JPH03138325A - Manufacture of intermetallic compound sintered compact - Google Patents

Manufacture of intermetallic compound sintered compact

Info

Publication number
JPH03138325A
JPH03138325A JP1208492A JP20849289A JPH03138325A JP H03138325 A JPH03138325 A JP H03138325A JP 1208492 A JP1208492 A JP 1208492A JP 20849289 A JP20849289 A JP 20849289A JP H03138325 A JPH03138325 A JP H03138325A
Authority
JP
Japan
Prior art keywords
powder
intermetallic compound
pressure
reaction
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1208492A
Other languages
Japanese (ja)
Inventor
Kenichi Aota
健一 青田
Mutsumi Abe
睦 安倍
Takashi Motoda
元田 高司
Hideo Shingu
新宮 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JPH03138325A publication Critical patent/JPH03138325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily manufacture the intermetallic compound sintered compact of optional shape which is dense and free from the generation of internal defects by subjecting a mixture of Al and other elemental powder to precompacting, applying pressure thereto by a powdery pressure medium, executing heating and utilizing the heat of reaction. CONSTITUTION:Al powder and other elemental powder of Ti, Ni, Fe, etc., are mixed, to which 50kg/mm<2> pressure is applied, and precompacting is executed in the state where the new faces of each powder are brought into contact. Next, >=1kg/mm<2> pressure is applied thereto by using a powdery pressure medium such as sand and ceramic powder. While the pressure is held, the green compact is heated to >=400 deg.C to start an intermetallic compound forming reaction. By utilizing the heat of reaction generated by the reaction, the above forming reaction is progressed. In this way, the intermetallic compound sintered compact light in weight and provided with excellent heat resistance, high temp. strength, wear resistance and corrosion resistance can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、軽量で耐熱性が高く、加熱炉、自動車、航空
機等のエンジンやガスタービン、更にはロケットや宇宙
往還機の機体材料等として有用な金属間化合物成形体の
製法に関し、この成形体は耐摩耗性や耐食性にも優れた
ものであり、各種機械部品としても有用である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is lightweight and has high heat resistance, and can be used as a material for engines and gas turbines in heating furnaces, automobiles, aircraft, etc., and also as airframe materials for rockets and spacecraft. Regarding the method for producing a useful intermetallic compound molded body, this molded body has excellent wear resistance and corrosion resistance, and is also useful as various mechanical parts.

[従来の技術] 軽量で耐熱性および高温強度に優れたものとしては、A
l−Ti、Al−Ni、Al−Feの如きAlを含む金
属間化合物が知られている。しかしこれらの金属間化合
物は展延性が極端に悪く、使用目的に沿う形状に成形加
工することが困難であるため用途は著しく制限されてい
る。
[Prior art] Lightweight and excellent in heat resistance and high temperature strength, A
Intermetallic compounds containing Al such as l-Ti, Al-Ni, and Al-Fe are known. However, these intermetallic compounds have extremely poor malleability and are difficult to mold into a shape that meets the intended use, so their uses are extremely limited.

そこで該金属間化合物粉末を高温高圧で固化成形する方
法や精密鋳造法によって成形する方法が開発されたが、
これらの方法を実施するには高価な成形設備が要求され
るばかりでなく、成形品がポーラスとなったり鋳造欠陥
を生じるといった問題があり、金属間化合物が有してい
る特徴を十分に生かし得るに至っていない。
Therefore, a method of solidifying and molding the intermetallic compound powder at high temperature and high pressure and a method of molding it by precision casting have been developed.
Implementing these methods not only requires expensive molding equipment, but also poses problems such as molded products becoming porous and causing casting defects, and it is difficult to take full advantage of the characteristics of intermetallic compounds. has not yet been reached.

[発明が解決しようとする課題] 本発明はこの様な事情に着目してなされたものであって
、その目的は、緻密で内部欠陥のない任意形状の金属間
化合物成形体を容易に得ることのできる方法を提供しよ
うとするものであるゆ[課題を解決するための手段] 上記!!題を解決することのできた本発明の構成は、A
Iを構成元素として含む金属間化合物よりなる成形体を
製造するに当たり、At粉末と、当該金属間化合物を形
成する他の元素粉末とを原料とし、 ■これら原料の混合物に50に8716012以上の圧
力を加えて各粉末の新生面が接する状態で予備成形する
か、あるいは ■上記原料を機械的に混合して個々の粉末に接着分離を
くり返させ合金化(各構成元素の領域が同−粉末内で存
在する)した粉末を製作した後予備成形し、 その後、粉粒状圧力媒体を用いて1Kg/+am”以上
の圧力を加え、この圧力を維持しっつ400t:以上に
加熱して金属間化合物生成反応を開始させ、該生成反応
により生じる反応熱を利用して該生成反応を進行させな
がら緻密化するところに要旨を有するものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances, and its purpose is to easily obtain an intermetallic compound molded body of any shape that is dense and free of internal defects. [Means for solving the problem] The above! ! The configuration of the present invention that can solve the problem is A.
In producing a molded body made of an intermetallic compound containing I as a constituent element, At powder and other elemental powders forming the intermetallic compound are used as raw materials, and the mixture of these raw materials is subjected to a pressure of 50 to 8716012 or more. or ■ mechanically mix the above raw materials and repeat adhesion and separation of the individual powders to form an alloy. After producing the powder (which exists in The gist of this method is to start a production reaction and use the reaction heat generated by the production reaction to advance the production reaction and densify it.

[作用] Al−Ti、Al−Ni、Al−Fe等の金属間化合物
は、前述の如く軽量で耐熱性および高温強度が高く、ま
た耐食性にも優れたものであるから、こうした特性を生
かすことができれば広汎な用途開発が期待される。とこ
ろがこれらは展延性が極端に悪く成形が困難であるとこ
ろから、用途開発が著しく立ち遅れていることは先に述
べた通りである。そこで本発明者らは成形性の問題を解
決すべく種々検討を重ねた結果、AIと他の元素を粉末
の状態で混合してから予備成形し、その後上記両元素を
反応させて金属間化合物を生成させる手順を採用すれば
、任意の形状の金属間化合物成形体が容易に得られるこ
とを知った。但しAIは非常に酸化され易く、通常の粉
末冶金法をそのまま適用したのでは、AI粉末表面を覆
っている酸化物被膜が他の元素との金属間化合物生成反
応の発生を阻害し、当初期待した様な性能の金属間化合
物成形体を得ることはできなかった。そこで混合粉末の
状態で金属間化合物生成反応をうまく進行させるべく更
に研究を進めた結果、金属間化合物を構成する原料粉末
混合物に50 Kg/mm”以上の圧力を加えて各粉末
の新生面が接する状態で予備成形するか、あるいは該原
料粉末を機械的に合金化して同−粉末内に各元素の領域
が存在する粉末に変化せしめ、その後所定の条件で加熱
・加圧すれば、金属間化合物生成反応がうまく進行し、
緻密で優れた物性を示す金属間化合物成形体が得られる
ことを知った。即ち原料粉末に50Kg/am”以上の
圧力を加えて予備成形すると、該圧力により原料粉末が
変形して表面の酸化物皮膜が破れ、活性な新生面が露出
する。この場合、金属間化合物の生成に必要な最少限の
新生面をAI粉末表面に露出させるには、予備成形時の
圧力を50 Kg/ am”以上に設定しなければなら
ず、これ未満の圧力では400℃程度の低い温度では金
属間化合物生成反応が十分に進まず、大部分が隼に圧粉
成形されただけのものとなって目的にかなう物性の成形
体を得ることはできない。予備成形時における圧力の上
限は特に存在しないが、新生面露出効果は100Kg/
mm2程度で飽和し、それ以上圧力を高めてもそれ以上
の効果は得られないので経済的に無駄である。
[Function] As mentioned above, intermetallic compounds such as Al-Ti, Al-Ni, and Al-Fe are lightweight, have high heat resistance and high-temperature strength, and are also excellent in corrosion resistance. If this is possible, a wide range of applications can be expected. However, as mentioned above, these materials have extremely poor ductility and are difficult to mold, so the development of their uses has lagged significantly behind. Therefore, the present inventors conducted various studies to solve the problem of formability, and found that AI and other elements were mixed in powder form and then preformed, and then the two elements were reacted to form an intermetallic compound. It was found that an intermetallic compound molded body of any shape can be easily obtained by adopting a procedure for producing . However, AI is very easily oxidized, and if ordinary powder metallurgy methods were applied as is, the oxide film covering the surface of the AI powder would inhibit the generation of intermetallic compound-forming reactions with other elements, and the initially expected result would not be possible. It was not possible to obtain an intermetallic compound molded body with such performance. Therefore, we conducted further research in order to successfully progress the intermetallic compound generation reaction in the mixed powder state. As a result, we applied a pressure of 50 kg/mm or more to the raw powder mixture that makes up the intermetallic compound, so that the new surfaces of each powder came into contact with each other. Intermetallic compounds can be formed by preforming the raw material powder, or by mechanically alloying the raw material powder to transform it into a powder in which regions of each element are present, and then heating and pressurizing it under predetermined conditions. The production reaction progresses well,
We learned that it is possible to obtain intermetallic compound compacts that are dense and exhibit excellent physical properties. That is, when the raw material powder is preformed by applying a pressure of 50 kg/am" or more, the raw material powder is deformed by the pressure and the oxide film on the surface is torn, exposing the active new surface. In this case, the formation of intermetallic compounds In order to expose the minimum new surface required for the AI powder on the surface of the AI powder, the pressure during preforming must be set to 50 Kg/am” or higher; at a pressure lower than this, the metal will form at temperatures as low as 400°C. The intermediate compound formation reaction does not proceed sufficiently, and most of the product is simply compacted, making it impossible to obtain a molded product with physical properties that meet the purpose. There is no particular upper limit to the pressure during preforming, but the new surface exposure effect is 100 kg/
It is saturated at about mm2, and even if the pressure is increased further, no further effect can be obtained, so it is economically wasteful.

また新生面を露出させる他の手段としては、原料粉末を
ボールミルやアトライター等によフて機械的に攪拌し、
各原料粉末同士に接着分離をくり返させ同−粉末内で各
元素が共存する粉末を製作する方法があり、この場合は
個々の粉末の新生面が露出して各元素が相互に密接して
いるので予備成形段階で格別大きな予備成形圧力は必要
とせず、10〜30 Kg/ mm2程度の圧力をかけ
るだけでよい。
Another way to expose the new surface is to mechanically stir the raw material powder using a ball mill, attritor, etc.
There is a method of repeatedly adhering and separating each raw material powder to produce a powder in which each element coexists within the same powder. In this case, the new surface of each powder is exposed and each element is in close contact with each other. Therefore, a particularly large preforming pressure is not required at the preforming stage, and it is sufficient to apply a pressure of about 10 to 30 kg/mm2.

予備成形の後は、砂やセラミックス粉等の粉末状圧力媒
体を使用して1に37mm2以上の圧力を加え、この圧
力を維持しつつ400℃以上に加熱する。そうすると予
備成形体内において新生面同士が接触した部分より金属
間化合物生成反応が起こり、更に該反応に伴なって生成
する反応熱により金属間化合物生成反応が進行し、予備
成形体全体が金属間化合物に変化していく、このときの
圧力が1にg/is”未満である場合は、予備成形体の
圧密化が不十分になって内部に空孔欠陥ができ易くなる
ばかりでなく、新生面同士の接触も不十分となって金属
間化合物生成反応の進行も遅くなる。
After preforming, a pressure of 37 mm 2 or more is applied to 1 using a powder pressure medium such as sand or ceramic powder, and while maintaining this pressure, it is heated to 400° C. or more. Then, an intermetallic compound production reaction occurs in the preform at the part where the newly formed surfaces come into contact with each other, and the intermetallic compound production reaction progresses due to the reaction heat generated by this reaction, and the entire preform becomes an intermetallic compound. If the pressure at this time is less than 1 g/is, the preform will not only be insufficiently compacted and void defects will easily form inside, but also the new surfaces will Contact is also insufficient, and the progress of the intermetallic compound formation reaction is also slowed down.

このときの加圧は所定圧力まで一気に高めてもよく、あ
るいは段階的に昇圧してもよい、また加熱温度が400
℃未満では金属間化合物生成反応速度が極端に遅くなり
、反応熱も殆ど発生しなくなるのでその後の反応進行速
度も上がらず、全体を金属間化合物に変えるのに膨大な
時間を要することになる。また予備成形後は先ず所定の
圧力をかけて圧密化した後加熱して金属間化合物生成反
応を開始させる必要があり、先に400℃以上に加熱す
ると圧密化前に硬質の金属間化合物が生成し、これがブ
リッジ状となってその後の圧密化ができなくなり、内部
に空孔欠陥が残されたままとなる。しかし先ず昇圧し圧
密化してから加熱するとこうした問題が起こらず、空孔
欠陥のない緻密な金属間化合物成形体を得ることができ
る。尚この加圧・加熱工程で粉粒状圧縮媒体を使用する
のは、次の様な理由によるものである。
The pressurization at this time may be increased all at once to a predetermined pressure, or may be increased in steps, and the heating temperature may be 400
If the temperature is less than 0.degree. C., the intermetallic compound formation reaction rate will be extremely slow and little reaction heat will be generated, so the subsequent reaction progress rate will not increase and it will take an enormous amount of time to convert the entire reaction into an intermetallic compound. In addition, after preforming, it is necessary to first apply a predetermined pressure to consolidate, and then heat it to initiate the intermetallic compound generation reaction. If heated to 400°C or higher first, hard intermetallic compounds will be generated before consolidation. However, this forms a bridge shape, making subsequent consolidation impossible, and void defects remain inside. However, if the pressure is increased first to consolidate and then heated, this problem will not occur and a dense intermetallic compound molded body without void defects can be obtained. The reason why a granular compression medium is used in this pressurization/heating process is as follows.

即ち予備成形体はあくまでも予備的に加圧成形されたも
のであって圧密不足の状態にあり、内部には少なからぬ
ボイドが残されている。従って加圧工程では該ボイド中
の残留ガスをうまく成形体外へ放出させる必要があるが
、粉粒状圧縮媒体を使用すると予備成形体の全面にほぼ
均等な圧力がかかり、且つ成形体外へ放出されてきたガ
スは粉粒状圧縮媒体内の間隙を通して抜き出されるので
、空孔欠陥のない非常に緻密な成形体を得ることができ
るのである。圧縮媒体として使用する粉粒体の種類は特
に制限されないが、好まいしいのはアルミナ、窒化硼素
、シリカ等のセラミックス粉であり、予備成形体を全面
から均等に加圧し且つガス抜けを良くするという趣旨か
らすると、1mmφを超える粗粒物が含まれておらず平
均粒径が50〜200μm程度の粉末が好ましい。
In other words, the preformed body has been preliminarily press-formed and is not sufficiently compacted, and there are quite a few voids left inside. Therefore, in the pressurizing process, it is necessary to effectively release the residual gas in the voids to the outside of the molded body. However, if a granular compression medium is used, almost uniform pressure will be applied to the entire surface of the preformed body, and the gas will not be released to the outside of the molded body. Since the gas is extracted through the gaps in the granular compression medium, it is possible to obtain a very dense compact with no void defects. The type of powder used as the compression medium is not particularly limited, but ceramic powders such as alumina, boron nitride, and silica are preferred, as they are said to uniformly pressurize the entire surface of the preform and improve gas release. From the point of view, it is preferable to use a powder that does not contain coarse particles exceeding 1 mmφ and has an average particle size of about 50 to 200 μm.

本発明で使用されるAl粉末軟買で変形し易く、加圧成
形によって任意の形状の緻密な成形体を与えるという特
性があり、また表面に酸化物よりなる不働態皮膜を形成
し易いという特性を有しているので、上記本発明の特徴
を最も有効に発揮することのできる成分である。このA
lと組合される他の元素の種類は、AIと有用な金属間
化合物を形成し得るものであればどの様なものでもよい
が、代表的なものを例示すると、Ti、Ni。
The Al powder used in the present invention has the characteristics of being easily deformed, giving a dense compact of any shape by pressure molding, and easily forming a passive film made of oxide on the surface. Therefore, it is a component that can most effectively exhibit the features of the present invention. This A
Any type of other element may be used in combination with l as long as it can form a useful intermetallic compound with AI, but typical examples include Ti and Ni.

Feである。これらの元素とAIの配合比は用途や目標
特性に応じて適当に変えればよいが、AI系金金属間化
合物しての特徴が最も効果的に発揮されるのは、■(1
5〜63%)AI−(85〜37%)Ti、■(13〜
47%)AI−(87〜53%)Ni、■(33〜60
%)Al−(67〜40%)Feの組成を有するもので
あり、これら■〜■の金属間化合物には、上記好適組成
を保った状態で、これらを100重量部としたとき5重
量部以下の第3成分(たとえばB。
It is Fe. The blending ratio of these elements and AI can be changed appropriately depending on the application and target properties, but the characteristics of an AI-based gold intermetallic compound are most effectively exhibited by ■ (1
5-63%) AI-(85-37%) Ti, ■(13-
47%) AI-(87-53%) Ni, ■(33-60
%) Al-(67 to 40%) Fe, and these intermetallic compounds (■ to ■) contain 5 parts by weight when these are taken as 100 parts by weight while maintaining the above-mentioned preferred composition. The following third component (e.g. B.

Si、Mg、Nb、Y等)を加えて改質することも有効
である。
It is also effective to add and modify materials (Si, Mg, Nb, Y, etc.).

[実施例] 以下、実施例により本発明を具体的に説明するが、本発
明は下記実施例によって制約を受けるものではない。
[Examples] Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited by the following Examples.

第1表に示す金属粉末を使用し、同表に示す条件で予備
成形および合金化処理を行なって金属間化合物成形体を
製造した。
Using the metal powders shown in Table 1, preforming and alloying were performed under the conditions shown in Table 1 to produce intermetallic compound compacts.

但し、No、1〜15.19〜28のプレス成形では、
各金属粉末をVミキサーで均一に混合した後、内面にス
テアリン酸亜鉛を塗布した金型に充填し、所定圧力で加
圧して予備成形した。またNo、26〜18の押出成形
では、各金属粉末を均一に混合した後CIP法により7
0mm径のビレットを作製し、加熱温度を300℃に設
定して押出比を変えることにより予備成形圧力を調節し
、L半断面の押出材を得た後、所定長さに切断して予備
成形体とした。
However, in press molding of No. 1 to 15.19 to 28,
After uniformly mixing each metal powder with a V mixer, it was filled into a mold whose inner surface was coated with zinc stearate, and preformed by applying a predetermined pressure. In addition, in the extrusion molding of Nos. 26 to 18, after uniformly mixing each metal powder, 7
A billet with a diameter of 0 mm is prepared, the heating temperature is set to 300°C, and the preforming pressure is adjusted by changing the extrusion ratio to obtain an extruded material with an L half cross section, which is then cut to a predetermined length and preformed. As a body.

次いで粒径50〜200μmの砂が充填されたホットプ
レス型の該砂内に上記予備成形体を埋込み、上ポンチで
0.5にg/ram”の圧力を加えた後300℃まで昇
温し、更に第1表に示す圧力まで昇圧した後同表に示す
温度まで昇温して30分間保持した。
Next, the preform was embedded in a hot press mold filled with sand with a particle size of 50 to 200 μm, and after applying a pressure of 0.5 g/ram with an upper punch, the temperature was raised to 300°C. After further increasing the pressure to the pressure shown in Table 1, the temperature was raised to the temperature shown in the same table and held for 30 minutes.

得られた各成形体を組織観察して空洞の有無を確認する
と共に、硬度測定により物性を確認し、X線回折により
金属間化合物の存在を確認した。
The structure of each of the obtained molded bodies was observed to confirm the presence or absence of cavities, the physical properties were confirmed by hardness measurement, and the presence of intermetallic compounds was confirmed by X-ray diffraction.

結果を第1表に一括して示す。The results are summarized in Table 1.

第1表より次の様に考察することができる。From Table 1, it can be considered as follows.

実験No、 1〜7は予備成形圧力の影響を調べたもの
であり、予備成形圧力が50 Kg/ mff12未満
である実験No、 1〜4(いずれも比較例)では、予
備成形後I Kg/ff1m2X 500℃で加圧・加
熱することにより気孔欠陥はなくなっていたが、X線回
折によると殆んどが原料粉末のままで残っており、金属
間化合物の生成は殆ど認められず、硬さも劣悪であった
。これに対し実験No。5〜7は予備成形圧力が本発明
の規定要件に合致する実施例であり、成形体に気孔欠陥
は認められず、しかも殆んどが金属間化合物に変わって
おり、優れた硬さを有するものであった。
Experiment Nos. 1 to 7 investigated the influence of preforming pressure, and in Experiments No. 1 to 4 (all comparative examples) where the preforming pressure was less than 50 Kg/mff12, I Kg/mff after preforming. ff1 m2 It was poor. On the other hand, experiment no. Examples 5 to 7 are examples in which the preforming pressure meets the specified requirements of the present invention, and there are no pore defects observed in the molded product, and most of the molded product has been converted to intermetallic compounds, so it has excellent hardness. It was something.

実験No、 8.8〜10.15からは、予備成形後の
温度を固定し圧力を変えた場合の影響を確認することが
できる。即ち実験No、 8.9は圧力が1に37mm
”未満である比較例であり、成形体内部に多数のミクロ
ボッイドが確認されるのに対し、圧力を1にg/rrr
ra2以上に設定した実験Nc、6および10では、こ
の様なミクロボイドは全く認められない。
From Experiment Nos. 8.8 to 10.15, it is possible to confirm the effect of changing the pressure while fixing the temperature after preforming. That is, experiment No. 8.9 has a pressure of 1 to 37 mm.
In this comparative example, a large number of microvoids were confirmed inside the molded body.
In experiments Nc, 6 and 10, in which ra was set to 2 or higher, no such microvoids were observed.

実験No、1〜21はAl−Ti系、実験No。Experiment No. 1 to 21 are Al-Ti system, experiment No.

22.23はA l−Fe系、実験No、24.25は
A I −N i系の例、No、26〜28はこれらに
他の微量元素を追加した例であり、予備成形条件および
その後の加圧・加熱条件が本発明の規定要件を満たす実
施例は、いずれの成形体にもミクロボイド欠陥は認めら
れず、夫々金属間化合物が生成しており、いずれも優れ
た硬さを有している。
22.23 is an example of Al-Fe system, experiment No. 24.25 is an example of AI-Ni system, and Nos. 26 to 28 are examples of adding other trace elements to these, and the preforming conditions and subsequent In the examples in which the pressurization and heating conditions meet the specified requirements of the present invention, no microvoid defects were observed in any of the molded products, intermetallic compounds were formed, and all of them had excellent hardness. ing.

尚第1図は、上記の実験データより、予備処理後のm密
化・金属間化合物生成反応条件を10にg/mm’ x
 500℃に設定し、予備処理圧力を変えた場合の硬さ
に及ぼす影響をグラフ化したものであり、予備成形圧力
を50 Kg/ Ill”以上に設定することにより成
形体の硬さが著しく高められることを確認することがで
きる。
In addition, Fig. 1 shows that, based on the above experimental data, the m-densification/intermetallic compound generation reaction conditions after pretreatment are set to 10 g/mm' x
This is a graph showing the effect on hardness when the pre-forming pressure is set at 500℃ and the pre-processing pressure is changed.The hardness of the molded product increases significantly by setting the pre-forming pressure to 50 Kg/Ill'' or higher. It can be confirmed that

また第2図は、予備処理条件を70 Kg/lam2x
500℃に設定し、その後の緻密化・金属間化合物生成
反応時の温度を変えた場合(圧力は1.5 Kg/m+
n2に設定)の硬さに与える影響をグラフ化したもので
あり、温度を400℃以上に設定することにより成形体
の硬さは著しく向上する。また第3図は同様にして緻密
化・金属間化合物生成反応時の圧力を変えた場合(温度
は500℃に設定)の硬さに与える影響をグラフ化した
ものであり、成形体の硬さを満足のいく程度に高めるに
は、圧力を1にg/mva2以上に設定すべきであるこ
とが分かる。
In addition, Figure 2 shows the pretreatment conditions at 70 Kg/lam2x.
When the temperature was set at 500℃ and the temperature during the subsequent densification/intermetallic compound generation reaction was changed (the pressure was 1.5 Kg/m+
This is a graph showing the influence of temperature (set at n2) on hardness, and the hardness of the molded body is significantly improved by setting the temperature to 400°C or higher. In addition, Figure 3 is a graph showing the effect on the hardness of changing the pressure during the densification/intermetallic compound generation reaction (temperature set at 500°C), and shows that the hardness of the compact is It can be seen that in order to satisfactorily increase the pressure, the pressure should be set to 1 g/mva2 or higher.

次に、下記第2表に示す実験No、30〜33は、予備
成形前の新生面露出処理をボールミルまたはアトライタ
を用いた機械的攪拌により行なった例であり(前記実験
No、  1〜28は、圧力により原料粉末を変形させ
て酸化物皮膜を破壊し新生面を露出させた例である)、
この場合も、予備成形条件および緻密化・金属間化合物
生成反応条件を適正に設定することにより、気孔欠陥の
ない高硬度の金属間化合物成形体が得られている。
Next, Experiment Nos. 30 to 33 shown in Table 2 below are examples in which the new surface exposure treatment before preforming was performed by mechanical stirring using a ball mill or an attritor (Experiment Nos. 1 to 28 are as follows: This is an example in which the raw material powder is deformed by pressure to destroy the oxide film and expose the new surface).
In this case as well, by appropriately setting the preforming conditions and the densification/intermetallic compound formation reaction conditions, a highly hard intermetallic compound molded body without pore defects was obtained.

[発明の効果] 本発明は以上の様に構成されており、熱変形の困難な金
属間化合物の状態で成形加工するのではなく、加工の容
易な原料粉末の状態で成形した後金属間化合物に変える
方法であるから、任意の形状のものを容易に得ることが
でき、且つ最終的には軽量で優れた耐熱性、高温強度、
耐摩耗性、耐食性を備えた成形体を得ることができ、応
用範囲を大幅に拡大し得ることになった。
[Effects of the Invention] The present invention is configured as described above, and instead of forming the intermetallic compound in the form of an intermetallic compound that is difficult to thermally deform, the intermetallic compound is formed after being formed in the form of a raw material powder that is easy to process. Because it is a method of changing to
A molded article with wear resistance and corrosion resistance can be obtained, and the range of applications can be greatly expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は予備成形圧力と成形体の関係を示すグラフ、第
2.3図は緻密化・金属間化合物生成反応時の温度また
は圧力と成形体の硬さの関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the preforming pressure and the compact, and FIGS. 2 and 3 are graphs showing the relationship between the temperature or pressure during the densification/intermetallic compound production reaction and the hardness of the compact.

Claims (6)

【特許請求の範囲】[Claims] (1)Alを構成元素として含む金属間化合物よりなる
成形体を製造するに当たり、Al粉末と、当該金属間化
合物を形成する他の元素粉末との混合物に、50Kg/
mm^2以上の圧力を加えて各粉末の新生面が接する状
態で予備成形し、次いで粉粒状圧縮媒体を用いて1Kg
/mm^2以上の圧力を加え、この圧力を維持しつつ4
00℃以上に加熱して金属間化合物生成反応を開始させ
、該生成反応により生ずる反応熱を利用して該生成反応
を進行させながら緻密化することを特徴とする金属間化
合物成形体の製法。
(1) In producing a molded body made of an intermetallic compound containing Al as a constituent element, 50 kg/
Apply a pressure of mm^2 or more to preform the new surfaces of each powder in contact with each other, then use powder-granular compression medium to form the powder into 1 kg.
/mm^2 or more, and while maintaining this pressure,
1. A method for producing an intermetallic compound molded article, which comprises heating to 00° C. or higher to start an intermetallic compound production reaction, and densifying the product while progressing the production reaction using the reaction heat generated by the production reaction.
(2)Alを構成元素として含む金属間化合物よりなる
成形体を製造するに当たり、Al粉末と、当該金属間化
合物を形成する他の元素粉末を機械的に混合して各粉末
表面に新生面を生ぜしめ、これを予備成形した後、粉粒
状圧縮媒体を用いて1Kg/mm^2以上の圧力を加え
、この圧力を維持しつつ400℃以上に加熱して金属間
化合物生成反応を開始させ、該生成反応により生じる反
応熱を利用して該生成反応を進行させながら緻密化する
ことを特徴とする金属間化合物成形体の製法。
(2) When producing a compact made of an intermetallic compound containing Al as a constituent element, a new surface is generated on the surface of each powder by mechanically mixing Al powder and powder of other elements that form the intermetallic compound. After tightening and preforming this, a pressure of 1 kg/mm^2 or more is applied using a granular compression medium, and while maintaining this pressure, heating is performed to 400 ° C. or more to start an intermetallic compound production reaction. 1. A method for producing an intermetallic compound molded article, which comprises densifying the product while advancing the production reaction using reaction heat generated by the production reaction.
(3)Al粉末:15〜63重量%とTi粉末:85〜
37重量%を原料として使用する請求項(1)または(
2)記載の製法。
(3) Al powder: 15~63% by weight and Ti powder: 85~
Claim (1) or (1) in which 37% by weight is used as raw material
2) The manufacturing method described.
(4)Al粉末:13〜47重量%とNi粉末:87〜
53重量%を原料として使用する請求項(1)または(
2)記載の製法。
(4) Al powder: 13~47% by weight and Ni powder: 87~
Claim (1) or (1) in which 53% by weight is used as raw material
2) The manufacturing method described.
(5)Al粉末:33〜60重量%とFe粉末:67〜
40重量%を原料として使用する請求項(1)または(
2)記載の製法。
(5) Al powder: 33~60% by weight and Fe powder: 67~
Claim (1) or (1) in which 40% by weight is used as raw material
2) The manufacturing method described.
(6)上記原料元素の総和を100重量部としたとき、
更に他の元素としてB、Si、Mg、Nb、Yの1種ま
たは2種以上を多くとも5重量部配合したものを原料と
して使用する請求項(3)〜(5)のいずれかに記載の
製法。
(6) When the total of the above raw material elements is 100 parts by weight,
According to any one of claims (3) to (5), the raw material contains at most 5 parts by weight of one or more of B, Si, Mg, Nb, and Y as other elements. Manufacturing method.
JP1208492A 1989-07-28 1989-08-10 Manufacture of intermetallic compound sintered compact Pending JPH03138325A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19729289 1989-07-28
JP1-197292 1989-07-28

Publications (1)

Publication Number Publication Date
JPH03138325A true JPH03138325A (en) 1991-06-12

Family

ID=16372038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1208492A Pending JPH03138325A (en) 1989-07-28 1989-08-10 Manufacture of intermetallic compound sintered compact

Country Status (1)

Country Link
JP (1) JPH03138325A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183488A1 (en) * 2012-06-08 2013-12-12 株式会社豊田中央研究所 Method for molding aluminum alloy powder, and aluminum alloy member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183488A1 (en) * 2012-06-08 2013-12-12 株式会社豊田中央研究所 Method for molding aluminum alloy powder, and aluminum alloy member

Similar Documents

Publication Publication Date Title
DE102008061024B4 (en) A method of making TiB reinforced composite titanium alloy based components by powder metallurgy methods
US5141683A (en) Method of producing reinforced materials
EP1390321B1 (en) Metal-ceramic composite material and method for production thereof
WO2005066380A1 (en) Processes for sintering aluminum and aluminum alloy components
US20070110608A1 (en) Processes for sintering aluminum and aluminum alloy components
JPH03138325A (en) Manufacture of intermetallic compound sintered compact
JPH1068004A (en) Compacting method for titanium alloy
JPH0328348A (en) Ceramic/metal composite
JP3417666B2 (en) Member having Al-based intermetallic compound reinforced composite part and method of manufacturing the same
RU2816713C1 (en) Method for producing refractory material
WO2023286407A1 (en) Method for producing high metal powder content aluminum composite body, method for preparing preform, and high metal powder content aluminum composite body
JP3123114B2 (en) Manufacturing method of high precision aluminum alloy parts
EP1809433A2 (en) Method for the production of objects from a metallic composite material
JPH10195560A (en) Production of high heat resistant aluminum alloy and production of green compact
US4985200A (en) Method of making sintered aluminium nickel alloys
JP2857751B2 (en) Manufacturing method of cast iron based high density powder sintered compact
JPS6016868A (en) Manufacture of silicon carbide sintered body
DE19629064A1 (en) Reinforced metal matrix composite material production
JP3102582B2 (en) Manufacturing method of composite member
JPS62278240A (en) Compacting method for ti-al intermetallic compound member
JP3322926B2 (en) Manufacturing method of molded body
JPH01219070A (en) Production of sintered body
Cho et al. Fabrication of Ni-Al intermetallic compounds on the Al casting alloy by SHS process
JPH05238854A (en) Production of ceramic composite member
JPS61539A (en) Manufacture of whisker reinforced metallic composite material