JPH03289547A - Method and apparatus for measuring grating constant - Google Patents

Method and apparatus for measuring grating constant

Info

Publication number
JPH03289547A
JPH03289547A JP2090603A JP9060390A JPH03289547A JP H03289547 A JPH03289547 A JP H03289547A JP 2090603 A JP2090603 A JP 2090603A JP 9060390 A JP9060390 A JP 9060390A JP H03289547 A JPH03289547 A JP H03289547A
Authority
JP
Japan
Prior art keywords
rays
sample
angle
way
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2090603A
Other languages
Japanese (ja)
Inventor
Tomohisa Kitano
北野 友久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2090603A priority Critical patent/JPH03289547A/en
Publication of JPH03289547A publication Critical patent/JPH03289547A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the change in grating constant continuous in two dimensions and to make the countermeasure at a place clear and accurate by emitting collimated monochromatic X rays, performing spectroscopy of diffracted rays from a sample to be measured in an angle-decomposing way, and observing the rays. CONSTITUTION:Collimated monochromatic X rays 14 are cast on a material to be measured 18. At this time, the sample 18 is fixed at a certain angle. With an analyzer 111 being rotated, a series of diffracted rays undergo spectroscopy in an angle-decomposing way, and the rays are observed in a microscopic way. When the sample 18 is fixed at another angle, the diffracted rays 19 from the samples can undergo spectroscopy in the angle-decomposing way at the other angle position. Thus, the change in lattice constant of a single crystal can be made continuous in two dimensions without the effect of the lattice surface, and countermeasure at a place can be made clear and accurate. In this way, the grating constant can be obtained in the minute region in the vicinity of transition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単結晶材料の微小領域特に、転位近傍の格子
定数の不均一性を検出するための格子定数測定方法と装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a lattice constant measuring method and apparatus for detecting lattice constant non-uniformity in minute regions of single crystal materials, particularly in the vicinity of dislocations.

〔従来の技術〕[Conventional technology]

単結晶材料の格子定数の不均一性は、例えば、GaAs
結晶のような化合物半導体材料に対しては、GaとAs
のストイキオメトリ−と関係があり、デバイス特性の不
均一性に影響を及ぼす。特に転位近傍の微小領域でのス
トイキオメトリ−の変化がデバイス特性の不均一性に顕
著な影響を及ぼす。
The non-uniformity of the lattice constant of single crystal materials is, for example, GaAs
For compound semiconductor materials such as crystals, Ga and As
stoichiometry, and affects the nonuniformity of device characteristics. In particular, changes in stoichiometry in minute regions near dislocations significantly affect the nonuniformity of device characteristics.

従来、単結晶材料の格子定数を測定する方法として、第
2図に示しなX線ボンド法がある。入射X線21を試料
22に入射させ、試料22がらの回折線23を検出器2
4で検出し、試料22のブラック角を測定する方法であ
り、格子面の傾き、0補正等の影響をなくすため、回折
線23と反対側での試料22からの回折線25とで決定
されるブラック角より格子定数を決定している。
Conventionally, as a method for measuring the lattice constant of a single crystal material, there is an X-ray bond method shown in FIG. Incident X-rays 21 are made incident on a sample 22, and diffraction lines 23 from the sample 22 are detected by a detector 2.
4 and measure the Black angle of the sample 22. In order to eliminate the influence of the lattice plane inclination, zero correction, etc., it is determined by the diffraction line 23 and the diffraction line 25 from the sample 22 on the opposite side. The lattice constant is determined from the Black angle.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、従来の手法は、小さく絞られたX線ビームに
よって回折強度曲線を測定するため、測定している場所
が、単結晶中に存在する転位近傍かどうかの場所的対応
を決定することができない。また、得られる情報も離散
的なものであり、単結晶材料のごく一部の情報しか得る
ことができない。
However, because the conventional method measures the diffraction intensity curve using a narrowly focused X-ray beam, it is not possible to determine whether the location being measured is near a dislocation existing in a single crystal. . Furthermore, the information obtained is also discrete, and only a small portion of the information about the single crystal material can be obtained.

本発明のは、このような従来の欠点を除去せしめて、格
子定数の変化を二次元的に連続にしかも、場所的対応を
明確にして観察するための方法と装置を提供することに
ある。
The object of the present invention is to eliminate such conventional drawbacks and provide a method and apparatus for observing changes in lattice constants two-dimensionally and continuously, with clear spatial correspondence.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、コリメートした単色X線を被測定試料に照射
し、被測定試料からの回折線を角度分解的に分光して回
折顕微法的に観察するこ・とを特徴とする格子定数測定
方法である。
The present invention provides a lattice constant measurement method characterized by irradiating a sample to be measured with collimated monochromatic X-rays, diffraction lines from the sample to be measured are spectrally analyzed in an angle-resolved manner, and observed using diffraction microscopy. It is.

また、この方法を実現するための装置は、モノクロメー
タと、モノクロメータによって選別された特定波長のX
線が入射するコリメータと、コリメータからの非対称反
射X線が入射する被測定試料を載置する試料台と、被測
定試料からの回折線を角度分解的に分光するアナライザ
とを少くとも備えた構成になっている。
In addition, the equipment for realizing this method includes a monochromator and an X-ray of a specific wavelength selected by the monochromator.
A configuration comprising at least a collimator on which the X-rays are incident, a sample stage on which the sample to be measured is placed on which the asymmetrically reflected X-rays from the collimator are incident, and an analyzer for angle-resolved spectroscopy of diffraction lines from the sample to be measured. It has become.

〔実施例〕〔Example〕

ジルクロトロン放射光は強力な、連続の波長を有し、回
折現象を用いた結晶評価用のX線源として大変有用なも
のである。本発明は、このシンクロトロン放射光の特徴
を有効に利用したものである。以下、本発明の実施例に
ついて、図面を参照にして詳細に説明する。
Zircrotron radiation has a powerful, continuous wavelength and is very useful as an X-ray source for crystal evaluation using diffraction phenomena. The present invention effectively utilizes the characteristics of synchrotron radiation. Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

シンクトロン放射光11は、スリットによってX線ビー
ムサイズを成形された後、ω−2θ回転可能な、第1ゴ
ニオメータヘツドに設置されたモノクロメータ13によ
って、ある特定な波長な単色化される。この単色化され
たX!14は、スリット15によってビームサイズを成
形された後、ω−2θ回転可能な、第2ゴニオメータヘ
ツドに設置されたコリメータ16に入射する。コリメー
タ16からの反射は、試料表面に対して、斜めに存在す
る利用する非対称反射を用い、コリメータ16から出射
するX線17の発散角を小さく、しかも線束を広くする
ことが可能である。X線17は、ω−2θ凹転可能な第
3ゴニオ−メータヘッドに設置された試料18に入射さ
せ、試料18からの回折線19はω−2θ凹転可能な第
4ゴニオメータヘツドに設置されたアナライザ111に
よって角度分解的に分光された後、原子核乾板112で
回折顕微法的に観察される。
After the synchtron radiation light 11 is shaped into an X-ray beam size by a slit, it is made monochromatic to a specific wavelength by a monochromator 13 installed in the first goniometer head and capable of rotation in ω-2θ. This monochromatic X! 14 is shaped into a beam size by a slit 15, and then enters a collimator 16 which is rotatable in ω-2θ and is installed in the second goniometer head. The reflection from the collimator 16 uses asymmetric reflection that exists obliquely with respect to the sample surface, and it is possible to reduce the divergence angle of the X-rays 17 emitted from the collimator 16 and widen the ray flux. The X-ray 17 is incident on a sample 18 installed in a third goniometer head capable of concave rotation in ω-2θ, and the diffraction line 19 from the sample 18 is installed in a fourth goniometer head capable of concave rotation in ω-2θ. After being angularly resolved into spectra by an analyzer 111, the light is observed using a diffraction microscope using a nuclear emulsion plate 112.

今、試料18をある角度に固定し、アナライザ111を
逐次回転しながら、一連の回折像を顕微法的に観察する
と、試料18からの回折線19を、アナライザ111に
よって角度分解的に分光することが可能となる。同様に
、試料18を別の角度に固定し、アナライザ111を逐
次回転しながら、一連の回折像を顕微法的に観察すると
、別の角度位置からの試料18からの回折線19をアナ
ライザ111によって角度分解的に分光することが可能
となる。
Now, when the sample 18 is fixed at a certain angle and a series of diffraction images are microscopically observed while the analyzer 111 is rotated one after another, the diffraction lines 19 from the sample 18 are analyzed by the analyzer 111 in an angle-resolved manner. becomes possible. Similarly, when a series of diffraction images are microscopically observed while fixing the sample 18 at different angles and sequentially rotating the analyzer 111, the analyzer 111 detects diffraction lines 19 from the sample 18 from different angular positions. It becomes possible to perform angularly resolved spectroscopy.

このような一連の回折顕微像がら第3図に示したGaA
s結晶中のセル内部の各場所(A−D)で、強い回折像
が得られた格子点を逆空間にプロットしたものが、第4
図である。第3図において、Aは転位網が形成されてい
るセル壁と、結晶表面に突き出た転位との中間領域であ
り、Bは2つの結晶表面に突き出しな転位との中間領域
であり、C,Dは、セル内部の転位が存在しない領域で
ある。第4図において、各場所での格子点はq8軸に沿
って伸びた帯状を示し、その中点のずれから、各場所で
の格子定数の変化を求めることができる。また、中点の
qy軸方向のずれがら、各場所での格子面の変化を求め
ることができ、格子定数の変化と、格子面の変化とを分
離して求めることができる。
A series of such diffraction microscopic images is shown in Figure 3.
The lattice points where strong diffraction images were obtained at each location (A-D) inside the cell in the s-crystal are plotted in reciprocal space.
It is a diagram. In FIG. 3, A is an intermediate region between the cell wall where a dislocation network is formed and dislocations protruding to the crystal surface, B is an intermediate region between two dislocations that do not protrude to the crystal surface, C, D is a region where no dislocations exist inside the cell. In FIG. 4, the lattice points at each location show a band shape extending along the q8 axis, and the change in the lattice constant at each location can be determined from the shift of the midpoint. Furthermore, it is possible to determine the shift of the midpoint in the qy-axis direction and the change in the lattice plane at each location, and the change in the lattice constant and the change in the lattice plane can be determined separately.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、単結晶の格子定数の変化を、格子面の
影響を受けることなく、二次元的に連続に、しかも、場
所的対応を明確にして、例えば、転位近傍の微小領域で
求めることが可能であり、例えば、GaAs単結晶中の
転位近傍のストイキオメトリーと、半導体デバイス特性
との対比に有効な効果を有する。
According to the present invention, changes in the lattice constant of a single crystal can be determined continuously in two dimensions without being affected by lattice planes, and with clear local correspondence, for example, in minute regions near dislocations. For example, it has an effective effect in comparing the stoichiometry near dislocations in a GaAs single crystal and the characteristics of a semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す図、第2図は、従来
の格子定数測定装置の図、第3図はGaAs結晶中のセ
ル構造を示す図、第4図は各場所での強い回折像が得ら
れた格子点を逆空間にプロットした図である。 11・・・シンクロトロン放射光、12・・・スリット
、13・・・モノクロメータ、14・・・単色されたX
線、15・・・スリット、16・・・コリメータ、17
・・・出射X線、18・・・試料、19・・・回折線、
111・・・アナライザ、112・・・原子核乾板、2
1・・・入射X線、22・・・試料、23・・・回折線
、24・・・検出器、25・・・回折線。
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a diagram of a conventional lattice constant measuring device, Fig. 3 is a diagram showing a cell structure in a GaAs crystal, and Fig. 4 is a diagram showing each location. FIG. 2 is a diagram in which lattice points from which strong diffraction images were obtained are plotted in reciprocal space. 11... Synchrotron radiation, 12... Slit, 13... Monochromator, 14... Monochromatic X
Line, 15...Slit, 16...Collimator, 17
... Outgoing X-ray, 18... Sample, 19... Diffraction line,
111... Analyzer, 112... Nuclear emulsion plate, 2
DESCRIPTION OF SYMBOLS 1... Incident X-ray, 22... Sample, 23... Diffraction line, 24... Detector, 25... Diffraction line.

Claims (1)

【特許請求の範囲】 1、コリメートした単色X線を被測定試料に照射し、被
測定試料からの回折線を角度分解的に分光して回折顕微
法的に観察することを特徴とする格子定数測定方法。 2、モノクロメータと、モノクロメータによつて選別さ
れた特定波長のX線が入射するコリメータと、コリメー
タからの非対称反射X線が入射する被測定試料を載置す
る試料台と、被測定試料からの回折線を角度分解的に分
光するアナライザとを少くとも備えていることを特徴と
する格子定数測定装置。
[Claims] 1. A lattice constant characterized by irradiating a sample to be measured with collimated monochromatic X-rays, diffraction lines from the sample to be measured are separated into angle-resolved spectra, and observed using diffraction microscopy. Measuring method. 2. A monochromator, a collimator on which X-rays of a specific wavelength selected by the monochromator are incident, a sample stage on which a sample to be measured is placed on which the asymmetrically reflected X-rays from the collimator are incident, and a What is claimed is: 1. A lattice constant measuring device comprising at least an analyzer for angle-resolved spectroscopy of diffraction lines.
JP2090603A 1990-04-05 1990-04-05 Method and apparatus for measuring grating constant Pending JPH03289547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2090603A JPH03289547A (en) 1990-04-05 1990-04-05 Method and apparatus for measuring grating constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2090603A JPH03289547A (en) 1990-04-05 1990-04-05 Method and apparatus for measuring grating constant

Publications (1)

Publication Number Publication Date
JPH03289547A true JPH03289547A (en) 1991-12-19

Family

ID=14003049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2090603A Pending JPH03289547A (en) 1990-04-05 1990-04-05 Method and apparatus for measuring grating constant

Country Status (1)

Country Link
JP (1) JPH03289547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966213A (en) * 2016-10-20 2018-04-27 尚文涛 A kind of measuring device, measuring method and the scaling method in diffraction grating cycle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966213A (en) * 2016-10-20 2018-04-27 尚文涛 A kind of measuring device, measuring method and the scaling method in diffraction grating cycle

Similar Documents

Publication Publication Date Title
US6385289B1 (en) X-ray diffraction apparatus and method for measuring X-ray rocking curves
US8437450B2 (en) Fast measurement of X-ray diffraction from tilted layers
US5132997A (en) X-ray spectroscopic analyzing apparatus
RU2012872C1 (en) Method for obtaining image of object internal structure
US7120228B2 (en) Combined X-ray reflectometer and diffractometer
JPH11211654A (en) Polarization analysis device
KR920003050A (en) Inspection method of external phase precipitate of single crystal material
JP3968350B2 (en) X-ray diffraction apparatus and method
US5353324A (en) Total reflection X-ray diffraction micrographic method and apparatus
JPH03289547A (en) Method and apparatus for measuring grating constant
JPH11304729A (en) X-ray measurement method and x-ray measurement device
JP2905659B2 (en) X-ray apparatus and evaluation analysis method using the apparatus
JP2921597B2 (en) Total reflection spectrum measurement device
SU1103126A1 (en) Method of determination of structural characteristics of thin near-the-surface monocrystal layers
JPH1151883A (en) Method and equipment for fluorescent x-ray analysis
JPH04218754A (en) X-ray diffraction microscopic apparatus
JPH0735708A (en) Fluorescent x-ray analysis method
JP2952284B2 (en) X-ray optical system evaluation method
JPH06109662A (en) X-ray analyzer
JPH09145641A (en) Method and device for evaluating crystallinity of single crystal
RU2128820C1 (en) Process of timely test of roughness of supersmooth large- sized surfaces by method of x-ray scanning and device for its implementation
JPH10300695A (en) Fluorescent x-ray analyzer
SU1622803A1 (en) Method of determining the degree of disturbance of surface of volume of monocrystalline plates
JPH0933451A (en) Total reflection x-ray spectrometric apparatus of energy angle dispersion type
SU1702265A1 (en) Method of precision measurement of periods of crystal lattice