JPH03291337A - Manufacture of titania whisker reinforced al matrix composite - Google Patents

Manufacture of titania whisker reinforced al matrix composite

Info

Publication number
JPH03291337A
JPH03291337A JP9442490A JP9442490A JPH03291337A JP H03291337 A JPH03291337 A JP H03291337A JP 9442490 A JP9442490 A JP 9442490A JP 9442490 A JP9442490 A JP 9442490A JP H03291337 A JPH03291337 A JP H03291337A
Authority
JP
Japan
Prior art keywords
whiskers
titania
green compact
matrix
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9442490A
Other languages
Japanese (ja)
Other versions
JP2792192B2 (en
Inventor
Tetsuya Nukami
額見 哲也
Tetsuya Suganuma
菅沼 徹哉
Atsuo Tanaka
淳夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2094424A priority Critical patent/JP2792192B2/en
Publication of JPH03291337A publication Critical patent/JPH03291337A/en
Application granted granted Critical
Publication of JP2792192B2 publication Critical patent/JP2792192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture a composite excellent in static strength and dynamic strength by forming a green compact in the state where each hydrate titania whisker is isolated from one another, heating this green compact, executing burning and thereafter impregnating it with the molten metal of matrix metal. CONSTITUTION:A green compact 18 contg. hydrate titania whiskers 10 and an inorganic binder and in which each whisker lies in the state of being isolated one another is formed, is heated in a nonoxidizing atmosphere and is burnt. The burnt green compact 18 is packed into a case 24 and is preheated. After that, an Al molten metal 30 as a matrix is poured therein, and pressurizing is executed to impregnate the molten metal of the matrix metal into the green compact 18. The formation of the condensed part of the whiskers is evaded to improve the fatigue strength of the material.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、チタニアウィスカを強化材としAl又はAl
合金をマトリックスとする複合材料に係り、更に詳細に
はその製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention uses titania whiskers as a reinforcing material and
The present invention relates to a composite material having an alloy as a matrix, and more particularly to a manufacturing method thereof.

[従来の技術] 例えば本願出願人と他の−の出願人との共同出願にかか
る特願平1−115761号及び特願平1−11576
2号明細書に記載されている如く、hソウムの残iが5
2o以下Cめる井晶買XGよ枯品質のチタニアウィスカ
を強化材とし、アルミニウム合金をマトリックスとする
複合材料が既に提案されており、これらの複合材料によ
れば引張り強さや曲げ強さの如き静的強度に優れた低置
な複合材料を得ることができる。
[Prior Art] For example, Japanese Patent Application No. 1-115761 and Japanese Patent Application No. 1-11576 filed jointly by the present applicant and another applicant.
As stated in Specification No. 2, the remainder i of h soum is 5
Composite materials with 2o or less C Merui Akibuya A low-lying composite material with excellent static strength can be obtained.

[発明が解決しようとする課題] しかし上述の先の提案にかかる複合材料に於ては、動的
強度である疲労強度が低いという欠点があることが判明
した。本願発明者は疲労強度が低い原因について種々の
実験的研究を行なった結果、複合材料の破断はチタニア
ウィスカの凝集部を起点として生しており、チタニアウ
ィスカの凝集部は水和チタニアウィスカよりなる成形体
を加熱することによってウィスカを焼成する際にウィス
カか相互に接触する部位に於てウィスカ同志が互いに反
応することに起因して生じることを見出した。
[Problems to be Solved by the Invention] However, it has been found that the composite material according to the above-mentioned previous proposal has a drawback of low fatigue strength, which is dynamic strength. The inventor of the present application has conducted various experimental studies on the causes of low fatigue strength, and has found that fractures in composite materials originate from agglomerated parts of titania whiskers, and that the agglomerated parts of titania whiskers are composed of hydrated titania whiskers. It has been found that this phenomenon occurs because the whiskers react with each other at the portions where the whiskers come into contact with each other when firing the whiskers by heating the compact.

本発明は、チタニアウィスカを強化材としアルミニウム
合金をマトリックスとする複合材料に於ける上述の如き
問題に鑑み、静的強度のみならず疲労強度の如き動的強
度にも優れた低置な複合材料を製造することのできる方
法を提供することを目的としている。
In view of the above-mentioned problems with composite materials that use titania whiskers as a reinforcement and aluminum alloy as a matrix, the present invention aims to create a low-slung composite material that is excellent not only in static strength but also in dynamic strength such as fatigue strength. The purpose is to provide a method for manufacturing.

[課題を解決するための手段] 上述の如き目的は、本発明によれば、チタニアウィスカ
を強化材としAI又はAl合金をマトリックスとする複
合材料の製造方法にして、チタニアウィスカと無機バイ
ンダとを含みマトリックス金属と実質的に同一の組成の
AI又はAl合金の微細片若しくはコーティング層によ
り個々のウィスカが互いに隔置された成形体を形成し、
前記成形体を加熱することにより前記チタニアウィスカ
を焼成し、前記成形体中にマトリックス金属の溶湯を加
圧含浸させる製造方法によって達成される。
[Means for Solving the Problems] According to the present invention, the above-mentioned object is to provide a method for manufacturing a composite material using titania whiskers as a reinforcing material and AI or Al alloy as a matrix, in which the titania whiskers and an inorganic binder are combined. forming a compact in which individual whiskers are spaced from each other by fine particles or coating layers of AI or Al alloy of substantially the same composition as the containing matrix metal;
This is achieved by a manufacturing method in which the titania whiskers are fired by heating the molded body, and a molten matrix metal is impregnated into the molded body under pressure.

[発明の作用] 本発明によれば、チタニアウィスカと無機バインダとを
含みマトリックス金属と実質的に同一の組成のAl又は
Al合金の微細片若しくはコーティング層により個々の
ウィスカが互いに隔置された成形体が形成され、成形体
を加熱することによりチタニアウィスカが焼成され、成
形体中にマトリックス金属の溶湯が加圧含浸せしめられ
る。
[Operation of the Invention] According to the present invention, a molding in which individual whiskers are separated from each other by fine pieces or a coating layer of Al or an Al alloy containing titania whiskers and an inorganic binder and having a composition substantially the same as that of the matrix metal is provided. A body is formed, the titania whiskers are fired by heating the body, and the molten matrix metal is impregnated into the body under pressure.

従って本発明によれば、個々の水和チタニアウィスカが
互いに隔置された状態にて焼成され、焼成の際にウィス
カが相互に接触する部位に於てウィスカ同志が互いに反
応することに起因してウィスカの凝集部が形成されるこ
とが回避されるので、静的強度のみならず疲労強度の如
き動的強度にも優れた複合材料が得られる。
Therefore, according to the present invention, individual hydrated titania whiskers are fired while being spaced apart from each other, and the whiskers react with each other at the portions where the whiskers come into contact with each other during firing. Since the formation of agglomerated portions of whiskers is avoided, a composite material having excellent not only static strength but also dynamic strength such as fatigue strength can be obtained.

尚Al又はAl合金の微細片やコーティング層は実質的
にマトリックス金属と同一の組成のものであるので、成
形体中にマトリックス金属の溶湯が加圧含浸せしめられ
た段階でマトリックス金属の一部となる。
In addition, since the fine pieces of Al or Al alloy and the coating layer have substantially the same composition as the matrix metal, when the molten metal of the matrix metal is impregnated into the compact under pressure, it becomes part of the matrix metal. Become.

本願発明者が行った実験的研究の結果によれば、チタニ
アウィスカの体積率が18〜37%、特に20〜35%
の場合に複合材料の強度が高い値になる。従って本発明
の一つの詳細な特徴によれば、チタニアウィスカの体積
率は18〜37%、好ましくは20〜35%に設定され
る。
According to the results of experimental research conducted by the inventor of the present application, the volume fraction of titania whiskers is 18 to 37%, particularly 20 to 35%.
The strength of the composite material takes on a high value when . According to one detailed feature of the invention, therefore, the titania whisker volume fraction is set between 18 and 37%, preferably between 20 and 35%.

本願発明者が行った実験的研究の結果によれば、Al又
はAl合金の微細片が使用される場合には、チタニアウ
ィスカ及び微細片の合計の体積率が22〜75%、特に
25〜70%である場合に複合材料の疲労強度を向上さ
せることができる。従って本発明の他の一つの詳細な特
徴によれば、チタニアウィスカ及び微細片の合計の体積
率は22〜75%、好ましくは25〜70%に設定され
る。
According to the results of experimental studies carried out by the present inventor, when fine pieces of Al or Al alloy are used, the total volume fraction of titania whiskers and fine pieces is between 22 and 75%, particularly between 25 and 70%. %, the fatigue strength of the composite material can be improved. According to another detailed feature of the invention, therefore, the combined volume fraction of titania whiskers and fine particles is set between 22 and 75%, preferably between 25 and 70%.

本願発明者が行った実験的研究の結果によれば、AI又
はAl合金のコーティング層にて被覆されたチタニアウ
ィスカが使用される場合には、チタニアウィスカ及びコ
ーティング層の合計の体積率が23〜65%である場合
に複合材料の疲労強度を向上させることができる。従っ
て本発明の他の一つの詳細な特徴によれば、チタニアウ
ィスカ及びコーティング層の合計の体積率は23〜65
%に設定される。尚この場合、コーティング層の厚さは
0.02〜0.2μmであることが好ましい。
According to the results of experimental research conducted by the inventor of the present application, when titania whiskers coated with a coating layer of AI or Al alloy are used, the total volume fraction of the titania whiskers and the coating layer is 23~ When it is 65%, the fatigue strength of the composite material can be improved. Therefore, according to another detailed feature of the invention, the combined volume fraction of titania whiskers and coating layer is between 23 and 65
Set to %. In this case, the thickness of the coating layer is preferably 0.02 to 0.2 μm.

尚水和チタニアウィスカに対する焼成温度及び時間はそ
れぞれ550〜650℃、0.5〜2時間であってよく
、またAl又はAl合金の微細片の形態は粉末、ウィス
カ、薄片などであってよい。
The firing temperature and time for the hydrated titania whiskers may be 550-650°C and 0.5-2 hours, respectively, and the form of the fine pieces of Al or Al alloy may be powder, whiskers, flakes, etc.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例1 まず第1図に示されている如く、水和チタニアウィスカ
10(東邦チタニウム株式会社製[トフィカTJ、平均
繊維径0.5μ■、平均繊維長20μm)と、純Al粉
末12(昭和電工株式会社製、平均粒径30μm)とを
コロイダルシリカ(日産化学株式会社製「スノーテック
スSJ)水溶液14中に投入し、チタニアウィスカが十
分解繊されるまで混合液をプロペラ16により撹拌し、
しかる後その混合液に対し圧縮成形を行うことにより、
第2図に示されている如く、水和チタニアウィスカ10
及び純Al粉末12よりなり、乾燥後の寸法が100X
38X16!I11であり、チタニアライス力の体積率
が20%であり、ウィスカに対するシリカバインダの重
量比が3%である成形体18を形成した。この場合純A
l粉末の量を変化させることによりチタニアウィスカ及
び純AI粉末の合計の体積率が20%〜80%(5%ご
と;である13個の成形体が形成された。
Example 1 First, as shown in FIG. (manufactured by Denko Co., Ltd., average particle size 30 μm) was placed in an aqueous solution 14 of colloidal silica (Snowtex SJ, manufactured by Nissan Chemical Co., Ltd.), and the mixed liquid was stirred with a propeller 16 until the titania whiskers were sufficiently defibrated.
Then, by compression molding the mixture,
As shown in Figure 2, hydrated titania whiskers 10
and pure Al powder 12, the size after drying is 100X
38X16! A molded body 18 was formed in which the volume ratio of the titania rice force was 20%, and the weight ratio of the silica binder to the whisker was 3%. In this case pure A
By varying the amount of l powder, 13 compacts were formed with a total volume fraction of titania whiskers and pure AI powder ranging from 20% to 80% (in 5% increments).

次いで第3図に示されている如く、各成形体18をヒー
タ20により非酸化性雰囲気中にて600℃に1時間加
熱する焼成処理を行ない、これにより水和チタニアウィ
スカを結晶質のチタニアウィスカに変化させると共にバ
インダを固化させた。
Next, as shown in FIG. 3, each molded body 18 is heated to 600° C. for 1 hour in a non-oxidizing atmosphere using a heater 20, thereby converting the hydrated titania whiskers into crystalline titania whiskers. At the same time, the binder was solidified.

次いで第4図に示されている如く、内のり寸法が38×
1611mであり、長さが140 mmであり、両端に
て開口し、一端に錘り22が一体に設けられたステンレ
ス鋼(JIS規格5US304)製のケース24内に上
述の如く形成された成形体18′を充填した。次いで成
形体をケースごと600℃に約20分間予熱した後、第
5図に示されている如く成形体をケースごと高圧鋳造装
置26の鋳型28内に配置し、該鋳型内に710℃の純
Alの溶湯30を注湯し、該溶湯を鋳型に嵌合するプラ
ンジャ32により約1000kg/cdの圧力にて加圧
し、その加圧状態を溶湯が完全に凝固するまで保持した
。溶湯が完全に凝固した後、ノックアウトピン34によ
り鋳型28より凝固体を取出し、該凝固体に対し機械加
工を施してチタニアウィスカにて複合強化された純AI
よりなる複合材料を切出し、該複合材料を切断してその
断面を観察した。その結果何れの複合材料に於ても良好
な複合化が達成されていることが認められた。
Next, as shown in Figure 4, the inner dimension is 38×
A molded body formed as described above in a case 24 made of stainless steel (JIS standard 5 US304), which has a length of 1611 m and a length of 140 mm, is open at both ends, and has a weight 22 integrally provided at one end. 18' was filled. Next, after preheating the molded body together with the case to 600°C for about 20 minutes, the molded body and the case are placed in the mold 28 of the high-pressure casting device 26, as shown in FIG. A molten Al metal 30 was poured, and the molten metal was pressurized at a pressure of about 1000 kg/cd by a plunger 32 fitted into the mold, and the pressurized state was maintained until the molten metal completely solidified. After the molten metal has completely solidified, the solidified body is taken out from the mold 28 using the knockout pin 34, and the solidified body is machined to produce pure AI compositely reinforced with titania whiskers.
A composite material consisting of the above was cut out, and the cross section of the composite material was observed. As a result, it was recognized that good composite formation was achieved in all composite materials.

また各複合材料より疲労試験片を形成し、各試験片につ
いて室温にて10’回の疲労試験を行った。これらの試
験の結果を第6図に示す。第6図より、疲労強度に優れ
た複合材料を得るためには、チタニアウィスカ及び純A
I粉末の合計の体積率は22〜75%、特に25〜70
%であることが好ましいことが解る。
Further, fatigue test pieces were formed from each composite material, and each test piece was subjected to 10' fatigue tests at room temperature. The results of these tests are shown in FIG. From Figure 6, in order to obtain a composite material with excellent fatigue strength, titania whiskers and pure A
The total volume fraction of I powder is 22-75%, especially 25-70%
% is preferred.

また各疲労試験片の破面を観察したところ、純AI粉末
か全く含まれていない成形体を用いて形成された複合材
料よりなる試験片に於ては、チタニアウィスカの凝集部
が破壊の起点となっていたのに対し、チタニアウィスカ
及び純Al粉末の合計の体積率が22〜75%、特に2
5〜70%である成形体を用いて形成された複合材料よ
りなる試験片に於ては、破壊の起点が明確ではなく、典
型的な疲労破面を呈していることが認められた。
Furthermore, when observing the fracture surface of each fatigue test piece, it was found that in the test piece made of a composite material formed using pure AI powder or a molded body containing no AI powder, the agglomerated part of titania whiskers was the origin of fracture. However, the total volume fraction of titania whiskers and pure Al powder was 22 to 75%, especially 2.
It was observed that in the test specimens made of composite materials formed using molded bodies with 5% to 70%, the starting point of fracture was not clear and exhibited a typical fatigue fracture surface.

またチタニアウィスカ及び純Al粉末の合計の体積率が
80%である場合に疲労強度が低い値になったのは、圧
縮成形時にチタニアウィスカに及ぼされた圧力が高く、
そのためウィスカが折損してその長さが短くなったこと
によるものと推定される。
Furthermore, when the total volume fraction of titania whiskers and pure Al powder was 80%, the fatigue strength was low because the pressure applied to the titania whiskers during compression molding was high.
It is presumed that this is because the whiskers were broken and their length became shorter.

尚バインダとしてアルミナやチタニアが使用された場合
にも、第6図に示された結果と同様の結果が得られた。
Note that even when alumina or titania was used as the binder, results similar to those shown in FIG. 6 were obtained.

実施例2 チタニアウィスカの体積率が10〜40%(5%ごと)
に設定され、純Al粉末の代りにAl合金粉末(JIS
規格ACIA)が使用され、マトリックス金属としてA
l合金(JIS規格ACIA)の溶湯が使用され、チタ
ニアウィスカ及びAl合金粉末の合計の体積率が60%
の一定値に設定された点を除き、実施例1の場合と同一
の要領及び条件にて複合材料を形成し、各複合材料に対
しT6熱処理を施し、各複合材料より疲労試験片を形成
して107回の疲労試験を行った。
Example 2 Volume percentage of titania whiskers is 10 to 40% (in 5% increments)
Al alloy powder (JIS
Standard ACIA) is used and A as the matrix metal.
Molten metal of L alloy (JIS standard ACIA) is used, and the total volume percentage of titania whisker and Al alloy powder is 60%.
Composite materials were formed in the same manner and under the same conditions as in Example 1, except that The fatigue test was conducted 107 times.

これらの試験の結果を第7図に示す。第7図より、疲労
強度に優れた複合材料を得るためには、チタニアウィス
カの体積率は18〜37%、特ニ20〜35%であるこ
とが好ましいことが解る。
The results of these tests are shown in FIG. From FIG. 7, it can be seen that in order to obtain a composite material with excellent fatigue strength, the volume fraction of titania whiskers is preferably 18 to 37%, particularly 20 to 35%.

尚チタニアウィスカ及びAl合金粉末の合計の体積率が
50%の一定値に設定された場合にも、第7図に示され
た結果と同様の結果が得られた。
Note that even when the total volume fraction of titania whiskers and Al alloy powder was set to a constant value of 50%, results similar to those shown in FIG. 7 were obtained.

以上に於ては本発明を幾つかの実施例について詳細に説
明したが、本発明はこれらの実施例に限定されるもので
はなく、本発明の範囲内にて他の種々の実施例が可能で
あることは当業者にとって明らかであろう。
Although the present invention has been described above in detail with reference to several embodiments, the present invention is not limited to these embodiments, and various other embodiments are possible within the scope of the present invention. It will be clear to those skilled in the art that

[発明の効果コ 以上の説明より明らかである如く、本発明によれば、個
々の水和チタニアウィスカが互いに隔置された状態にて
焼成され、焼成の際にウィスカ同志が互いに反応するこ
とに起因してウィスカの凝集部が形成されることが回避
されるので、疲労強度の如き動的強度に優れた複合材料
を得ることができる。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, the individual hydrated titania whiskers are fired in a state where they are spaced apart from each other, and the whiskers react with each other during firing. Since the formation of agglomerated portions of whiskers due to this is avoided, a composite material having excellent dynamic strength such as fatigue strength can be obtained.

また強化材はチタン酸カリウムウィスカなどよりも強度
向上効果に優れ、しかも炭化ケイ素ウィスカなどに比し
て低廉なチタニアウィスカであるので、低廉にして静的
強度にも優れた複合材料を得ることができる。
In addition, the reinforcing material is titania whisker, which has a better strength-improving effect than potassium titanate whiskers, and is cheaper than silicon carbide whiskers, so it is possible to obtain a composite material that is inexpensive and has excellent static strength. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は本発明による複合材料の製造方法の
一つの実施例に於ける一連の製造工程を示す工程図、第
6図はチタニアウィスカ及び純Al粉末の合計の体積率
と複合材料の疲労強度との関係を示すグラフ、第7図は
チタニアウィスカの体積率と複合材料の疲労強度との関
係を示すグラフである。 10・・・水和チタニアウィスカ、10′・・・チタニ
アウィスカ、12・・・純Al粉末、14・・・コロイ
ダルシリカ水溶液、16・・・プロペラ、18.18′
・・・成形体、20・・・ヒータ、22・・・錘り、2
4・・・ケース、26・・・高圧鋳造装置、28・・・
鋳型、30・・・純Alの溶湯、32・・・プランジャ
、34・・・ノックアウトピン 特 許 出 願 人  トヨタ自動車株式会社代   
  理     人   弁理士  明  石  昌 
 毅第 図 第 図 第 図 第 図 第 図
Figures 1 to 5 are process diagrams showing a series of manufacturing steps in one embodiment of the method for manufacturing a composite material according to the present invention, and Figure 6 shows the total volume fraction of titania whiskers and pure Al powder and the composite material. A graph showing the relationship between the fatigue strength of the material and FIG. 7 is a graph showing the relationship between the volume fraction of titania whiskers and the fatigue strength of the composite material. 10... Hydrated titania whisker, 10'... Titania whisker, 12... Pure Al powder, 14... Colloidal silica aqueous solution, 16... Propeller, 18.18'
... Molded object, 20 ... Heater, 22 ... Weight, 2
4... Case, 26... High pressure casting device, 28...
Mold, 30...Molten pure Al, 32...Plunger, 34...Knockout pin Patent applicant: Toyota Motor Corporation representative
Patent attorney Masa Akashi
Takeshi diagram diagram diagram diagram diagram diagram

Claims (1)

【特許請求の範囲】[Claims] チタニアウイスカを強化材としAl又はAl合金をマト
リックスとする複合材料の製造方法にして、チタニアウ
イスカと無機バインダとを含みマトリックス金属と実質
的に同一の組成のAl又はAl合金の微細片若しくはコ
ーティング層により個々のウィスカが互いに隔置された
成形体を形成し、前記成形体を加熱することにより前記
チタニアウイスカを焼成し、前記成形体中にマトリック
ス金属の溶湯を加圧含浸させる製造方法。
A method for producing a composite material using titania whiskers as a reinforcing material and Al or an Al alloy as a matrix, the method comprising fine pieces or a coating layer of Al or Al alloy containing titania whiskers and an inorganic binder and having substantially the same composition as the matrix metal. A manufacturing method comprising: forming a molded body in which individual whiskers are spaced apart from each other; heating the molded body to sinter the titania whiskers; and impregnating a molten matrix metal into the molded body under pressure.
JP2094424A 1990-04-10 1990-04-10 Method for producing titania whisker reinforced Al-based composite material Expired - Lifetime JP2792192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2094424A JP2792192B2 (en) 1990-04-10 1990-04-10 Method for producing titania whisker reinforced Al-based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2094424A JP2792192B2 (en) 1990-04-10 1990-04-10 Method for producing titania whisker reinforced Al-based composite material

Publications (2)

Publication Number Publication Date
JPH03291337A true JPH03291337A (en) 1991-12-20
JP2792192B2 JP2792192B2 (en) 1998-08-27

Family

ID=14109850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2094424A Expired - Lifetime JP2792192B2 (en) 1990-04-10 1990-04-10 Method for producing titania whisker reinforced Al-based composite material

Country Status (1)

Country Link
JP (1) JP2792192B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173846A (en) * 1984-09-19 1986-04-16 Toyota Motor Corp Porous fiber reinforced metallic composite material and its manufacture
JPS6473030A (en) * 1987-09-14 1989-03-17 Toho Titanium Co Ltd Production of titania fiber perform
JPH01279721A (en) * 1988-04-30 1989-11-10 Toyota Motor Corp Manufacture of metal-based composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173846A (en) * 1984-09-19 1986-04-16 Toyota Motor Corp Porous fiber reinforced metallic composite material and its manufacture
JPS6473030A (en) * 1987-09-14 1989-03-17 Toho Titanium Co Ltd Production of titania fiber perform
JPH01279721A (en) * 1988-04-30 1989-11-10 Toyota Motor Corp Manufacture of metal-based composite material

Also Published As

Publication number Publication date
JP2792192B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
JPH0811813B2 (en) Fiber-reinforced metal matrix composite
US5536686A (en) Phosphate binders for metal-matrix composites
US5236638A (en) Process for producing a shaped body of graphite
JPS5923831A (en) Production of composite material reinforced with sic whisker
US5141683A (en) Method of producing reinforced materials
US6521061B1 (en) Preforms, metal matrix composite materials using said preforms, and producing processes thereof
JPH02310329A (en) Manufacture of particle dispersion composite
JPH03291337A (en) Manufacture of titania whisker reinforced al matrix composite
JPS60180967A (en) Method of compressing porous ceramic structural member
JPS6357734A (en) Fiber reinforced metal and its production
JP2788448B2 (en) Method for producing fiber composite member
JP2675187B2 (en) Gradient silicon nitride composite material and method of manufacturing the same
JP2002275505A (en) Method for producing soft magnetic compact and soft magnetic compact
JP3619258B2 (en) Manufacturing method of composite reinforcement for functionally graded metal matrix composite
SU1532201A1 (en) Method of producing articles from aluminium powders
KR100222068B1 (en) Hybrid composites and method for making same
JPH02263558A (en) Manufacture of particle dispersing type composite material
JPH07216479A (en) Metallic composite
JPH04333536A (en) Production of whisker preform
JPH03138325A (en) Manufacture of intermetallic compound sintered compact
JPH0513906B2 (en)
JPH05238854A (en) Production of ceramic composite member
JPS60138031A (en) Fibrous molding for composite material
JPH10280067A (en) Production of composite material
JPH11302078A (en) Composite material and its production