder treatment during cutting, making it difficult to use as a substrate.

また、前記9102 −B20 3のガラス材料は、特
開昭59−995号公報に記載があるようにAI203
 、8102、B203 、Na20、K20、CaO
 SLIOなどの酸化物で構成され、その組成はガラス
セラミックの組成でA1203  : 50.5重量%
、3102 : 35.0重量,%、 B203  :
13.0重量%、Na20 : 0.75重量%、 K
20 : 0.70ffiffi%、CaO : 0.
15重量%、LjO : 0.15重量%である。
Further, the glass material of 9102-B203 is AI203 as described in Japanese Patent Application Laid-open No. 59-995.
, 8102, B203, Na20, K20, CaO
It is composed of oxides such as SLIO, and its composition is that of glass ceramic: A1203: 50.5% by weight
, 3102: 35.0 weight,%, B203:
13.0% by weight, Na20: 0.75% by weight, K
20: 0.70ffiffi%, CaO: 0.
15% by weight, LjO: 0.15% by weight.

この組成のガラスは、熱膨張係数が小さく、化学的耐久
性がよいため、シリコン素子を直接実装するぱあいなど
には適している。しかし、本質的にアルカリ元素を含ん
でいるため基板材料としたぱあい、高湿度雰囲気で高圧
を印加するとアルカリ成分がエレクトロマイグレーショ
ンを起こす可能性もある。
Glass with this composition has a small coefficient of thermal expansion and good chemical durability, so it is suitable for use in spaces where silicon elements are directly mounted. However, since it essentially contains an alkali element, when used as a substrate material, the alkali component may cause electromigration if high pressure is applied in a high humidity atmosphere.

さらに、前記SiO2−B20 s−^1203 −R
“0系ガラス材料は、特開昭62−292654号公報
にあるように、ガラス組成で8102 : 30〜50
重量%、B203:30〜50重量%、A1203  
: 5〜15重量%、R’OCR’はアルカリ土類元素
):5〜25重量%に代表されるものである。このガラ
ス材料は、コージェライト粉末と混合し、tooo℃以
下で焼結できるが、B203成分が多いため、化学的安
定性(耐酸・耐アルカリ性)が充分であるとはかぎらな
い。Al203を添加することによって、その化学的安
定性は向上しているが、A1203を15重量%以上添
加するとガラス軟化温度が高くなり焼結性に影響をおよ
ぼすため、その効果にも限度がある。そこで、その化学
的安定性を、さらに高めるべく、ZnOをそこに添加し
て、SiOz−B203− AI203 −R’O−Z
nO系のガラス材料としたものがある。これは、特願昭
83−227724号に記載されているごとき、SiO
2:48〜56重量%、AI21)3  : 12〜1
8重2%、 B203  : 8〜19重量%、MgO
: 1 〜10重量%、CaO:2〜8重量%、SrO
またはBaO:2〜9重量%、ZnO: 1 〜9重量
%の組成のガラス材料で、1000℃以下でアルミナ粉
末と混合して焼結させることができ、しかも耐酸性も向
上した。
Furthermore, the SiO2-B20 s-^1203-R
“0-series glass material has a glass composition of 8102:30-50 as stated in Japanese Patent Application Laid-Open No. 62-292654.
Weight%, B203: 30-50% by weight, A1203
: 5 to 15% by weight; R'OCR' is an alkaline earth element): 5 to 25% by weight. Although this glass material can be mixed with cordierite powder and sintered at temperatures below 100° C., it does not necessarily have sufficient chemical stability (acid resistance and alkali resistance) because it contains a large amount of B203 components. Although the chemical stability is improved by adding Al203, there is a limit to its effect because adding 15% by weight or more of A1203 increases the glass softening temperature and affects sinterability. Therefore, in order to further increase its chemical stability, ZnO was added thereto to form SiOz-B203-AI203-R'O-Z.
There is one made of nO-based glass material. This is an SiO
2: 48-56% by weight, AI21) 3: 12-1
8wt 2%, B203: 8-19wt%, MgO
: 1 to 10% by weight, CaO: 2 to 8% by weight, SrO
Alternatively, a glass material having a composition of BaO: 2 to 9% by weight and ZnO: 1 to 9% by weight can be mixed with alumina powder and sintered at 1000° C. or lower, and has improved acid resistance.

しかし、実装密度が一層高くなると、グリーンシ一ト積
6層法による低温焼成多層セラミック基板の配線幅/配
線間隔だけでは実装密度が不充分となり、写真製版法を
取り入れた銅ポリイミドを低温焼成多層セラミック基板
上に形成することが必要となる。この銅ポリイミドは、
電子通信学会誌CPM86−63の29〜34頁に、そ
の形成プロセスが説明してあるが、めっきによる銅導体
形成と感光性ポリイミドによる絶縁層形成を行なうが、
その際に表面処理として強酸、強アルカリ処理を必要と
する。強酸、強アルカリの処理は、基板を5%程度のH
Cj 9 NaOH中に、80〜80℃の温度で、30
〜150分・間浸漬させて行なう。そのため、前記の耐
酸性を向上させた8102−8203 − A1203
 −R’O−ZnO系のガラス材料にしても、強酸、強
アルカリ処理時に処理液の中にガラス成分が溶出し、メ
タライズ強度、ガラスセラミック強度の低下や配線間の
導通不良などが生じる可能性がある。
However, as the packaging density becomes higher, the wiring width/wiring spacing of the low-temperature-fired multilayer ceramic board using the green sheet stacking six-layer method becomes insufficient, so copper polyimide using photolithography is used as a low-temperature-fired multilayer ceramic board. It is necessary to form it on a ceramic substrate. This copper polyimide is
The formation process is explained on pages 29-34 of the Institute of Electronics and Communication Engineers journal CPM86-63, which involves forming a copper conductor by plating and forming an insulating layer by photosensitive polyimide.
At that time, strong acid or strong alkali treatment is required as surface treatment. For strong acid and strong alkali treatments, the substrate is exposed to about 5% H
Cj 9 in NaOH at a temperature of 80-80 °C, 30
This is done by soaking for ~150 minutes. Therefore, the above-mentioned 8102-8203-A1203 with improved acid resistance
- Even with R'O-ZnO glass materials, glass components may be eluted into the processing solution during strong acid or strong alkali treatment, resulting in a decrease in metallization strength and glass ceramic strength, and poor conductivity between wiring. There is.

[発明が解決しようとする課題コ 従来の低温焼成基板用ガラス材料は、このように構威さ
れているため、PbOを多量に含むガラスは耐酸性はよ
いが基板誘電率の増加、環境問題などの問題点があり、
また、アルカリ成分を含むガラスはエレクトロマイグレ
ーションが心配される。
[Problems to be solved by the invention] Conventional glass materials for low-temperature firing substrates are structured in this way, so glass containing a large amount of PbO has good acid resistance, but increases the dielectric constant of the substrate, causes environmental problems, etc. There is a problem with
Furthermore, there is a concern about electromigration with glass containing alkaline components.

さらに、8102−8203 − A1203 −R’
0系およびSiO2−B20 s − A120 3−
R’0−ZnO系のガラスは、銅ポリイミドプロセスで
の酸・アルカリ処理に際して、ガラス溶出量が多く、配
線短絡や基板強度低下が生じるなどの問題点があった。
Furthermore, 8102-8203-A1203-R'
0 series and SiO2-B20s-A1203-
R'0-ZnO glass has problems such as a large amount of glass elution during acid/alkali treatment in the copper polyimide process, resulting in wiring short circuits and a decrease in substrate strength.

本発明は上記のような問題点を解消するためになされた
もので、アルミナ粉末、コージェライト粉末、シリカ粉
末の少なくとも一種以上と混合し、850〜950℃の
大気中または還元雰囲気中(数%の湿潤水素を含む雰囲
気)においても焼結しうるとともに耐酸・耐アルカリ性
にすぐれた低温焼威多層基板を作製しうるガラス系材料
をうることを目的とする。
The present invention was made to solve the above-mentioned problems. The purpose of the present invention is to provide a glass-based material that can be sintered even in an atmosphere containing wet hydrogen, and that can be used to fabricate a low-temperature firing multilayer substrate with excellent acid and alkali resistance.

[課題を解決するための手段] 本発明のセラミック基板材料は、アルミナ粉末、ムライ
ト粉末、石英粉末およびコージェライト粉末からなる群
より選ばれた少なくとも一種の無機質粉末20〜65重
量%と、ZrO2を含むガラス粉末、好ましくは810
2、N203、B20 s 、MgO s CaO s
BaO , ZrO2を主成分としたガラス粉末80〜
35重量%とからなる混合物を焼結したセラミック基板
材料である。
[Means for Solving the Problems] The ceramic substrate material of the present invention contains 20 to 65% by weight of at least one kind of inorganic powder selected from the group consisting of alumina powder, mullite powder, quartz powder, and cordierite powder, and ZrO2. glass powder containing, preferably 810
2, N203, B20s, MgOsCaOs
Glass powder containing BaO, ZrO2 as main components 80~
This is a ceramic substrate material obtained by sintering a mixture consisting of 35% by weight.

[作 用] 本発明のセラミック基板材料は、前記特定の無機粉末と
前記z『02を含むガラス粉末とからなる原料粉末が焼
結されてえられるものであるので、大気中または還元雰
囲気中において850〜950℃での焼結が可能であり
、耐酸性が著しく向上する。
[Function] The ceramic substrate material of the present invention is obtained by sintering the raw material powder consisting of the above-mentioned specific inorganic powder and the above-mentioned glass powder containing z'02. Sintering at 850-950°C is possible, and acid resistance is significantly improved.

[実施例] 本発明に用いるZrO2を含むガラス粉末としては、8
102を基本構成要素として、PbOを含まず、無アル
カリで、8203を含む組成とし、アルミナおよびアル
カリ金属酸化物の混合比を選択し、ZrO2を加えるこ
とにより、低温焼結性と耐酸性を高くしたものが好まし
い。
[Example] As the glass powder containing ZrO2 used in the present invention, 8
With 102 as the basic constituent, the composition is PbO-free, alkali-free, and contains 8203, and by selecting the mixing ratio of alumina and alkali metal oxide and adding ZrO2, low-temperature sinterability and acid resistance are improved. Preferably.

すなわち、本発明において要求される好ましいガラスの
主成分は、耐酸性および焼結性から、S 1 02、M
 20 s、B20s 、MgO , CaO , B
aO %ZrO2から構成されるものである。そのガラ
スの好ましい組威範囲は、8102が49〜56重量%
、N203が9〜20重量%、B203が10〜15重
量%、CaOが3〜8重量%、BaOが3〜8重量%、
MgOが5〜15重量%、z『02が1〜6重量%であ
ることが望ましい。
That is, the main components of the preferable glass required in the present invention are S 1 02, M
20s, B20s, MgO, CaO, B
It is composed of aO% ZrO2. The preferable composition range of the glass is 49 to 56% by weight of 8102.
, N203 is 9-20% by weight, B203 is 10-15% by weight, CaO is 3-8% by weight, BaO is 3-8% by weight,
It is desirable that MgO be 5 to 15% by weight and z'02 be 1 to 6% by weight.

この組成において、sto2がこの範囲より少ないと耐
酸性がわるくなり、この範囲をこえると焼結性がわるく
なる傾向がある。また、N203がこの範囲よりも少な
いと耐酸性がわるくなると同時に相分離を起こしやすく
なり、多いと焼結性がわるくなる傾向がある。B203
がこの範囲より少ないと焼結性がわるくなり、多いと耐
酸性がわるくなる傾向がある。BaOは、多いほど焼結
性がよくなるが、前記範囲をこえると耐酸性がわるくな
る傾向がある。Zr○2は、耐酸性を向上させるのに効
果があるが、この範囲をこえると耐酸性がわるくなる傾
向がある。
In this composition, if sto2 is less than this range, acid resistance tends to deteriorate, and if it exceeds this range, sinterability tends to deteriorate. Furthermore, if the N203 content is less than this range, the acid resistance deteriorates and at the same time phase separation tends to occur easily, while if it exceeds the content, the sinterability tends to deteriorate. B203
If the amount is less than this range, the sinterability tends to be poor, and if it is more than this range, the acid resistance tends to be poor. The more BaO there is, the better the sinterability becomes, but if it exceeds the above range, the acid resistance tends to deteriorate. Zr○2 is effective in improving acid resistance, but if it exceeds this range, acid resistance tends to deteriorate.

前記のガラス粉末はアルミナ粉末、ムライト粉末、石英
粉末およびコージェライト粉末からなる群より颯ばれた
1種類の耐火性無機質粉末とともに前記特定の配合比で
原料粉末として用いられ、従来法と同様にグリーンシ一
トを形戊したのち、850〜950℃で焼結することに
より耐酸性の高いセラミック基板かえられる。
The above-mentioned glass powder is used as a raw material powder in the above-mentioned specific blending ratio together with one type of refractory inorganic powder selected from the group consisting of alumina powder, mullite powder, quartz powder, and cordierite powder. After the sheet is shaped, it is sintered at 850 to 950°C to obtain a highly acid-resistant ceramic substrate.

本発明におけるガラス成分の作用は、8102、B20
 s 、ZrO2 ニヨルネットワーク形成、B203
MgO , CaO , BaOによる低温焼結性実現
およびAf 20 s 、Zr○2による耐酸性向上で
ある。すなわち、たとえば特開昭62−128981号
公報に記載のMgO−CaO−B20 s系またはP2
05 − Nl203−S102系ガラスのごときS1
02、M203、B203 、MgO ,CaOから構
成されていたガラスの一部をBaOとZrO2でかえる
ことにより耐酸性が向上するのである。後述するように
、第1図はその耐酸性向上の例を示すグラフで、810
2 : 52、N20s:13、CaO :5、B20
3:13、BaO :  5、MgO : 10−xs
 ZrO2 :x(xi、2、4で数字はいずれも重量
%)の組成のガラス粉末を用いて、アルミナ粉末と1:
1で混合し基板を作製したばあいの耐酸性(5%HCf
,80℃水溶液に0〜120分間浸漬したばあいの単位
面積あたりの減量)が示されている。なお、第1図にお
いて、x−0のもの(a)は従来例であり、x−2のも
の山》および4のもの(C)がそれぞれ後述の本発明の
実施例1および2である。耐酸性の結果としては、xi
のもの(C)がもっとも効果があることが明らかである
が、バッシベーション用ガラスの耐酸性と比較して、第
1図中《b》および(C)の耐酸性であれば問題はない
The effect of the glass component in the present invention is 8102, B20
s, ZrO2 network formation, B203
Low-temperature sinterability is achieved by MgO, CaO, and BaO, and acid resistance is improved by Af20s and Zr○2. That is, for example, the MgO-CaO-B20s system or P2 described in JP-A-62-128981
05 - S1 like Nl203-S102 glass
Acid resistance is improved by replacing a part of the glass, which was previously composed of 02, M203, B203, MgO 2 and CaO, with BaO and ZrO2. As will be described later, FIG. 1 is a graph showing an example of the improvement in acid resistance.
2: 52, N20s: 13, CaO: 5, B20
3:13, BaO: 5, MgO: 10-xs
ZrO2: Using glass powder with a composition of x (xi, 2, 4, all numbers are weight%), alumina powder and 1:
Acid resistance (5% HCf
, weight loss per unit area when immersed in an 80°C aqueous solution for 0 to 120 minutes. In FIG. 1, x-0 (a) is a conventional example, and x-2 (x-2) and 4 (C) are embodiments 1 and 2 of the present invention, respectively, which will be described later. As a result of acid resistance, xi
It is clear that item (C) is the most effective, but compared to the acid resistance of glass for bashivation, there is no problem with the acid resistance of <<b>> and (C) in FIG.

以下、本発明の基板材料の実施例を説明する。Examples of the substrate material of the present invention will be described below.

実施例I SI02 : 52、AJ20s:13、 Cab: 
 5、 B203:13、Bad:  5、MgO: 
10, ZrO2 :  2 (重量比)の組戊のガラ
スを作製した。このガラスを粉砕した粉末とアルミナ粉
末とを1:1の重量比で混合し、混合粉100に対して
、イソブチルメタクリレート樹脂:ジブチルフタレート
:トリオレインを各々9;4:1の重量比で混合し、溶
剤として酢酸イソブチルを50〜7oの重量比で混合し
てスラリーを作製した。このスラリーを適当な粘度にな
るまで脱泡し、ドクターブレード成形して、厚さ0.2
0 − 0.25同のセラミックグリーンシ一トを作製
した。このグリーンシ一トを50aa+角に切断し、4
枚積層プレスし、これを¥1″!密雰囲気炉で、N2中
、900’Cで焼成した。昇温速度は5℃/winとし
、脱バインダーは、試料温度が250〜820’Cのと
きに雰囲気を露点70℃以上の湿潤窒素とすることによ
って行なった。
Example I SI02: 52, AJ20s: 13, Cab:
5, B203:13, Bad: 5, MgO:
10. A glass assembly containing ZrO2:2 (weight ratio) was produced. Powder obtained by crushing this glass and alumina powder were mixed in a weight ratio of 1:1, and isobutyl methacrylate resin, dibutyl phthalate, and triolein were mixed in a weight ratio of 9:4:1 to 100 parts of the mixed powder. A slurry was prepared by mixing isobutyl acetate as a solvent at a weight ratio of 50 to 7. This slurry was degassed until it reached an appropriate viscosity, and then molded with a doctor blade to a thickness of 0.2
0-0.25 Ceramic green sheets of the same size were prepared. Cut this green sheet into 50aa + square pieces,
The sheets were laminated and pressed and fired at 900'C in N2 in a ¥1''! closed atmosphere furnace.The temperature increase rate was 5°C/win, and the binder was removed when the sample temperature was 250 to 820'C. The test was carried out by changing the atmosphere to wet nitrogen having a dew point of 70° C. or higher.

このようにして、焼結したセラミック基板を60℃の塩
酸水溶液(5%)にX分間( x=30, 80, 9
0およびl20)浸漬し時間に対するセラミック基板表
面からのガラス溶出量を測定した。その結果を第1図中
に山)で示す。横軸は時間(分)で、縦軸は単位面積あ
たりのガラス溶出m (mg/cj )で、測定は30
分ごとに行なった。溶出量は、 120分間浸漬しても
0.21mg/cjの重量減少にとどまり、メッキなど
の酸処理を必要とする電子部品塔載用のセラミック基板
として充分使用できるレベルのものであった。
In this way, the sintered ceramic substrate was placed in a hydrochloric acid aqueous solution (5%) at 60°C for X minutes (x=30, 80, 9
0 and 120) The amount of glass eluted from the ceramic substrate surface with respect to the immersion time was measured. The results are shown in Fig. 1 (mountain). The horizontal axis is time (minutes) and the vertical axis is glass elution m (mg/cj) per unit area.
I did it minute by minute. The amount of elution was only 0.21 mg/cj even after immersion for 120 minutes, which was at a level sufficient to allow use as a ceramic substrate for mounting electronic components that requires acid treatment such as plating.

比較例1 ガラス組成として、S102 : 52、#203:1
3、Cab:  5、B203:13、MgO:10の
ガラスを作製し、実施例1と同様にして基板を作製後、
耐酸性をII定した。結果を第1図中に(a)で示す。
Comparative Example 1 Glass composition: S102:52, #203:1
3, Cab: 5, B203: 13, MgO: 10 glass was produced, and a substrate was produced in the same manner as in Example 1,
Acid resistance was determined as II. The results are shown in (a) in FIG.

実施例2 ガラス組成としてSI02 : 52、/V203:1
3、CaO :5、B203:13、MgO:  [i
、ZrO2:4のガラスを作製し、実施例1と同様にし
てセラミック基板を作製し、その耐酸性を評価した。第
1図に、その時間に対するセラミック基板からのガラス
溶出量のM1定結果を(C)で示す。
Example 2 Glass composition: SI02: 52, /V203:1
3, CaO: 5, B203: 13, MgO: [i
, ZrO2:4 glass was produced, a ceramic substrate was produced in the same manner as in Example 1, and its acid resistance was evaluated. In FIG. 1, the M1 constant result of the amount of glass eluted from the ceramic substrate with respect to that time is shown in (C).

第1図から、ZrO2成分が増えるにしたがい耐酸性が
向上していることが明らかである。しかし、実施例1と
2のセラミック基板の収縮率、吸水率を測定するとZr
O2成分が0の比較例1の基板(第1図中(ミ)と2重
量%の実施例1の基板(第1図中山》)の収縮率および
吸水率は、ともに13.0±0.2%および0%であっ
たが、ZrO2成分が4重量%の実施例2の基板(第1
図中《C〉)では、11oO±0.4%および0.02
%であった。これは、ZrO2戊分が4重.量%のガラ
スを使ったぱあい、焼結条件が必ずしも充分でないこと
を示している。
It is clear from FIG. 1 that the acid resistance improves as the ZrO2 component increases. However, when the shrinkage rate and water absorption rate of the ceramic substrates of Examples 1 and 2 were measured, Zr
The shrinkage rate and water absorption rate of the substrate of Comparative Example 1 with 0 O2 component ((mi) in Figure 1) and the substrate of Example 1 with 2% by weight (Nakayama in Figure 1) are both 13.0±0. 2% and 0%, but the substrate of Example 2 (first
In <<C>>) in the figure, 11oO±0.4% and 0.02
%Met. This is because ZrO2 has four layers. This shows that the sintering conditions are not necessarily sufficient when using a certain amount of glass.

第2図に、ZrO2成分が0、2、4の基板、すなわち
比較例1(a)、実施例1山〉、実施例2〈C〉の基板
に用いたガラスの粘度と温度の関係を示す。(小はガラ
ス軟化粘度(下限値)を示す。第2図から、z『02成
分が0および2重量%のガラス(第2図中(a)および
《C))では、900℃での粘度(logη)は、6以
上であるが、2重量%のガラス(第2図中《b》)は、
5.6であることがわかる。なおηの単位はボアズであ
る。一般に、ガラス成分が多いばあいの焼結は、高温で
のガラ゛ス粘度低下によるガラスの粘性焼結によってひ
き起こされるため、弱千のガラス粘度の違いが焼結性(
収縮率・気孔率)に影響してくることが多い。そのため
、ZrO2成分が4重量96のガラス材料を使用する際
は、第2図から、その粘度(logη)が6以下となる
温度、すなわち920゜C以上で焼結させることが必要
となる。
Figure 2 shows the relationship between the viscosity and temperature of the glass used for the substrates with ZrO2 components of 0, 2, and 4, that is, Comparative Example 1 (a), Example 1 (Mount), and Example 2 (C). . (Small indicates the glass softening viscosity (lower limit). From Figure 2, it can be seen that for glasses containing 0 and 2% by weight of the 02 component ((a) and <C) in Figure 2), the viscosity at 900°C (log η) is 6 or more, but for 2% by weight glass (<b> in Fig. 2),
It can be seen that the value is 5.6. Note that the unit of η is Boaz. In general, sintering when the glass content is large is caused by viscous sintering of the glass due to a decrease in glass viscosity at high temperatures.
This often affects the shrinkage rate and porosity. Therefore, when using a glass material with a ZrO2 component of 4 weight 96, it is necessary to sinter it at a temperature at which the viscosity (log η) becomes 6 or less, that is, 920° C. or higher, as shown in FIG.

つぎに、耐酸性と同様にして耐アルカリ性を評価した。Next, alkali resistance was evaluated in the same manner as acid resistance.

耐アルカリ性は、60℃の2%N’a O H水溶液中
で行なった。その結果を第3図に示す。第3図から、1
20分間、60℃、2%NaOH水溶液に浸漬させても
、比較例1、実施例1および実施例2の重GMは、いず
れも 0.05 IIlg/cJ以下であり、z『02
成分0,2、4重量%のどのガラスについても良好なも
のであった。
Alkali resistance was tested in a 2% N'a OH aqueous solution at 60°C. The results are shown in FIG. From Figure 3, 1
Even when immersed in a 2% NaOH aqueous solution at 60°C for 20 minutes, the heavy GM of Comparative Example 1, Example 1, and Example 2 was all 0.05 IIlg/cJ or less, and z'02
Good results were obtained for all glasses containing 0, 2, and 4% by weight.

実施例3 実施例1では、セラミックフィラーとしてアルミナ粉末
を使用したが、ここではムライト粉末を使用して、他は
実施例1と同様の材料およびブロセスでセラミック基板
を作製した。ムライトを使用したぱあいでも焼結性は、
アルミナのぱあいとほとんど変わりなく、収縮率および
気孔率は、12.9±0.02%およびθ%であった。
Example 3 In Example 1, alumina powder was used as the ceramic filler, but here mullite powder was used, and a ceramic substrate was produced using the same materials and process as in Example 1 except for the use of mullite powder. Even when using mullite, the sinterability is
The shrinkage rate and porosity were 12.9±0.02% and θ%, which were almost the same as those of alumina.

なお、耐酸性はムライト自体の耐酸性がアルミナよりも
小さいことから弱干低下したが、基板としては充分使用
に耐えられる程度であった。また、ムライトの誘電率が
アルミナよりも小さいため、ガラスセラミック基板自体
としての誘電率は、アルミナーガラス系の6.0〜6.
5に比べて、ムライト ーガラス系では、5、0〜5.
5と小さくすることが可能となる。したがって、将来高
速信号伝送が必要とされ、基板の低誘電率化が望まれる
ようになったぱあいには、ムライトーガラス系セラミッ
ク基板が重要となる。
Note that the acid resistance of mullite itself was lower than that of alumina, so the acid resistance slightly decreased, but it was still sufficient to withstand use as a substrate. Furthermore, since the dielectric constant of mullite is smaller than that of alumina, the dielectric constant of the glass ceramic substrate itself is 6.0 to 6.0 compared to that of alumina glass.
5, compared to 5.0 to 5.0 for mullite-glass systems.
It is possible to make it as small as 5. Therefore, in the future where high-speed signal transmission is required and substrates with low dielectric constants are desired, mullite-glass ceramic substrates will become important.

[発明の効果コ 以上のように、本発明によればアルミナ粉末またはムラ
イト粉末などとの焼結性が高く、焼結後の耐酸性が高く
なる特定のガラス組成を用いるため、900℃前後の低
温で焼結でき、耐酸、耐アルカリ性の高い、緻密なセラ
ミック基板かえられる。
[Effects of the Invention] As described above, the present invention uses a specific glass composition that has high sinterability with alumina powder or mullite powder and has high acid resistance after sintering. A dense ceramic substrate that can be sintered at low temperatures and has high acid and alkali resistance can be created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のセラミック基板材料を用いた基板の耐
酸性におよぼすZrO2成分の効果を示すグラフ、第2
図は本発明のセラミック基板材料用ガラス材料の粘度と
温度との関係を示すグラフ、第3図は本発明のセラミッ
ク基板材料を用いた基板の耐アルカリ性におよぼすZr
O2成分の効果を示すグラフである。 代 理 人 大 {ゴ 増 雄 神2回 温 度 (゜C) (分)
Figure 1 is a graph showing the effect of the ZrO2 component on the acid resistance of a substrate using the ceramic substrate material of the present invention;
The figure is a graph showing the relationship between viscosity and temperature of the glass material for ceramic substrate material of the present invention, and Figure 3 is a graph showing the effect of Zr on the alkali resistance of the substrate using the ceramic substrate material of the present invention.
It is a graph showing the effect of O2 component. Agent large {Gomasuojin twice Temperature (°C) (minutes)

Claims (1)

【特許請求の範囲】[Claims] (1)アルミナ粉末、ムライト粉末、石英粉末およびコ
ージェライト粉末からなる群より選ばれた少なくとも1
種以上の無機質粉末と、ZrO_2を含むガラス粉末と
の混合物であって、無機質粉末20〜65重量%とガラ
ス粉末80〜35重量%とからなる混合物を焼結したこ
とを特徴とするセラミック基板材料。
(1) At least one selected from the group consisting of alumina powder, mullite powder, quartz powder, and cordierite powder
A ceramic substrate material, which is a mixture of at least one inorganic powder and a glass powder containing ZrO_2, which is obtained by sintering a mixture consisting of 20 to 65% by weight of the inorganic powder and 80 to 35% by weight of the glass powder. .
JP1163549A 1989-06-26 1989-06-26 Ceramic substrate material Expired - Lifetime JP2872273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1163549A JP2872273B2 (en) 1989-06-26 1989-06-26 Ceramic substrate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1163549A JP2872273B2 (en) 1989-06-26 1989-06-26 Ceramic substrate material

Publications (2)

Publication Number Publication Date
JPH0329349A true JPH0329349A (en) 1991-02-07
JP2872273B2 JP2872273B2 (en) 1999-03-17

Family

ID=15776010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163549A Expired - Lifetime JP2872273B2 (en) 1989-06-26 1989-06-26 Ceramic substrate material

Country Status (1)

Country Link
JP (1) JP2872273B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0727818A1 (en) * 1993-07-20 1996-08-21 Fuji Electric Co., Ltd. Zirconia-added alumina substrate with direct bonding of copper
EP0723292A3 (en) * 1995-01-19 1997-07-30 Fuji Electric Co Ltd Semiconductor device
US5675181A (en) * 1995-01-19 1997-10-07 Fuji Electric Co., Ltd. Zirconia-added alumina substrate with direct bonding of copper
CN115925399A (en) * 2022-11-01 2023-04-07 南充三环电子有限公司 Thermal shock resistant ceramic substrate and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254638A (en) * 1984-05-31 1985-12-16 Fujitsu Ltd Glass-ceramic substrate for mounting semiconductor device
JPS62252340A (en) * 1986-04-24 1987-11-04 Matsushita Electric Works Ltd Sintered glass and sintered glass ceramic
JPS63107838A (en) * 1986-10-24 1988-05-12 Matsushita Electric Works Ltd Glass-ceramic sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254638A (en) * 1984-05-31 1985-12-16 Fujitsu Ltd Glass-ceramic substrate for mounting semiconductor device
JPS62252340A (en) * 1986-04-24 1987-11-04 Matsushita Electric Works Ltd Sintered glass and sintered glass ceramic
JPS63107838A (en) * 1986-10-24 1988-05-12 Matsushita Electric Works Ltd Glass-ceramic sintered body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0727818A1 (en) * 1993-07-20 1996-08-21 Fuji Electric Co., Ltd. Zirconia-added alumina substrate with direct bonding of copper
EP0723292A3 (en) * 1995-01-19 1997-07-30 Fuji Electric Co Ltd Semiconductor device
US5675181A (en) * 1995-01-19 1997-10-07 Fuji Electric Co., Ltd. Zirconia-added alumina substrate with direct bonding of copper
CN115925399A (en) * 2022-11-01 2023-04-07 南充三环电子有限公司 Thermal shock resistant ceramic substrate and preparation method thereof
CN115925399B (en) * 2022-11-01 2023-12-12 南充三环电子有限公司 Thermal shock resistant ceramic substrate and preparation method thereof

Also Published As

Publication number Publication date
JP2872273B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
JP3358589B2 (en) Composition for ceramic substrate, green sheet and ceramic circuit component
JPH04243962A (en) Inorganic composition with low dielectric constant for multi-layered ceramic package and method for preparation thereof
EP0480468A1 (en) Glassy low dielectric inorganic composition
US5206190A (en) Dielectric composition containing cordierite and glass
US20060083906A1 (en) Thick film dielectric compositions for use on aluminum nitride substrates
JPH09124358A (en) Porcelain composition for low temperature burning
US5316985A (en) Suppression of crystal growth in low dielectric inorganic composition using ultrafine alumina
US5256470A (en) Crystal growth inhibitor for glassy low dielectric inorganic composition
JPH05211005A (en) Dielectric composition
JPH06305770A (en) Multilayered glass-ceramic substrate and its production
JPH06345530A (en) Multilayreed glass-ceramic substrate and production thereof
JP4569000B2 (en) Low-frequency sintered dielectric material for high frequency and its sintered body
US5260119A (en) Low dielectric inorganic composition for multilayer ceramic package
US20060009036A1 (en) High thermal cycle conductor system
JPH0329349A (en) Material for ceramic substrate
US5118643A (en) Low dielectric inorganic composition for multilayer ceramic package containing titanium silicate glass
JPH10194828A (en) Ceramic multilayered substrate fired at low temperature and its production
JPH0758454A (en) Glass ceramic multilayered substrate
JP2000128628A (en) Glass ceramics composition
JP3419474B2 (en) Conductive composition and multilayer circuit board
EP0204261A2 (en) Multilayer wiring board and method of manufacturing the same
US5312784A (en) Devitrification inhibitor in low dielectric borosilicate glass
JPH01166599A (en) Manufacture of laminated ceramic substrate
JP2652229B2 (en) Multilayer circuit ceramic substrate
JPH068189B2 (en) Oxide dielectric material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11