JPH0329308B2 - - Google Patents

Info

Publication number
JPH0329308B2
JPH0329308B2 JP59212972A JP21297284A JPH0329308B2 JP H0329308 B2 JPH0329308 B2 JP H0329308B2 JP 59212972 A JP59212972 A JP 59212972A JP 21297284 A JP21297284 A JP 21297284A JP H0329308 B2 JPH0329308 B2 JP H0329308B2
Authority
JP
Japan
Prior art keywords
insulating layer
layer
organic insulating
silicone rubber
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59212972A
Other languages
Japanese (ja)
Other versions
JPS6190450A (en
Inventor
Masao Kanazawa
Yoshimasa Nakagami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59212972A priority Critical patent/JPS6190450A/en
Publication of JPS6190450A publication Critical patent/JPS6190450A/en
Publication of JPH0329308B2 publication Critical patent/JPH0329308B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラスチツクモールドによる封止時
の、樹脂の射出による衝撃を緩和する被膜を具え
た半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device provided with a coating that cushions the impact of resin injection during sealing with a plastic mold.

従来大規模集積回路LSI等半導体装置のパツシ
ベーシヨンのため、気相成長CVD法による燐珪
酸ガラスPSG等無機物の絶縁膜よりなるカバー
膜を基板上に被着する。
Conventionally, for passivation of semiconductor devices such as large-scale integrated circuits LSI, a cover film made of an insulating film of an inorganic material such as phosphosilicate glass PSG is deposited on a substrate by a vapor phase growth CVD method.

このカバー膜は化学的なパツシベーシヨンの作
用には有効であるが、機械的な衝撃や、圧力に対
しては余り効果がない。
Although this cover film is effective against chemical passivation, it is not very effective against mechanical impact or pressure.

特にLSIの封止にプラスチツクモールドが使用
されるときは、樹脂射出圧により、基板表面に及
ぼされる応力のために基板表面に被着されたカバ
ー膜にクラツクを生じ、甚だしい場合は基板が
粉々に破砕することがある。
Particularly when plastic molds are used to encapsulate LSIs, the stress exerted on the substrate surface by resin injection pressure can cause cracks in the cover film attached to the substrate surface, and in extreme cases, the substrate may shatter. May shatter.

プラスチツクパツケージは量産品種のLSIには
多用されているため、これらの欠点に対する対策
が要望されている。
Since plastic packages are widely used in mass-produced LSIs, there is a need for countermeasures against these drawbacks.

〔従来の技術〕[Conventional technology]

第2図は従来例による保護膜を有するプラスチ
ツクモールドLSIの断面図である。
FIG. 2 is a sectional view of a conventional plastic molded LSI having a protective film.

図において、1は半導体チツプでステージ3の
上にダイボンデイングされ、チツプ1の周辺に形
成されたパツド(接続端子)2とリード4とをワ
イヤ5によりボンデイングする。
In the figure, a semiconductor chip 1 is die-bonded onto a stage 3, and pads (connection terminals) 2 formed around the chip 1 and leads 4 are bonded using wires 5.

つぎに、モールド工程の前に予め、チツプの応
力吸収、保護のため柔軟なシリコーン等の樹脂6
を滴下してチツプを被覆しておく。
Next, before the molding process, a flexible resin such as silicone 6 is used to absorb stress and protect the chip.
Drip to coat the chips.

その後にモールド工程により樹脂7でパツケー
ジングする。
Thereafter, it is packaged with resin 7 in a molding process.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

プラスチツクモールドLSIにおいて、従来例に
よるチツプ上への樹脂の滴下はアセンブリ工程で
1個宛行うため、精度、生産性の面で問題があつ
た。
In conventional plastic molded LSIs, resin is dripped onto the chip one by one during the assembly process, which poses problems in terms of accuracy and productivity.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、半導体基板上にスピンコ
ート形成されパターニング形成されてなる有機物
絶縁層と、 該有機物絶縁層を損傷しないような低温にて、
該有機物絶縁層表面をすべて覆うように形成され
てなる無機物絶縁層と、 該無機物絶縁層表面を覆うように、また前記半
導体基板を覆うように形成され、絶縁物からなる
パツケージと を有する半導体装置により達成される。
The solution to the above problem is to use an organic insulating layer formed by spin coating and patterning on a semiconductor substrate, and at a low temperature that does not damage the organic insulating layer.
A semiconductor device comprising: an inorganic insulating layer formed to completely cover the surface of the organic insulating layer; and a package made of an insulator formed to cover the surface of the inorganic insulating layer and the semiconductor substrate. This is achieved by

特に前記有機物絶縁層がシリコーンゴムよりな
り、また前記無機物絶縁体がプラズマ気相成長に
よる絶縁層よりなる場合は一層有効である。
It is particularly effective when the organic insulating layer is made of silicone rubber and the inorganic insulating material is made of an insulating layer formed by plasma vapor deposition.

〔作用〕[Effect]

従来アセンブリ工程において滴下法によりシリ
コーンゴム保護膜を形成したのに対して、本発明
はウエハ工程において行う。即ち、シリコーンゴ
ムワニスをウエハ上にスピン塗布して所定の保護
膜パターンを形成し、その上に低温プロセスのプ
ラズマCVD膜を被着し同じパターンを形成し、
この2層によりチツプの保護を行う。
While the silicone rubber protective film was conventionally formed by a dropping method in the assembly process, in the present invention it is formed in the wafer process. That is, silicone rubber varnish is spin-coated onto a wafer to form a predetermined protective film pattern, and then a low-temperature process plasma CVD film is deposited on top of it to form the same pattern.
These two layers protect the chip.

シリコンゴムのような柔軟な有機物絶縁層は、
スピンコートしてパターニング形成するという通
常のウエハ工程によつて形成でき、樹脂を用いた
場合に滴下法によらねばならないのに比較すると
顕著に工程が容易になり、歩留まり向上に寄与す
るところが大きい。同時にシリコンゴムのような
柔軟な有機物絶縁層は、外部応力の吸収に効果的
に働く。しかしながら、このような有機物絶縁層
は一般的に下地であるシリコン層との密着性が良
くなく、大きい外力によつては剥離してしまいが
ちである。また、有機物絶縁層は、半導体の破片
がダイシング時に飛び散つたりすると、この破片
がめり込んでしまい、この有機物絶縁層は塑性変
形してしまうことが多い。
Flexible organic insulation layers such as silicone rubber
It can be formed by a normal wafer process of spin coating and patterning, and compared to the drop method that must be used when resin is used, the process is significantly easier and greatly contributes to improved yield. At the same time, a flexible organic insulating layer such as silicone rubber works effectively to absorb external stress. However, such an organic insulating layer generally does not have good adhesion to the underlying silicon layer, and tends to peel off due to large external forces. Furthermore, when semiconductor fragments are scattered during dicing, the organic insulating layer often gets stuck in the organic insulating layer and the organic insulating layer is plastically deformed.

本発明では、このような有機物絶縁層の全面を
無機物絶縁層で覆うから、半導体基板から剥離す
ることを確実に防ぐことができる。さらには、こ
の無機物絶縁層が有機物絶縁層の殻となつて、飛
散した半導体の破片が有機物絶縁層につきささつ
て残るのを防ぐことにもなる。
In the present invention, since the entire surface of such an organic insulating layer is covered with an inorganic insulating layer, peeling from the semiconductor substrate can be reliably prevented. Furthermore, this inorganic insulating layer acts as a shell for the organic insulating layer, and prevents scattered semiconductor fragments from remaining on the organic insulating layer.

シリコーンゴムは耐熱性に乏しいので、CVD
工程は十分低温で行い、被着する膜は極力薄く
し、下層のシリコーンゴムの柔軟性を損なわない
ようにする。
Silicone rubber has poor heat resistance, so CVD
The process is carried out at a sufficiently low temperature, and the applied film is made as thin as possible so as not to impair the flexibility of the underlying silicone rubber.

〔実施例〕〔Example〕

第1図は本発明による保護膜を有するプラスチ
ツクモールドLSIの断面図である。
FIG. 1 is a sectional view of a plastic molded LSI having a protective film according to the present invention.

図において、11はp型珪素(Si)よりなるチ
ツプ、12,13はn+型のソース、ドレイン領
域、14はゲート酸化膜、15S,15G,15
Dは多結晶珪素層、16はPSGよりなる層間絶
縁層、17はアルミニウムよりなる配線層、18
はPSGよりなるカバー膜、19は有機物絶縁層
としてシリコーンゴム層、20は無機物絶縁層と
してプラズマCVDによる窒化珪素(Si3N4)層
で、チツプ11の周辺においてSi3N4層20とシ
リコーンゴム層19とカバー膜18が開口されて
配線層17が露出され、ボンデイングパツドとし
て使用される。
In the figure, 11 is a chip made of p-type silicon (Si), 12 and 13 are n + type source and drain regions, 14 is a gate oxide film, 15S, 15G, 15
D is a polycrystalline silicon layer, 16 is an interlayer insulating layer made of PSG, 17 is a wiring layer made of aluminum, 18
is a cover film made of PSG, 19 is a silicone rubber layer as an organic insulating layer, 20 is a silicon nitride (Si 3 N 4 ) layer made by plasma CVD as an inorganic insulating layer, and the Si 3 N 4 layer 20 and silicone are formed around the chip 11. Rubber layer 19 and cover film 18 are opened to expose wiring layer 17, which is used as a bonding pad.

具体的な製造工程の例はつぎの通りである。 A specific example of the manufacturing process is as follows.

まずすべてのウエハ工程を終えた後、即ち裏面
の金蒸着を終えた後、シリコーンゴムワニスをウ
エハ上にスピン塗布する。シリコーンゴムワニス
は工程短縮のため、感光性のものを用いた。100
℃で30分程度のベークを行つた後、所定のパター
ン(パツドを含むチツプ周辺部を除いて、回路パ
ターンを覆う長方形のパターン)を焼き付け、
UVキユア(紫外線照射)により200℃で2時間
程度の熱処理を行つて、厚さ約5μmのシリコーン
ゴム層19を得る。
First, after all wafer processes have been completed, that is, gold deposition on the back side has been completed, silicone rubber varnish is spin-coated onto the wafer. A photosensitive silicone rubber varnish was used to shorten the process. 100
After baking at ℃ for about 30 minutes, a prescribed pattern (a rectangular pattern that covers the circuit pattern, excluding the area around the chip including the pads) is baked.
A heat treatment is performed at 200° C. for about 2 hours using UV cure (ultraviolet irradiation) to obtain a silicone rubber layer 19 with a thickness of about 5 μm.

つぎにプラズマCVDにより厚さ300ÅのSi3N4
層20を被着し、此の上にレジストを塗布し、露
光、現像を経てシリコーンゴム層19と同じパタ
ーンをレジストに形成し、ドライエツチングによ
りSi3N4層20のパターンを形成する。
Next, Si 3 N 4 with a thickness of 300 Å was formed by plasma CVD.
A layer 20 is deposited, a resist is applied thereon, exposed and developed to form the same pattern as the silicone rubber layer 19 on the resist, and a pattern of the Si 3 N 4 layer 20 is formed by dry etching.

この後に、ウエハをチツプにスクライブして、
アセンブリ工程に入る。
After this, the wafer is scribed into chips,
Start the assembly process.

実施例では無機物絶縁層としてプラズマCVD
によるSi3N4層を用いたが、これの代わりにプラ
ズマCVDによる二酸化珪素(SiO2)層等を用い
てもよい。
In the example, plasma CVD was used as the inorganic insulating layer.
Although a Si 3 N 4 layer was used, a silicon dioxide (SiO 2 ) layer formed by plasma CVD or the like may be used instead.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、プ
ラスチツクモールドLSIにおいて、チツプ上の保
護膜の形成をウエハ工程で行い、多数同時処理が
でき生産性が向上し、またリソグラフイ工程を用
いて精度よく形成できる。
As explained in detail above, according to the present invention, in plastic molded LSI, the formation of a protective film on a chip is performed in the wafer process, and a large number of chips can be processed simultaneously, improving productivity. Can be formed well.

以上のように形成した保護膜により、プラスチ
ツクモールド時の樹脂射出による衝撃を緩和して
カバー膜にクラツクを生じさせない信頼性の高い
LSIが得られる。
The protective film formed as described above alleviates the impact caused by resin injection during plastic molding and is highly reliable, preventing cracks from occurring in the cover film.
LSI is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による保護膜を有するプラスチ
ツクモールドLSIの断面図、第2図は従来例によ
る保護膜を有するプラスチツクモールドLSIの断
面図である。 図において、1はチツプ、2はパツド、3はス
テージ、4はリード、5はワイヤ5、6は滴下さ
れた樹脂、7はパツケージ、11はチツプ、1
2,13はソース、ドレイン領域、14はゲート
酸化膜、15S,15G,15Dは多結晶珪素
層、16は層間絶縁層、17は配線層、18はカ
バー膜、19は有機物絶縁層、20は無機物絶縁
層を示す。
FIG. 1 is a sectional view of a plastic molded LSI having a protective film according to the present invention, and FIG. 2 is a sectional view of a plastic molded LSI having a conventional protective film. In the figure, 1 is a chip, 2 is a pad, 3 is a stage, 4 is a lead, 5 is a wire 5, 6 is a dropped resin, 7 is a package, 11 is a chip, 1
2 and 13 are source and drain regions, 14 is a gate oxide film, 15S, 15G, and 15D are polycrystalline silicon layers, 16 is an interlayer insulation layer, 17 is a wiring layer, 18 is a cover film, 19 is an organic insulation layer, and 20 is a Shows an inorganic insulating layer.

Claims (1)

【特許請求の範囲】 1 半導体基板上にスピンコート形成されパター
ニング形成されてなる有機物絶縁層と、 該有機物絶縁層を損傷しないような低温にて、
該有機物絶縁層表面をすべて覆うように形成され
てなる無機物絶縁層と、 該無機物絶縁層表面を覆うように、また前記半
導体基板を覆うように形成され、絶縁物からなる
パツケージと を有する半導体装置。
[Claims] 1. An organic insulating layer formed by spin coating and patterning on a semiconductor substrate; and at a low temperature that does not damage the organic insulating layer.
A semiconductor device comprising: an inorganic insulating layer formed to completely cover the surface of the organic insulating layer; and a package made of an insulator formed to cover the surface of the inorganic insulating layer and the semiconductor substrate. .
JP59212972A 1984-10-11 1984-10-11 Semiconductor device Granted JPS6190450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212972A JPS6190450A (en) 1984-10-11 1984-10-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212972A JPS6190450A (en) 1984-10-11 1984-10-11 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6190450A JPS6190450A (en) 1986-05-08
JPH0329308B2 true JPH0329308B2 (en) 1991-04-23

Family

ID=16631344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212972A Granted JPS6190450A (en) 1984-10-11 1984-10-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6190450A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2649157B2 (en) * 1987-03-10 1997-09-03 三菱電機株式会社 Semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056164A (en) * 1973-09-13 1975-05-16
JPS52104060A (en) * 1976-02-27 1977-09-01 Hitachi Ltd Resin mold type semiconductor device

Also Published As

Publication number Publication date
JPS6190450A (en) 1986-05-08

Similar Documents

Publication Publication Date Title
US4172907A (en) Method of protecting bumped semiconductor chips
KR20190053235A (en) Wafer level package and method
US9793106B2 (en) Reliability improvement of polymer-based capacitors by moisture barrier
US11251138B2 (en) Through wafer trench isolation between transistors in an integrated circuit
JP3548061B2 (en) Method for manufacturing semiconductor device
JP3439144B2 (en) Semiconductor device and manufacturing method thereof
KR900001656B1 (en) Forming method of passivation film
JP3706492B2 (en) Semiconductor device and manufacturing method thereof
JPH0329308B2 (en)
JP2003282614A (en) Semiconductor device and its manufacturing method
JP2003007908A (en) Wafer level chip-scale package and method of manufacturing the same
JPH02290039A (en) Measuring method for semiconductor device
JP2000188306A (en) Semiconductor device and its manufacture
JP2727605B2 (en) Semiconductor device and manufacturing method thereof
JPS58166748A (en) Semiconductor device
JPS615562A (en) Semiconductor device
JPS5936932A (en) Semiconductor integrated circuit
JPS5974651A (en) Semiconductor device
KR100618685B1 (en) Method for forming pad region of semiconductor device
JP3493863B2 (en) Semiconductor device and its manufacturing method.
JPS62256457A (en) Semiconductor device
JPS6190437A (en) Semiconductor device
GB2366078A (en) Semiconductor device retaining a resist layer as a buffer layer
JP2023149073A (en) Detection device, method for manufacturing detection device, and method for manufacturing detection system
JPH07326709A (en) Multichip semiconductor package and its preparation