JPH03291359A - Heat resisting material for internal combustion engine exhaust valve and the like - Google Patents

Heat resisting material for internal combustion engine exhaust valve and the like

Info

Publication number
JPH03291359A
JPH03291359A JP9303890A JP9303890A JPH03291359A JP H03291359 A JPH03291359 A JP H03291359A JP 9303890 A JP9303890 A JP 9303890A JP 9303890 A JP9303890 A JP 9303890A JP H03291359 A JPH03291359 A JP H03291359A
Authority
JP
Japan
Prior art keywords
heat resisting
internal combustion
exhaust valve
combustion engine
engine exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9303890A
Other languages
Japanese (ja)
Inventor
Masaki Matsuno
雅樹 松野
Takeshi Kenmoku
見目 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oozx Inc
Original Assignee
Fuji Oozx Inc
Fuji Valve Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oozx Inc, Fuji Valve Co Ltd filed Critical Fuji Oozx Inc
Priority to JP9303890A priority Critical patent/JPH03291359A/en
Publication of JPH03291359A publication Critical patent/JPH03291359A/en
Pending legal-status Critical Current

Links

Landscapes

  • Self-Closing Valves And Venting Or Aerating Valves (AREA)

Abstract

PURPOSE:To obtain a heat resisting material for internal combustion engine exhaust valve, etc., having superior deposition characteristic of hard facing material and excellent in high temp. strength by specifying a composition consisting of C, Si, Mn, Ni, Cr, N, Nb, Ta, W, V, and Fe. CONSTITUTION:This material is a heat resisting material for internal combustion engine exhaust valve, etc., having a composition consisting of, by weight, 0.35-0.60% C, <=0.35% Si, 2.0-15.0% Mn, 1.0-7.0% Ni, 12.0-30.0% Cr, 0.35-0.50% N, 1.0-3.0% Nb and/or Ta, 0.25-1.25% W, 0.20-0.50% V, and the balance essentially Fe other than impurities, and further, high temp. strength is remarkably improved in this material by adding Nb, Ta, W, V, etc., to an austenitic stainless steel. Moreover, the above heat resisting material has superior deposition characteristic of a hard facing material, such as stellite, and also has excellent oxidation resistance and sulfur attack resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば自動車等の内燃機関の排気弁に用いら
れる耐熱鋼に係り、特に、高温強度を高めた耐熱材料に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to heat-resistant steel used, for example, in exhaust valves of internal combustion engines such as automobiles, and particularly to a heat-resistant material with increased high-temperature strength.

〔従来の技術〕[Conventional technology]

自動車の排気弁に用いられる耐熱材料には、高温時にお
ける耐酸化性と耐腐食性、並びに強度と靭性、特に耐ク
リープ性、疲労強度、耐熱衝撃性など、優れた化学的性
質や機械的性質が要求され、しかも、加工性や経済性に
も富むものであることが必要である。
Heat-resistant materials used in automobile exhaust valves have excellent chemical and mechanical properties, such as oxidation and corrosion resistance at high temperatures, as well as strength and toughness, especially creep resistance, fatigue strength, and thermal shock resistance. In addition, it is necessary that the material has excellent processability and economical efficiency.

このような要求を満たす耐熱鋼としては、例えばオース
テナイト系の5UH35や36が広く知られている。
As heat-resistant steels that meet such requirements, for example, austenitic 5UH35 and 36 are widely known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

最近の自動車用エンジンの高性能化に伴い、それに使用
される排気弁の作動温度も上昇する傾向にあり2例えば
800℃〜850℃前後に達することがある。
With the recent improvement in the performance of automobile engines, the operating temperature of the exhaust valves used therein also tends to rise, and can reach, for example, around 800°C to 850°C.

このような高温下では、上記した5UH35や36は、
強度が低下する傾向があり、従ってこれによって製作さ
れた排気弁は、長期の高温度使用に対する耐久性や信頼
性に乏しく、傘部の欠損や首部の切損等を招来すること
もある。
Under such high temperatures, the above-mentioned 5UH35 and 36,
The strength tends to decrease, and therefore, exhaust valves manufactured using this method lack durability and reliability for long-term use at high temperatures, and may lead to breakage of the cap or breakage of the neck.

この問題を解決する材料としては1例えばNCF751
と呼ばれる超耐熱材料が知られている。
Materials that can solve this problem include 1, for example, NCF751.
A super heat-resistant material called .

しかし、この材料は、高価であり、また、排気弁は、耐
摩耗性を高めるために、弁フエース部にステライト等を
盛金して使用されるのが一般的であるが、NCF751
は、上記ステライト等のハードフェーシング材の溶着性
が悪いという難点がある。
However, this material is expensive, and exhaust valves are generally used with stellite etc. deposited on the valve face to improve wear resistance, but NCF751
However, the problem is that the weldability of hard facing materials such as Stellite is poor.

本発明は、上記課題を解決するためになされたもので、
ステライト等のハードフェーシング材の溶着性を損なう
ことなく、従来の5UH35や36に比して、特に高温
強度を大幅に改善した。内燃機関用排気弁等にける耐熱
材料を提供することを目的としている。
The present invention was made to solve the above problems, and
Compared to conventional 5UH35 and 36, it has significantly improved high-temperature strength, without impairing the weldability of hard facing materials such as Stellite. The purpose is to provide heat-resistant materials for exhaust valves, etc. for internal combustion engines.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の耐熱材料は。 In order to achieve the above object, the heat-resistant material of the present invention is provided.

重量比で、C: 0.35〜0.60%、 Si:0.
35%以下、M n :2.0〜15.0%、N i 
: 1 、0〜7 、0%、Cr:12.0〜30.0
%、N :0.35〜0.50%、Nb又は/及びTa
:1.0〜3.0%、 W:0.25〜1.25%、V
 :0.20〜0.50%を含有し、残部が不純物を除
いて実質的にFeからなることを特徴としている。
In terms of weight ratio, C: 0.35 to 0.60%, Si: 0.
35% or less, Mn: 2.0-15.0%, Ni
: 1, 0-7, 0%, Cr: 12.0-30.0
%, N: 0.35-0.50%, Nb or/and Ta
:1.0~3.0%, W:0.25~1.25%, V
: 0.20 to 0.50%, with the remainder consisting essentially of Fe excluding impurities.

〔作用〕[Effect]

NbとTaのいずれか一方又は双方、W、及びVを適量
含有しているため、高温下における化学的性質及び機械
的性質が著しく改善される。
Since it contains appropriate amounts of either or both of Nb and Ta, W, and V, the chemical properties and mechanical properties at high temperatures are significantly improved.

〔実施例〕〔Example〕

次表は、本発明の一実施例の供試材(A)と、比較材で
ある従来の耐熱材料(B)(SUH36)との組成を比
較して示すものである。
The following table compares the compositions of the sample material (A) of one example of the present invention and a conventional heat-resistant material (B) (SUH36), which is a comparative material.

Vt% 表から明らかなように、 この実施例の供試材 (A)は、従来の耐熱材料(B)に含まれていない、N
bにオ゛ブ)及びTa(タンタル)、W(タングステン
)、■(バナジウム)を含むことが大きな特徴であり、
これらの元素は、いずれも、融点を高くするとともに、
炭化物を生成し、高温特性、特に高温時の機械的強度を
改善する性質を有している。
Vt% As is clear from the table, the sample material (A) of this example contains N, which is not included in the conventional heat-resistant material (B).
The major feature is that b contains oxide), Ta (tantalum), W (tungsten), and ■ (vanadium),
All of these elements raise the melting point and
It produces carbides and has the property of improving high-temperature properties, especially mechanical strength at high temperatures.

なお、これら各元素の組成範囲については、次の理由に
より限定しである。
Note that the composition range of each of these elements is limited for the following reasons.

すなわち、Nb及びTaは、共に結晶粒を微細化して合
金の基質を強化し、耐クリープ性、耐靭性等を改善させ
るために有効な元素であり、そのいずれか一方又は双方
を、少なくとも1%以上添加する必要がある。しかし、
多量に添加し過ぎると、Nbにおいては、耐酸化性を損
ない、またTaにおいては、合金の密度(重量)を高め
るばかりでなく、経済性や加工性が悪化するので、3%
以下とするのが好ましい。
In other words, both Nb and Ta are effective elements for refining crystal grains, strengthening the matrix of the alloy, and improving creep resistance, toughness, etc. It is necessary to add more than that. but,
If too large a quantity is added, Nb will impair oxidation resistance, and Ta will not only increase the density (weight) of the alloy but also deteriorate economic efficiency and workability, so the addition of 3%
The following is preferable.

実施例では、NbとTaとを、それぞれ適量ずつ添加し
、その総量が、重量比で1.76%となるようにした。
In the example, Nb and Ta were each added in appropriate amounts so that the total amount was 1.76% by weight.

なお、NbとTaは、いずれも高温強度を高めるのに有
効な元素であり、それらを単独で添加しても、十分な強
度が得られる。
Note that Nb and Ta are both effective elements for increasing high-temperature strength, and sufficient strength can be obtained even if they are added alone.

Wは、高温硬さの維持に有効な成分であり、少なくとも
0.25%以上とする必要がある。しかし、多量に添加
すると、密度が大となって、排気弁に用いた際の慣性質
量を増加させる恐れがあるばかりでなく、高価でかつ加
工性を悪化させるので、 1.25%以下としである。
W is an effective component for maintaining high temperature hardness and needs to be at least 0.25% or more. However, if added in a large amount, the density increases and there is a risk of increasing the inertial mass when used in an exhaust valve, as well as being expensive and worsening workability, so it should be kept at 1.25% or less. be.

■は、高温時の耐クリープ性と耐靭性を改善するのに有
効な成分であり、少なくとも0.20%以上添加する必
要がある。しかし、多過ぎると。
(2) is an effective component for improving creep resistance and toughness at high temperatures, and must be added in an amount of at least 0.20%. But too much.

経済性が悪くなるうえに、切削性や耐腐食性を損なうた
め、0.50%以下とするのが好ましい。
It is preferable to keep it at 0.50% or less because it is not economical and also impairs machinability and corrosion resistance.

なお1本実施例の供試材(A)において、MO(モリブ
デン)を含まないのは1Moを含有しなくとも、十分な
硬さが得られることと、熱間加工性が悪化するのを防止
するためとである。
Note that the sample material (A) of this example does not contain MO (molybdenum) because sufficient hardness can be obtained even without Mo and deterioration of hot workability can be prevented. This is for the purpose of doing so.

次に1本発明の一実施例の供試材(A)と比較材との各
種特性の差異を、実験例に基づいて説明する。
Next, differences in various properties between the sample material (A) of one example of the present invention and a comparative material will be explained based on experimental examples.

(実験例1) 第1図は、温′度と引張強さとの関係を調査した結果で
ある。
(Experimental Example 1) Figure 1 shows the results of investigating the relationship between temperature and tensile strength.

なお1表に示す供試材(A)、比較材(B)について、
鍛造により直径8■の棒材としたのち、焼入れ(117
7℃X30分油冷)シ、さらに焼なましく760℃×1
6時間空冷)を施した。
Regarding the sample material (A) and comparative material (B) shown in Table 1,
After forging into a bar with a diameter of 8 cm, it is quenched (117
7℃ x 30 minutes oil cooling), further annealed at 760℃ x 1
Air cooling was performed for 6 hours.

第1図より明らかように4本実施例の供試材(A)は、
比較材(B)に比べ、室温(RT)から900℃までの
全温度範囲において優れた引張り強さを有している。
As is clear from Fig. 1, the sample material (A) of the fourth example was:
Compared to comparative material (B), it has excellent tensile strength over the entire temperature range from room temperature (RT) to 900°C.

引張り強さとクリープの発生は、密接な関係を有すると
考えられるので、耐クリープ性が改善されていることが
判る。
Since tensile strength and the occurrence of creep are considered to have a close relationship, it can be seen that the creep resistance is improved.

(実験例2) 第2図は、800℃におけるS−N線図、すなわち応力
振幅と応力繰返し数との関係を調査した結果を示すもの
である。
(Experimental Example 2) FIG. 2 shows an S-N diagram at 800° C., that is, the result of investigating the relationship between stress amplitude and stress repetition rate.

供試材(A)及び比較材(B)には、いずれも、焼入れ
(1050℃X30分油冷)したのち、焼なましく76
0℃×4時間空冷)を施した。
Both the test material (A) and the comparative material (B) were quenched (oil-cooled at 1050°C for 30 minutes) and then annealed to 76°C.
Air cooling was performed at 0° C. for 4 hours.

第2図において、供試材(A)は、比較材(B)に比べ
て高温疲れ限度が高く、優れた靭性を有している。これ
は、永久に破壊しないと見なされる107回での応力振
幅が、比較材(B)に比して全体に高いことから確認し
うる。
In FIG. 2, the sample material (A) has a higher high temperature fatigue limit and excellent toughness than the comparative material (B). This can be confirmed from the fact that the stress amplitude at the 107th cycle, which is considered as not permanently breaking, is higher overall than that of the comparative material (B).

(実験例3) 第3図は、900℃において200時間放置した時の耐
酸化性を、単位面積当たりのロス重量によって表わした
ものである。
(Experimental Example 3) Figure 3 shows the oxidation resistance when left at 900°C for 200 hours, expressed in terms of weight loss per unit area.

なお、供試材(A)及び比較材(B)の熱処理条件は、
上記実験例2と同一としである。
The heat treatment conditions for the sample material (A) and comparative material (B) are as follows:
This is the same as Experimental Example 2 above.

第3図から明らかなように、供試材(A)は。As is clear from Fig. 3, the sample material (A).

比較材(B)よりも高い耐酸化性を有していることが判
る。
It can be seen that the material has higher oxidation resistance than the comparative material (B).

(実験例4) 第4図は、870℃に高めた10 Ca S 04.6
 B a S o、 。
(Experiment Example 4) Figure 4 shows 10 Ca S 04.6 heated to 870°C.
B a So, .

2Na2Soい及びICからなる混合ガス雰囲気中に8
0時間放置した際の耐腐食性(耐硫黄アタック性)を調
査した結果を示し、上記実験例3と同様に、単位面積当
たりのロス重量によって表わしている。
8 in a mixed gas atmosphere consisting of 2Na2So and IC.
The results of investigating the corrosion resistance (sulfur attack resistance) when left for 0 hours are shown, and as in Experimental Example 3 above, it is expressed by weight loss per unit area.

熱処理条件は、上記実験例3と同じである。The heat treatment conditions were the same as in Experimental Example 3 above.

この実験結果からも、供試材(A)の耐腐食性が優れて
いることが判る。これは、供試材(A)を排気弁に用い
た際、燃焼ガス(燃料)中に含まれる硫黄分に対し、高
い耐食性を有することを示している。
This experimental result also shows that the test material (A) has excellent corrosion resistance. This shows that when the sample material (A) is used for an exhaust valve, it has high corrosion resistance against the sulfur content contained in the combustion gas (fuel).

本実施例の供試材(A)は、図示を省略したが、Pbo
、Pb5o4に対しても優れた耐食性を有していること
が確認されている。
Although not shown, the sample material (A) of this example was Pbo
It has been confirmed that it also has excellent corrosion resistance against Pb5o4.

以上説明したように、上記実施例の耐熱材料においては
、従来の5UH35や36に比して、高温特性が著しく
改善されるので、特に、高温下の強度、靭性や、1酸化
、耐腐食性等が要求される排気弁用の材料として好適で
ある。
As explained above, the heat-resistant material of the above example has significantly improved high-temperature properties compared to conventional 5UH35 and 36, so it is particularly effective in terms of strength, toughness, mono-oxidation, and corrosion resistance at high temperatures. It is suitable as a material for exhaust valves that require the following.

しかも、従来の5UH35や36の組成を大幅に変える
必要がないので、ステライト等のハードフェーシング材
の溶着性を損なう恐れはなく。
Moreover, since there is no need to significantly change the composition of conventional 5UH35 and 36, there is no risk of impairing the weldability of hard facing materials such as Stellite.

かつ安価である。And it's cheap.

なお、本発明の耐熱材料は、排気弁以外に、弁座や排気
ガス浄化装置、その他の高温となる部材にも使用しうる
のは勿論である。
It goes without saying that the heat-resistant material of the present invention can be used not only for exhaust valves but also for valve seats, exhaust gas purification devices, and other members that become hot.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の耐熱材料5UH35や36に比
して、高温下における機械的性質及び化学的性質を著し
く改善しうるので、例えば、高い高温特性が要求される
排気弁用に用いた際においても、耐久性や信頼性を低下
させる恐れはない。
According to the present invention, the mechanical properties and chemical properties at high temperatures can be significantly improved compared to conventional heat-resistant materials 5UH35 and 36. There is no risk of deterioration in durability or reliability even in the event of an accident.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の供試材と比較材とにおけ
る温度と引張り強さとの関係を示す図、第2図は、同じ
く供試材と比較材の疲労特性を示す図、 第3図は、同じく耐酸化性を示す図、 第4図は、同じく耐硫黄アタック性を示す図である。 第1図 試験温度じC) 応力繰返し数 (N回) 第3図 第4図
FIG. 1 is a diagram showing the relationship between temperature and tensile strength in a test material of an example of the present invention and a comparison material, and FIG. 2 is a diagram showing the fatigue properties of the test material and comparison material. FIG. 3 is a diagram similarly showing oxidation resistance, and FIG. 4 is a diagram similarly showing sulfur attack resistance. Figure 1 Test temperature C) Number of stress repetitions (N times) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 重量比で、C:0.35〜0.60%、Si:0.35
%以下、Mn:2.0〜15.0%、Ni:1.0〜7
.0%、Cr:12.0〜30.0%、N:0.35〜
0.50%、Nb又は/及びTa:1.0〜3.0%、
W:0.25〜1.25%、V:0.20〜0.50%
を含有し、残部が不純物を除いて実質的にFeからなる
ことを特徴とする内燃機関用排気弁等における耐熱材料
Weight ratio: C: 0.35-0.60%, Si: 0.35
% or less, Mn: 2.0 to 15.0%, Ni: 1.0 to 7
.. 0%, Cr: 12.0-30.0%, N: 0.35-
0.50%, Nb or/and Ta: 1.0 to 3.0%,
W: 0.25-1.25%, V: 0.20-0.50%
1. A heat-resistant material for use in exhaust valves for internal combustion engines, etc., characterized in that the remainder consists essentially of Fe excluding impurities.
JP9303890A 1990-04-10 1990-04-10 Heat resisting material for internal combustion engine exhaust valve and the like Pending JPH03291359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9303890A JPH03291359A (en) 1990-04-10 1990-04-10 Heat resisting material for internal combustion engine exhaust valve and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9303890A JPH03291359A (en) 1990-04-10 1990-04-10 Heat resisting material for internal combustion engine exhaust valve and the like

Publications (1)

Publication Number Publication Date
JPH03291359A true JPH03291359A (en) 1991-12-20

Family

ID=14071329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9303890A Pending JPH03291359A (en) 1990-04-10 1990-04-10 Heat resisting material for internal combustion engine exhaust valve and the like

Country Status (1)

Country Link
JP (1) JPH03291359A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9534281B2 (en) 2014-07-31 2017-01-03 Honeywell International Inc. Turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
US9896752B2 (en) 2014-07-31 2018-02-20 Honeywell International Inc. Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
US10316694B2 (en) 2014-07-31 2019-06-11 Garrett Transportation I Inc. Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389645A (en) * 1986-10-01 1988-04-20 Toyota Motor Corp Valve steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389645A (en) * 1986-10-01 1988-04-20 Toyota Motor Corp Valve steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9534281B2 (en) 2014-07-31 2017-01-03 Honeywell International Inc. Turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
US9896752B2 (en) 2014-07-31 2018-02-20 Honeywell International Inc. Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
US10316694B2 (en) 2014-07-31 2019-06-11 Garrett Transportation I Inc. Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same

Similar Documents

Publication Publication Date Title
JPH0563544B2 (en)
EP0639654B1 (en) Fe-Ni-Cr-base super alloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JPH02290950A (en) Ferritic heat resisting steel excellent in strength at high temperature
US5660938A (en) Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JPH09279309A (en) Iron-chrome-nickel heat resistant alloy
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
US20070221298A1 (en) Ni-based super alloy
JPH0478705B2 (en)
CN102159744B (en) Heat-resistant steel for engine valve having excellent high-temperature strength
JP2947913B2 (en) Rotor shaft for high temperature steam turbine and method of manufacturing the same
JPS6250542B2 (en)
JP3412234B2 (en) Alloy for exhaust valve
JPS6339654B2 (en)
US5091147A (en) Heat-resistant cast steels
JP5400140B2 (en) Heat resistant steel for engine valves with excellent high temperature strength
JPH03291359A (en) Heat resisting material for internal combustion engine exhaust valve and the like
JPH11209851A (en) Gas turbine disk material
JPH11229059A (en) Heat resistant alloy for engine valve
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics
JPS62278251A (en) Low-alloy steel excellent in stress corrosion cracking resistance
JP3744083B2 (en) Heat-resistant alloy with excellent cold workability
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JPH03285050A (en) Exhaust valve steel excellent in high temperature characteristic
JPH04191344A (en) Heat resisting alloy for valve
JPH0364588B2 (en)