JPH11304729A - X-ray measurement method and x-ray measurement device - Google Patents

X-ray measurement method and x-ray measurement device

Info

Publication number
JPH11304729A
JPH11304729A JP11536098A JP11536098A JPH11304729A JP H11304729 A JPH11304729 A JP H11304729A JP 11536098 A JP11536098 A JP 11536098A JP 11536098 A JP11536098 A JP 11536098A JP H11304729 A JPH11304729 A JP H11304729A
Authority
JP
Japan
Prior art keywords
rotation
ray
sample
measured
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11536098A
Other languages
Japanese (ja)
Inventor
Etsuo Morita
悦男 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11536098A priority Critical patent/JPH11304729A/en
Publication of JPH11304729A publication Critical patent/JPH11304729A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray measurement method and an X-ray measurement device that can totally grasp the crystal orientation property and mosaic property and the state of the interval between surfaces of crystal surfaces that are vertical to the surface of a sample to be measured. SOLUTION: An X-ray source 2, a goniometer device 3 with a traveling mechanism in three directions x, y, and z of at least a sample 10 to be measured and a rotary mechanism in one direction ω, an X-ray detector 4 for detecting X rays Xd being reflected by the sample 10, and an X-ray measuring device 1 with an X-ray rotary mechanism for changing directions θ and 2θ of the X-ray source 2 and the X-ray detector 3 for a measurement point M of the sample 10 to be measured are used, thus fixing a sample surface 10s so that it is vertical to the rotary mechanism of one direction ω and setting an incidence angle α of X rays to conditions for total reflection on the sample surface 10s.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、全反射とブラッグ
反射とを利用して行うX線測定方法であって、被測定試
料の例えば面内結晶配向性や面内モザイク性等の表面特
性の評価に用いて好適なX線測定方法に係わる。また、
このX線測定方法に用いて好適なX線測定装置に係わ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring X-rays using total reflection and Bragg reflection, and relates to a method for measuring surface characteristics such as in-plane crystal orientation and in-plane mosaicity of a sample to be measured. The present invention relates to a suitable X-ray measurement method used for evaluation. Also,
The present invention relates to an X-ray measuring apparatus suitable for use in this X-ray measuring method.

【0002】[0002]

【従来の技術】結晶性試料において、その内部位置に応
じて結晶方位が変化する様子、例えば結晶配向、モザイ
ク性等を測定する方法としては、被測定試料を回転軸
(いわゆるω軸)の回りを回転させながらX線の入射角
θを変えたときに回折されるX線強度を測定するロッキ
ングカーブ法や、被測定試料を回転軸(いわゆるω軸)
の回りに回転させながら入射角と回折角とを測定するこ
とによって逆格子空間の強度分布を測定する逆格子マッ
ピング法が用いられている。
2. Description of the Related Art In a crystalline sample, a method of measuring a state in which a crystal orientation changes according to an internal position thereof, for example, a crystal orientation, a mosaic property, etc., is to move a sample to be measured around a rotation axis (so-called ω axis). The rocking curve method for measuring the X-ray intensity diffracted when the X-ray incident angle θ is changed while rotating the sample, or the rotation axis (so-called ω axis) of the sample to be measured
A reciprocal lattice mapping method is used in which the incident angle and the diffraction angle are measured while rotating about the angle, and the intensity distribution in the reciprocal lattice space is measured.

【0003】また、結晶内の格子面間隔の状態を評価す
る方法としては、例えば測定する結晶面からの回折角を
測定する2θ−ω法や、(hkl)結晶面における反射
と(−h−k−l)結晶面における反射のブラッグ条件
を満足した結晶方位を正確に走査するボンド法によって
結晶面間隔を測定する方法等が用いられている。
[0003] Methods for evaluating the state of lattice spacing in a crystal include, for example, the 2θ-ω method for measuring the diffraction angle from the crystal plane to be measured, the reflection on the (hkl) crystal plane, and the (−h− k-1) A method of measuring a crystal plane spacing by a bonding method for accurately scanning a crystal orientation satisfying a Bragg condition of reflection on a crystal plane is used.

【0004】一方、ω−2θスキャンを各ωにおいて逐
次測定することによって、目的とする(hkl)結晶面
に対する逆格子点hkl付近の、被測定試料表面に垂直
な逆格子断面強度分布を測定することによって、配向性
やモザイク性を測定する手法もある。
On the other hand, by sequentially measuring the ω-2θ scan at each ω, the reciprocal lattice cross-sectional intensity distribution perpendicular to the surface of the sample to be measured near the reciprocal lattice point hkl with respect to the target (hkl) crystal plane is measured. Accordingly, there is a method of measuring the orientation and the mosaic property.

【0005】上述の方法では、被測定試料の表面に対し
て傾いている結晶面か、或いは被測定試料の表面に平行
な結晶面における結晶方位の変化の様子や面間隔を測定
して評価を行っている。
In the above-described method, the evaluation is performed by measuring the change of the crystal orientation and the spacing between the crystal planes inclined with respect to the surface of the sample to be measured or the crystal plane parallel to the surface of the sample to be measured. Is going.

【0006】[0006]

【発明が解決しようとする課題】これに対して、被測定
試料の表面にほぼ垂直な結晶面の場合には、ブラッグ反
射した回折X線が被測定試料の内部に入ってしまうため
に、前述の方法では回折X線の測定が不可能である。
On the other hand, in the case of a crystal plane substantially perpendicular to the surface of the sample to be measured, the diffraction X-rays reflected by Bragg enter the inside of the sample to be measured. In the method (1), it is impossible to measure the diffraction X-ray.

【0007】そこで、X線の表面に対する入射角αを小
さくして、表面でX線の全反射を起こさせながら、かつ
表面に垂直な結晶面によるブラッグ反射を起こさせるこ
とによって(いわゆるGIXS:微小入射角X線回折
法)、ロッキングカーブ法や2θ−ω法(又はω−2θ
法)による結晶性の評価を行うようにしている。
Therefore, by reducing the incident angle α of the X-rays to the surface to cause total reflection of the X-rays at the surface and to cause Bragg reflection by a crystal plane perpendicular to the surface (so-called GIXS: minute Incident angle X-ray diffraction method), rocking curve method, 2θ-ω method (or ω-2θ)
Method) to evaluate the crystallinity.

【0008】ここで、試料の表面にほぼ垂直な結晶面に
ついて、面間隔の異なる領域を含み、結晶方位が結晶表
面内で変化する試料の測定においては、前述のGIXS
によるロッキングカーブ法や2θ−ω法を用いて、結晶
方位や格子面間隔の変化の様子が測定されている。
Here, in the measurement of a sample in which a crystal plane substantially perpendicular to the surface of the sample includes regions having different plane spacings and the crystal orientation changes within the crystal surface, the above-mentioned GIXS
The rocking curve method and the 2θ-ω method are used to measure changes in crystal orientation and lattice spacing.

【0009】ところが、GIXSによるロッキングカー
ブ法では、格子面間隔が近くかつ結晶方位がわずかに変
化したような試料においては、格子面間隔が近いことに
よる効果と結晶方位の変化による効果との2つの効果が
重なってしまうため、区別して評価することが困難であ
る。
However, in the rocking curve method by GIXS, in a sample in which the lattice spacing is close and the crystal orientation changes slightly, there are two effects, that is, the effect due to the close lattice spacing and the effect due to the change in crystal orientation. Since the effects overlap, it is difficult to evaluate them separately.

【0010】一方、GIXSによる2θ−ω法では、格
子面間隔は区別できるが、結晶方位の僅かな違いによる
面間隔の変化を総合的に捉えることが困難である。
[0010] On the other hand, in the 2θ-ω method by GIXS, although the lattice spacing can be distinguished, it is difficult to comprehensively grasp the change in the lattice spacing due to a slight difference in crystal orientation.

【0011】また、通常の逆格子マッピングにおいて
は、表面に垂直な方向の逆格子点又は表面に対して斜め
方向の逆格子点について、表面に対してほぼ垂直な逆格
子断面、場合によっては表面に対して傾斜した断面、を
測定するため、表面に平行又は表面に対して傾いた結晶
面におけるその結晶面方位の変化を知ることができる
が、表面に垂直な結晶面についてはその表面内回転等、
結晶面方位の変化を測定することはできない。
In the ordinary reciprocal lattice mapping, a reciprocal lattice point in a direction perpendicular to the surface or a reciprocal lattice point in a direction oblique to the surface is a reciprocal lattice cross section almost perpendicular to the surface, and in some cases, the surface is In order to measure the cross section inclined with respect to the surface, it is possible to know the change of the crystal plane orientation in the crystal plane parallel to the surface or inclined with respect to the surface. etc,
The change in crystal plane orientation cannot be measured.

【0012】上述した問題の解決のために、本発明にお
いては、被測定試料の表面に垂直な結晶面について、そ
の結晶配向性やモザイク性、及び面間隔の状態を総合的
に把握することができるX線測定方法及びX線測定装置
を提供するものである。
In order to solve the above-mentioned problem, in the present invention, it is necessary to comprehensively grasp the crystal orientation, the mosaic property, and the plane spacing of a crystal plane perpendicular to the surface of the sample to be measured. An object of the present invention is to provide an X-ray measuring method and an X-ray measuring device that can be used.

【0013】[0013]

【課題を解決するための手段】本発明のX線測定方法
は、X線を発生させ単色化させるX線源と、少なくとも
被測定試料の3方向の移動機構と1方向の回転機構とを
有して成るゴニオメータ装置と、被測定試料によって反
射されたX線を検出するX線検出器と、X線源とX線検
出器とをそれぞれ同期させて回転させることにより被測
定試料の測定点に対する方向を変更するX線回転機構と
を備えたX線測定装置を用いて、被測定試料の表面が1
方向の回転機構の回転軸と垂直になるように被測定試料
を固定し、X線源からのX線が被測定試料の表面で全反
射する条件に表面へのX線の入射角を設定し、被測定試
料の表面に垂直な一結晶面におけるブラッグ反射条件を
満たす被測定試料の回転機構の回転角及びX線回転機構
の回転角とを中心として、これら2つの回転角の所定範
囲において、いずれか一方の回転角を一定値にした状態
で他方の回転機構を回転走査させてX線検出器による連
続的又は断続的なX線測定を行い、一定値を変更して、
さらに他方の回転機構を回転走査させて上記X線検出器
による連続的又は断続的なX線測定を行い、以降一定値
の変更と連続的又は断続的なX線測定を繰り返し、最終
的に2つの回転角の所定範囲内である2次元領域内のX
線強度分布の測定を行うものである。
An X-ray measuring method according to the present invention comprises an X-ray source for generating X-rays to make it monochromatic, a mechanism for moving the sample to be measured in at least three directions, and a mechanism for rotating in one direction. A goniometer device, an X-ray detector for detecting the X-rays reflected by the sample to be measured, and an X-ray source and an X-ray detector for rotating the X-ray source and the X-ray detector in synchronization with each other to measure the measurement point of the sample to be measured. Using an X-ray measuring apparatus equipped with an X-ray rotating mechanism for changing the direction, the surface of the sample
The sample to be measured is fixed so as to be perpendicular to the rotation axis of the rotation mechanism of the direction, and the incident angle of the X-ray to the surface is set so that the X-ray from the X-ray source is totally reflected on the surface of the sample to be measured. Centering on the rotation angle of the rotation mechanism of the rotation mechanism of the sample to be measured and the rotation angle of the X-ray rotation mechanism satisfying the Bragg reflection condition in one crystal plane perpendicular to the surface of the sample to be measured, in a predetermined range of these two rotation angles, With one of the rotation angles set to a constant value, the other rotation mechanism is rotated and scanned to perform continuous or intermittent X-ray measurement by an X-ray detector, and the fixed value is changed.
Further, the other rotating mechanism is rotated and scanned to perform continuous or intermittent X-ray measurement by the X-ray detector. Thereafter, a change of a constant value and continuous or intermittent X-ray measurement are repeated, and finally 2 X in a two-dimensional area within a predetermined range of one rotation angle
The line intensity distribution is measured.

【0014】本発明のX線測定装置は、X線を発生させ
単色化させるX線源と、少なくとも被測定試料の3方向
の移動機構と1方向の回転機構とを有して成るゴニオメ
ータ装置と、被測定試料によって反射された上記X線を
検出するX線検出器と、X線源とX線検出器とをそれぞ
れ同期させて回転させることにより被測定試料の測定点
に対する方向を変更するX線回転機構と、1方向の回転
機構の回転制御を行う第1の回転制御手段と、X線回転
機構の回転制御を行う第2の回転制御手段とを備えたX
線測定装置であって、被測定試料の一結晶面におけるブ
ラッグ反射条件を満たす第1の回転制御手段の回転角及
び第2の回転制御手段の回転角と、第1の回転制御手段
の回転角を中心として行われる第1の回転制御手段によ
る回転走査の走査範囲と、第2の回転制御手段回転角を
中心として行われる第2の回転制御手段による回転走査
の走査範囲とが制御プログラムに対して与えられ、制御
プログラムを用いて、上第1の回転制御手段及び第2の
回転制御手段のうちいずれか一方の回転制御手段が走査
範囲内の一定値である状態に対して、他方の回転制御手
段による回転走査及びX線検出器による連続的又は断続
的なX線測定がなされ、一方の回転制御手段の走査範囲
内の一定値を走査範囲内で変更された一定値として、他
方の回転制御手段による回転走査及び上記X線検出器に
よる連続的又は断続的なX線測定が繰り返され、最終的
に第1の回転制御手段による回転走査の走査範囲内でか
つ第2の回転制御手段による回転走査の走査範囲内であ
る2次元領域内のX線強度分布が得られるものである。
An X-ray measuring apparatus according to the present invention is a goniometer device having an X-ray source for generating and monochromating X-rays, a mechanism for moving a sample to be measured in at least three directions, and a rotating mechanism for one direction. An X-ray detector for detecting the X-rays reflected by the sample to be measured, and an X-ray detector for changing the direction of the sample to be measured relative to the measurement point by rotating the X-ray source and the X-ray detector in synchronization with each other. X comprising a line rotation mechanism, first rotation control means for controlling the rotation of the one-way rotation mechanism, and second rotation control means for controlling the rotation of the X-ray rotation mechanism.
A line measuring apparatus, wherein a rotation angle of a first rotation control unit, a rotation angle of a second rotation control unit, and a rotation angle of the first rotation control unit satisfying a Bragg reflection condition on one crystal surface of a sample to be measured. The scanning range of the rotation scanning by the first rotation control unit performed around the rotation angle and the scanning range of the rotation scanning by the second rotation control unit performed around the rotation angle of the second rotation control unit are defined by the control program. The control program is used to determine whether one of the first rotation control means and the second rotation control means has a constant value within the scanning range, Rotational scanning by the control means and continuous or intermittent X-ray measurement by the X-ray detector are performed, and a constant value in the scanning range of one rotation control means is set as a constant value changed in the scanning range, and the other rotation is adjusted. Control means Rotation scanning and continuous or intermittent X-ray measurement by the X-ray detector are repeated, and finally within the scanning range of the rotation scanning by the first rotation control means and by the second rotation control means The X-ray intensity distribution in a two-dimensional area within the scanning range is obtained.

【0015】上述の本発明によれば、X線源からのX線
が被測定試料の表面で全反射する条件に表面へのX線の
入射角を設定しているので被測定試料の表面に垂直な結
晶面におけるブラック反射によるX線を測定することが
でき、被測定試料の表面に垂直な一結晶面におけるブラ
ック反射条件を満たす2つの回転機構の回転角を中心と
した所定範囲の2次元領域内のX線強度分布を測定する
ので、被測定試料の表面に垂直な結晶面における格子面
間隔の変化及び面内方位の変化の分布を正確に知ること
ができる。
According to the present invention described above, the X-ray incidence angle on the surface is set so that the X-rays from the X-ray source are totally reflected on the surface of the sample to be measured. X-rays due to black reflection on a perpendicular crystal plane can be measured, and a two-dimensional range within a predetermined range centered on the rotation angle of two rotation mechanisms that satisfies the black reflection condition on one crystal plane perpendicular to the surface of the sample to be measured. Since the X-ray intensity distribution in the region is measured, it is possible to accurately know the distribution of the change in the lattice spacing and the change in the in-plane orientation in the crystal plane perpendicular to the surface of the sample to be measured.

【0016】[0016]

【発明の実施の形態】まず、図1を用いて本発明に係る
X線測定方法の概念を説明する。図1中、[10
0]* ,[010]* ,[001]* で示す矢印は、そ
れぞれx軸方向、y軸方向、z軸方向における逆格子空
間のユニットベクトルを示す。そして、[100]*
[010]* の2つのユニットベクトルが作る平面は、
通常xy平面とされる被測定試料の表面と平行になる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the concept of an X-ray measuring method according to the present invention will be described with reference to FIG. In FIG. 1, [10
Arrows indicated by [0] * , [010] * , and [001] * indicate unit vectors in the reciprocal lattice space in the x-axis direction, the y-axis direction, and the z-axis direction, respectively. And the plane created by the two unit vectors [100] * and [010] * is
It is parallel to the surface of the sample to be measured, which is usually the xy plane.

【0017】また、図1中、ユニットベクトル[00
1]* に平行な断面Szは、被測定試料の表面と垂直な
逆格子断面である。ユニットベクトル[010]* に平
行な断面Syは、被測定試料の表面と平行な逆格子断面
である。
In FIG. 1, the unit vector [00]
1] The cross section Sz parallel to * is a reciprocal lattice cross section perpendicular to the surface of the sample to be measured. The cross section Sy parallel to the unit vector [010] * is a reciprocal lattice cross section parallel to the surface of the sample to be measured.

【0018】前述の従来の測定法では、図中の被測定試
料の表面と垂直な逆格子断面Szにおける逆格子点00
1の周辺の回折X線強度の分布(図中等高線で示す)を
測定していた。しかしながら、被測定試料の表面と平行
な逆格子断面Syにおける逆格子点010の周辺の回折
X線強度の分布を測定することはできなかった。
In the above-described conventional measuring method, the reciprocal lattice point 00 in the reciprocal lattice section Sz perpendicular to the surface of the sample to be measured in the figure is used.
The distribution of the diffraction X-ray intensity around the area No. 1 (shown by contour lines in the figure) was measured. However, the distribution of the diffraction X-ray intensity around the reciprocal lattice point 010 in the reciprocal lattice section Sy parallel to the surface of the sample to be measured could not be measured.

【0019】これに対して、本発明のX線測定方法にお
いては、被測定試料の表面と平行な逆格子断面Syにお
ける逆格子点010の周辺の回折X線強度の分布を測定
することができるものである。
On the other hand, in the X-ray measuring method of the present invention, the distribution of the diffracted X-ray intensity around the reciprocal lattice point 010 in the reciprocal lattice section Sy parallel to the surface of the sample to be measured can be measured. Things.

【0020】続いて、本発明のX線測定方法の実施の形
態を説明する。図2は、本発明の実施の形態として、本
発明のX線測定方法及びX線測定装置の実施に適用する
X線回折測定装置1の概略構成図を示す。
Next, an embodiment of the X-ray measuring method of the present invention will be described. FIG. 2 shows a schematic configuration diagram of an X-ray diffraction measuring apparatus 1 applied to the implementation of the X-ray measuring method and the X-ray measuring apparatus of the present invention as an embodiment of the present invention.

【0021】このX線回折測定装置1は、充分単色化さ
れたX線Xoを発生し被測定試料10に入射させるX線
源2と、被測定試料10の方位や被測定試料10内の測
定点Mの位置等を設定するゴニオメータ装置3と、回折
X線Xdの方向を正確に測定するための分解能を有した
X線検出器4とから構成される。
The X-ray diffraction measuring apparatus 1 includes an X-ray source 2 for generating a sufficiently monochromatic X-ray Xo and making the X-ray Xo incident on a sample 10 to be measured, and measuring the orientation of the sample 10 and the inside of the sample 10 to be measured. It comprises a goniometer device 3 for setting the position and the like of the point M, and an X-ray detector 4 having a resolution for accurately measuring the direction of the diffracted X-ray Xd.

【0022】単色化されたX線源2としては、放射光に
限らず例えば回転対陰極X線発生装置やX線管球を用い
たX線発生装置を用い、1つ以上の結晶を用いてX線を
単色化かつ平行化する機能を有したコリメータ、例えば
Ge(220)結晶面を用いたチャンネルカット結晶2
組を用いた4結晶コリメータを備えたモノクロメータに
よって、X線を単色化かつ平行化する。
The monochromatic X-ray source 2 is not limited to synchrotron radiation. For example, a rotating anti-cathode X-ray generator or an X-ray generator using an X-ray tube may be used, and one or more crystals may be used. A collimator having a function of monochromaticizing and collimating X-rays, for example, a channel cut crystal 2 using a Ge (220) crystal plane
X-rays are monochromatic and collimated by a monochromator provided with a four-crystal collimator using the set.

【0023】尚、モノクロメータに用いられるコリメー
タとしては、Geの(220)結晶面以外の結晶面を用
いたり、Ge以外の結晶を用いたり、チャンネルカット
結晶1つを用いた2結晶コリメータや、単一の結晶面を
用いたコリメータ等、その他の単色化を目的としたコリ
メータを用いることもできる。
As the collimator used in the monochromator, a crystal plane other than the (220) crystal plane of Ge, a crystal other than Ge, a two-crystal collimator using one channel cut crystal, Other collimators for achieving monochromaticity, such as a collimator using a single crystal plane, can also be used.

【0024】上述の単色化したX線を、スリット等によ
って被測定試料10の表面10sの測定位置方向のX線
のみに制限して、これを入射X線Xoとして被測定試料
10の表面10sに照射する。
The above monochromatic X-rays are limited to only X-rays in the direction of the measurement position on the surface 10s of the sample 10 by a slit or the like, and are set as incident X-rays Xo on the surface 10s of the sample 10 to be measured. Irradiate.

【0025】X線源2、スリット等を含むX線照射系
は、好ましくは傾きを変化させることによって被測定試
料10の表面10sに対する入射X線Xoの入射角αを
変化させることができる構成とする。尚、X線照射系の
傾きを変化させる代わりに、ゴニオメータ装置3側の傾
きを変化させることによって入射角αを変化させること
ができる構成としてもよい。
The X-ray irradiating system including the X-ray source 2, the slit and the like is preferably configured so that the incident angle α of the incident X-ray Xo with respect to the surface 10s of the sample 10 to be measured can be changed by changing the inclination. I do. Note that, instead of changing the tilt of the X-ray irradiation system, the configuration may be such that the angle of incidence α can be changed by changing the tilt of the goniometer device 3.

【0026】ゴニオメータ装置3は、少なくとも被測定
試料10の表面10sにほぼ垂直な回転軸の周囲に被測
定試料10を回転させることができるω回転機構と、被
測定試料10の位置を設定して被測定試料10の測定し
たい点を入射X線Xoの入射位置に移動できるように構
成されたx軸,y軸,z軸の3軸方向の移動機構とを有
して構成される。また、図2のX線回折測定装置1で
は、さらにω回転機構のω回転軸に垂直なψ回転軸によ
って被測定試料10の表面10sと平行で被測定試料1
0の表面のあおり角を変化させることができるψ回転機
構を有して構成されている。そして、好ましくは、これ
ら各回転機構及び移動機構がそれぞれ独立して動くこと
が可能な構成とする。
The goniometer device 3 is provided with a ω rotation mechanism capable of rotating the sample 10 around at least a rotation axis substantially perpendicular to the surface 10 s of the sample 10 and a position of the sample 10. It has a moving mechanism in three directions of x-axis, y-axis, and z-axis configured to move a point to be measured of the sample 10 to be measured to an incident position of the incident X-ray Xo. Further, in the X-ray diffraction measuring apparatus 1 of FIG. 2, the sample 1 is further parallel to the surface 10 s of the sample 10 by a ψ rotation axis perpendicular to the ω rotation axis of the ω rotation mechanism.
It has a ψ rotation mechanism that can change the tilt angle of the surface of 0. Preferably, the rotation mechanism and the movement mechanism are configured to be independently movable.

【0027】X線検出器4は、全体として上述のゴニオ
メータ装置3の試料回転機構(ω回転機構)と同じ回転
軸で回転できる回転機構(2θ回転機構)上に設置す
る。そして、回折角(2θ)を、ω回転軸やψ回転軸を
中心として測定することができるように構成する。
The X-ray detector 4 is installed on a rotation mechanism (2θ rotation mechanism) that can rotate on the same rotation axis as the sample rotation mechanism (ω rotation mechanism) of the goniometer device 3 as a whole. Then, the diffraction angle (2θ) is configured to be able to be measured around the ω rotation axis and the ψ rotation axis.

【0028】また、X線検出器4の向きは、入射角αに
合わせて試料表面10sに対する傾斜角度が入射角に等
しい角度αに設定されるようにして、被測定試料10の
表面10sで全反射され、かつ表面10sに垂直な結晶
面11でブラック反射条件で反射された回折X線Xdを
検出できるように構成する。
The direction of the X-ray detector 4 is set such that the inclination angle with respect to the sample surface 10s is set to an angle α equal to the incident angle in accordance with the incident angle α. It is configured such that the diffracted X-ray Xd reflected by the crystal plane 11 perpendicular to the surface 10s under the black reflection condition can be detected.

【0029】このX線検出器4としては、例えばシンチ
レーション検出器を用いることができ、その前方に回折
X線(散乱X線)の方位・回折角(2θ)を正確に測定
できる機能を有する装置、例えばいわゆるアナライザ装
置が設置された構成とする。
As the X-ray detector 4, for example, a scintillation detector can be used, and a device having a function of accurately measuring the azimuth and diffraction angle (2θ) of diffracted X-rays (scattered X-rays) ahead of the scintillation detector can be used. For example, a configuration in which a so-called analyzer device is installed is adopted.

【0030】上述のアナライザ装置としては、例えば1
つ以上の結晶を用いたアナライザ結晶を有し、アナライ
ザ結晶は例えばGe(220)面を用いたチャンネルカ
ット結晶を用いることができる。尚、アナライザ装置
は、例えば3結晶や1結晶のアナライザ装置等の上述の
構成以外の構成から成るアナライザ装置を用いることも
できる。
As the analyzer described above, for example, 1
It has an analyzer crystal using one or more crystals, and for example, a channel cut crystal using a Ge (220) plane can be used as the analyzer crystal. Note that an analyzer having a configuration other than the above-described configuration, such as a three-crystal or one-crystal analyzer, may be used as the analyzer.

【0031】尚、X線検出器4は、図2に示す回折X線
Xd以外のX線も検出できるような検出器を用いてもよ
い。
The X-ray detector 4 may be a detector that can detect X-rays other than the diffracted X-ray Xd shown in FIG.

【0032】そして、X線源2とゴニオメータ装置3と
X線検出器4とは、特定の一点において、本発明に係る
被測定試料10の表面に垂直な結晶面11の測定の場合
においては被測定試料10の表面10s上の一点におい
て、X線源2のθ回転機構のθ回転軸,X線検出器4の
2θ回転機構の2θ回転軸,ω回転軸,ψ回転軸がいず
れもこの一点Mを通り、かつX線源2からの入射X線が
この一点Mに入射するように配置構成される。この被測
定試料10の表面10s上の一点Mが、X線回折強度の
測定における被測定試料10の測定点となる。
The X-ray source 2, the goniometer device 3, and the X-ray detector 4 are used to measure the crystal plane 11 perpendicular to the surface of the sample 10 according to the present invention at a specific point. At one point on the surface 10 s of the measurement sample 10, the θ rotation axis of the θ rotation mechanism of the X-ray source 2, the 2θ rotation axis, the ω rotation axis, and the ψ rotation axis of the 2θ rotation mechanism of the X-ray detector 4 are all this one point. It is arranged so that incident X-rays passing through M and coming from the X-ray source 2 are incident on this one point M. One point M on the surface 10s of the sample 10 is a measurement point of the sample 10 in the measurement of the X-ray diffraction intensity.

【0033】尚、ψ回転軸は、入射角αの回転軸とω回
転軸との交点即ち、上述の測定点Mを通らない構成を採
ることもできるが、好ましくは図2に示すように上述の
測定点Mを通る構成とする。
It should be noted that the 交 rotation axis may be configured so as not to pass through the intersection point between the rotation axis of the incident angle α and the ω rotation axis, that is, the above-mentioned measurement point M, but preferably, as shown in FIG. Of the measurement point M.

【0034】また、θ回転機構,2θ回転機構,ω回転
機構,ψ回転機構の各回転機構、及びx軸,y軸,z軸
の各移動機構は、好ましくはコンピュータ制御により、
それぞれ独立して、かつ自動的に回転走査又は移動する
ことができ、また任意の角度や任意の位置に設定するこ
とが可能な構成とする。
The rotation mechanisms of the θ rotation mechanism, the 2θ rotation mechanism, the ω rotation mechanism, the 及 び rotation mechanism, and the x, y, and z axis movement mechanisms are preferably controlled by a computer.
It is configured such that it can be rotated or scanned independently and automatically, and can be set at any angle and at any position.

【0035】尚、θ回転機構と2θ回転機構は、それぞ
れ同期して回転させることによって、図2に示すよう
に、ψ回転軸から共に回転角θだけ回転させることがで
きる。
By rotating the .theta. Rotation mechanism and the 2.theta. Rotation mechanism in synchronization with each other, as shown in FIG. 2, both the .theta.

【0036】このようなX線回折測定装置1を用いて、
本発明に係るX線測定方法を実施する場合について説明
する。被測定試料10の表面10sにある測定点Mに対
して、被測定試料10の表面10sで全反射を起こすよ
うに入射角度αを浅い角度に設定する。
Using such an X-ray diffraction measuring apparatus 1,
A case where the X-ray measurement method according to the present invention is performed will be described. The incident angle α is set to a shallow angle with respect to the measurement point M on the surface 10 s of the sample 10 so that total reflection occurs on the surface 10 s of the sample 10.

【0037】その後、被測定試料10の表面10sにほ
ぼ垂直な結晶面11によるブラッグ条件を満足するよう
に、被測定試料10の回転のω回転機構の回転角ωと、
検出器4の2θ回転機構の回転角2θとを設定する。こ
こで、被測定試料10の表面10sが、ω回転軸と2θ
回転軸とを含む面に対して垂直になるように、又は測定
する結晶面11とω回転軸と2θ回転軸が平行になるよ
うにψ回転軸を調整することが望ましい。
Then, the rotation angle ω of the ω rotation mechanism of the rotation of the sample 10 is set so as to satisfy the Bragg condition by the crystal plane 11 substantially perpendicular to the surface 10 s of the sample 10.
The rotation angle 2θ of the 2θ rotation mechanism of the detector 4 is set. Here, the surface 10s of the sample 10 to be measured is
It is desirable to adjust the ψ rotation axis so that it is perpendicular to the plane including the rotation axis, or so that the crystal plane 11 to be measured is parallel to the ω rotation axis and the 2θ rotation axis.

【0038】そして、設定した入射角度αでX線Xoを
測定点Mに入射させると同時に、測定しようとしている
結晶面11例えば(hk0)結晶面の面内反射のブラッ
グ反射条件を満足する回転角ω付近において回転角ωを
変化させると共に、逐次ω−2θスキャンを行い、回折
X線強度の分布を測定する。即ち、回転角ωを一定値と
してω−2θスキャンによる連続的又は断続的なX線測
定を行ってX線検出器4により回折X線の強度分布を得
て、回転角ωを変更して回転角ωを別の一定値として連
続的又は断続的なX線測定を行い、これを回転角ωの所
定範囲内で繰り返す。
Then, the X-ray Xo is incident on the measuring point M at the set incident angle α, and at the same time, the rotation angle satisfying the Bragg reflection condition of the in-plane reflection of the crystal plane 11 to be measured, for example, the (hk0) crystal plane While changing the rotation angle ω in the vicinity of ω, successive ω-2θ scans are performed to measure the distribution of the diffracted X-ray intensity. That is, continuous or intermittent X-ray measurement by ω-2θ scan is performed with the rotation angle ω as a fixed value, the intensity distribution of diffracted X-rays is obtained by the X-ray detector 4, and the rotation angle ω is changed to change the rotation. Continuous or intermittent X-ray measurement is performed using the angle ω as another constant value, and this is repeated within a predetermined range of the rotation angle ω.

【0039】尚、一定値のω−2θに対してωスキャン
を逐次行うことによって、X線測定を行う方法を採って
も同様の結果を得ることができる。
It should be noted that the same result can be obtained by performing the X-ray measurement by sequentially performing the ω scan for a constant value of ω−2θ.

【0040】これにより、ブラッグ反射条件における回
転角ω周辺の、回転角ωの所定範囲内かつω−2θの所
定範囲内の2次元領域内における回折X線Xdの強度分
布を得ることができる。即ち逆格子空間における逆格子
点hk0付近の2次元的な強度分布を得ることができ
る。
Thus, it is possible to obtain the intensity distribution of the diffracted X-ray Xd in a two-dimensional area around the rotation angle ω under the Bragg reflection condition, within a predetermined range of the rotation angle ω and within a predetermined range of ω−2θ. That is, a two-dimensional intensity distribution near the reciprocal lattice point hk0 in the reciprocal lattice space can be obtained.

【0041】このとき、結晶面11の面内反射のブラッ
グ条件を満足する回転角ωの値、回転角ωを変化させる
範囲、及びω−2θスキャンの走査の範囲を設定して測
定を行うようにする。
At this time, the measurement is performed by setting the value of the rotation angle ω, the range in which the rotation angle ω is changed, and the range of the ω-2θ scan satisfying the Bragg condition of the in-plane reflection of the crystal plane 11. To

【0042】そして、好ましくは、結晶面11の面内反
射のブラッグ条件を満足する回転角ωの値、回転角ωを
変化させる範囲、及びω−2θスキャンの走査の範囲を
与えれば、制御プログラムによって、回転角ω又はω−
2θスキャンの内いずれか一方を一定値に固定して、他
方を走査して連続的に回折X線が測定され、一定値の変
更と回折X線の測定が繰り返されて、最終的にこれら回
転角ωの範囲内及びω−2θスキャンの走査の範囲内の
2次元領域におけるX線強度分布が得られるようにX線
回折測定装置1を構成する。
Preferably, if the value of the rotation angle ω, the range in which the rotation angle ω is changed, and the range of the ω-2θ scan satisfying the Bragg condition of the in-plane reflection of the crystal plane 11 are given, the control program Depending on the rotation angle ω or ω−
One of the 2θ scans is fixed at a constant value, and the other is scanned to continuously measure the diffracted X-rays. The change of the constant value and the measurement of the diffracted X-rays are repeated, and finally these rotations are changed. The X-ray diffraction measurement apparatus 1 is configured to obtain an X-ray intensity distribution in a two-dimensional area within the range of the angle ω and the range of the ω-2θ scan.

【0043】この測定結果を、縦軸をω軸、横軸をω−
2θ軸、又はその逆に表示することによって、各々の方
向の強度分布を2次元的に把握することができる。尚、
この得られた回折X線強度の分布の測定結果は、縦軸及
び横軸を角度の単位から逆格子空間の単位系(長さ分の
1)に変換して表示することもできる。
The vertical axis is the ω axis and the horizontal axis is the ω-
By displaying the 2θ axis or vice versa, the intensity distribution in each direction can be grasped two-dimensionally. still,
The measurement result of the obtained distribution of the diffracted X-ray intensity can also be displayed by converting the vertical axis and the horizontal axis from the unit of the angle into the unit system (1/1 of the length) of the reciprocal lattice space.

【0044】上述の測定の手順は、通常の逆格子マッピ
ングによる測定と同様である。
The procedure of the above-described measurement is the same as the measurement by the ordinary reciprocal lattice mapping.

【0045】上述のように測定を行うことにより、入射
X線Xoの単色性/平行性と、X線検出器4の精度のよ
さとを利用して、回折X線Xdの回折角2θを分解能良
く精密に測定でき、逆格子点付近の回折X線強度分布を
2次元的に細かく知ることができる。
By performing the measurement as described above, the diffraction angle 2θ of the diffracted X-ray Xd can be resolved by utilizing the monochromaticity / parallelism of the incident X-ray Xo and the high accuracy of the X-ray detector 4. Measurements can be made well and precisely, and the diffraction X-ray intensity distribution near the reciprocal lattice point can be known two-dimensionally and finely.

【0046】これにより、通常の逆格子マッピング法の
特長を有しているばかりでなく、通常の逆格子マッピン
グ法では測定できない、表面10sにほぼ平行な逆格子
点hk0周辺の表面に平行な逆格子断面における回折X
線強度の分布の測定が可能となる特長を有している。ま
た、前述のGIXSにおけるロッキングカーブ法では区
別が難しかった、格子定数の変化と結晶方位の変化とを
区別して2次元的に表示することができる。
This not only has the features of the ordinary reciprocal lattice mapping method, but also has an inverse parallel to the surface around the reciprocal lattice point hk0 substantially parallel to the surface 10s, which cannot be measured by the ordinary reciprocal lattice mapping method. Diffraction X at grating cross section
It has the feature that the distribution of line intensity can be measured. In addition, the rocking curve method in the above-mentioned GIXS makes it difficult to distinguish between them. The change in lattice constant and the change in crystal orientation can be displayed two-dimensionally.

【0047】ここで、得られる2次元の回折X線強度分
布において、ω−2θスキャン方向の広がりや分布は、
格子面間隔の変化の様子を表す。また、ωスキャン方向
の広がりや分布は、測定した結晶面11の結晶方位のふ
らつき分布の様子を表す。
Here, in the obtained two-dimensional diffraction X-ray intensity distribution, the spread and distribution in the ω-2θ scanning direction are as follows.
This shows how the lattice spacing changes. The spread and distribution in the ω scan direction indicate the state of the fluctuation distribution of the crystal orientation of the measured crystal plane 11.

【0048】そして、結晶方位と格子面間隔の変動が組
み合わさったような複雑な構造材料の場合には、ωスキ
ャンを繰り返す、或いはω−2θスキャンを繰り返す、
といった1次元的な測定のやり方では、実際の構造とは
異なる誤った理解をしてしまう危険性があるが、上述の
実施の形態に示す測定方法によれば、網羅的に2次元的
な情報が得られるため、このような誤った理解をしてし
まう危険を回避することができる。
In the case of a complicated structural material in which the variation of the crystal orientation and the lattice spacing are combined, the ω scan is repeated, or the ω-2θ scan is repeated.
In the one-dimensional measurement method such as this, there is a risk that a wrong understanding different from the actual structure may occur, but according to the measurement method described in the above-described embodiment, the two-dimensional information is comprehensively obtained. Is obtained, it is possible to avoid such a risk of misunderstanding.

【0049】また、表面に平行な逆格子断面Syを測定
することができるために、結晶面11の面内回転変化の
様子を面内格子面間隔とも区別して定量的に測定するこ
とができる。
Further, since the reciprocal lattice section Sy parallel to the surface can be measured, the state of the in-plane rotation change of the crystal plane 11 can be quantitatively measured separately from the in-plane lattice plane spacing.

【0050】上述の本発明のX線測定方法により実際に
測定を行った結果を図3に示す。図3の測定に用いた試
料10は、サファイア基板上に成長させたGaN(窒化
ガリウム)エピタキシャル成長結晶である。
FIG. 3 shows the result of actual measurement by the above-described X-ray measurement method of the present invention. The sample 10 used for the measurement in FIG. 3 is a GaN (gallium nitride) epitaxially grown crystal grown on a sapphire substrate.

【0051】図3は、この試料10の表面10sの結晶
面11のブラッグ条件を満たす回転角ω及び回転角2θ
の周辺で、これらの回転角ω,2θを変化させたときの
回折X線強度の分布を示す。即ち、試料10の表面10
sの面内結晶方位のふらつき分布状態を表している。
FIG. 3 shows a rotation angle ω and a rotation angle 2θ satisfying the Bragg condition of the crystal plane 11 of the surface 10 s of the sample 10.
The distribution of the diffracted X-ray intensity when these rotation angles ω and 2θ are changed around FIG. That is, the surface 10 of the sample 10
s represents the fluctuation distribution state of the in-plane crystal orientation.

【0052】この測定では、ω−2θ方向にも変化や広
がり、即ち格子定数の広がり又は変化は観察されていな
いが、被測定試料10の表面10s内に、又はごく表面
近傍に格子定数の異なる例えばAlGaN,GaInN
等の物質が混在する場合には、ω−2θ方向にも変化や
広がりが観察される。
In this measurement, no change or expansion in the ω-2θ direction, that is, no expansion or change in the lattice constant is observed, but the lattice constant is different within the surface 10s of the sample 10 to be measured or very near the surface. For example, AlGaN, GaInN
When such substances are mixed, a change or spread is also observed in the ω-2θ direction.

【0053】尚、図3では回転角ωの範囲が中心の角度
±0.2°、ω−2θの範囲が中心の角度±0.05°
に設定されて測定した場合であったが、これらの測定の
範囲は、結晶面間隔の分布や結晶方位の分布等の試料の
状態によって、必要に応じて広い範囲或いは狭い範囲を
設定して2次元分布測定を行うことができる。
In FIG. 3, the range of the rotation angle ω is ± 0.2 ° of the center angle, and the range of ω−2θ is ± 0.05 ° of the center angle.
However, the range of these measurements was set to a wide range or a narrow range as necessary, depending on the state of the sample such as the distribution of the crystal plane spacing and the distribution of the crystal orientation. Dimension distribution measurements can be made.

【0054】上述の本発明に係るX線測定方法の応用対
象としては、例えばIII族元素の窒化物系材料や結晶
配向した金属薄膜、半導体薄膜、誘電体薄膜等種々の材
料の面内配向の定量的な評価に用いることができる。そ
して材料の結晶性の正確な評価が可能となり、結晶性の
向上に適用して、半導体デバイス、磁気記録デバイス、
表示デバイスなど各種デバイスの特性を向上することが
できる。
The object of the X-ray measurement method according to the present invention described above is, for example, the in-plane orientation of various materials such as a nitride material of a group III element, a crystalline thin film, a semiconductor thin film, and a dielectric thin film. It can be used for quantitative evaluation. And accurate evaluation of the crystallinity of the material becomes possible, and it is applied to the improvement of the crystallinity, and semiconductor devices, magnetic recording devices,
The characteristics of various devices such as a display device can be improved.

【0055】本発明のX線測定方法及びX線測定装置
は、上述の実施の形態に限定されるものではなく、本発
明の要旨を逸脱しない範囲でその他様々な構成が取り得
る。
The X-ray measuring method and the X-ray measuring apparatus of the present invention are not limited to the above-described embodiment, but may have various other configurations without departing from the gist of the present invention.

【0056】[0056]

【発明の効果】上述の本発明によれば、全反射条件とブ
ラッグ条件をほぼ満足させるような条件でマッピング測
定することによって、表面にほぼ平行な逆格子断面の強
度分布を得ることができ、得られた逆格子断面の強度分
布から、被測定試料の表面に垂直な結晶面に対しても、
結晶面内方向の結晶方位の変動の様子と格子面間隔の変
動の様子を区別して総合的に評価できるようになる。
According to the present invention described above, the intensity distribution of the reciprocal lattice cross section substantially parallel to the surface can be obtained by performing mapping measurement under conditions that substantially satisfy the total reflection condition and the Bragg condition. From the intensity distribution of the obtained reciprocal lattice cross section, even for the crystal plane perpendicular to the surface of the sample to be measured,
The state of fluctuation of the crystal orientation in the direction of the crystal plane and the state of fluctuation of the lattice spacing can be distinguished and comprehensively evaluated.

【0057】従って、III族元素の窒化物系材料や結
晶配向した金属薄膜、半導体薄膜、誘電体薄膜等種々の
材料の結晶性の正確な評価が可能となり、結晶性の向上
に適用して、半導体デバイス、磁気記録デバイス、表示
デバイスなど各種デバイスの特性の向上に寄与すること
ができる。
Therefore, it is possible to accurately evaluate the crystallinity of various materials such as a nitride material of a group III element, a metal thin film having a crystal orientation, a semiconductor thin film, and a dielectric thin film. It can contribute to improvement of characteristics of various devices such as a semiconductor device, a magnetic recording device, and a display device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のX線測定方法を説明する逆格子空間の
模式図である。
FIG. 1 is a schematic view of a reciprocal lattice space for explaining an X-ray measurement method of the present invention.

【図2】本発明のX線測定方法に用いるX線測定装置の
概略構成図である。
FIG. 2 is a schematic configuration diagram of an X-ray measurement device used for the X-ray measurement method of the present invention.

【図3】本発明のX線測定方法を用いてGaNエピタキ
シャル成長結晶の表面を測定した測定結果の図である。
FIG. 3 is a diagram showing measurement results obtained by measuring the surface of a GaN epitaxial growth crystal using the X-ray measurement method of the present invention.

【符号の説明】[Explanation of symbols]

1 X線回折測定装置、2 X線源、3 ゴニオメータ
装置、4 X線検出器、10 被測定試料、10s 試
料表面、11 結晶面、Xo (入射)X線、Xd 回
折X線、M 測定点
Reference Signs List 1 X-ray diffraction measurement device, 2 X-ray source, 3 goniometer device, 4 X-ray detector, 10 sample to be measured, 10 s sample surface, 11 crystal plane, Xo (incident) X-ray, Xd diffraction X-ray, M measurement point

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 X線を発生させ単色化させるX線源と、 少なくとも被測定試料の3方向の移動機構と1方向の回
転機構とを有して成るゴニオメータ装置と、 上記被測定試料によって反射された上記X線を検出する
X線検出器と、 上記X線源と上記X線検出器とをそれぞれ同期させて回
転させることにより上記被測定試料の測定点に対する方
向を変更するX線回転機構とを備えたX線測定装置を用
いて、 上記被測定試料の表面が上記1方向の回転機構の回転軸
と垂直になるように上記被測定試料を固定し、 上記X線源からのX線が上記被測定試料の表面で全反射
する条件に該表面への該X線の入射角を設定し、 上記被測定試料の上記表面に垂直な一結晶面におけるブ
ラッグ反射条件を満たす被測定試料の上記回転機構の回
転角及び上記X線回転機構の回転角とを中心として、上
記回転機構の回転角の所定範囲及び上記X線回転機構の
回転角の所定範囲において、 上記被測定試料の上記回転機構と、上記X線回転機構と
のうちいずれか一方の回転機構の回転角を一定値にした
状態で他方の回転機構を回転走査させて上記X線検出器
による連続的又は断続的なX線測定を行い、 上記一定値を変更して、さらに上記他方の回転機構を回
転走査させて上記X線検出器による連続的又は断続的な
X線測定を行い、 以降上記一定値の変更と上記連続的又は断続的なX線測
定を繰り返し、 最終的に上記回転機構の上記回転角の上記所定範囲及び
上記X線回転機構の上記回転角の上記所定範囲内である
2次元領域内のX線強度分布の測定を行うことを特徴と
するX線測定方法。
An X-ray source for generating X-rays to make it monochromatic; a goniometer device having at least a three-way moving mechanism and a one-way rotating mechanism for the sample to be measured; and a reflection by the sample to be measured. An X-ray detector for detecting the detected X-ray, and an X-ray rotation mechanism for changing the direction of the sample to be measured with respect to the measurement point by rotating the X-ray source and the X-ray detector in synchronization with each other. And fixing the sample to be measured so that the surface of the sample to be measured is perpendicular to the rotation axis of the one-way rotating mechanism. X-rays from the X-ray source Sets the incident angle of the X-rays to the surface under the condition of total reflection on the surface of the sample to be measured, and the sample to be measured satisfying the Bragg reflection condition on one crystal plane perpendicular to the surface of the sample to be measured. The rotation angle of the rotation mechanism and the X-ray rotation A rotation angle of the rotation mechanism and a rotation angle of the rotation mechanism, and a rotation angle of the rotation mechanism and the X-ray rotation mechanism. With the rotation angle of one of the rotation mechanisms set to a constant value, the other rotation mechanism is rotationally scanned to perform continuous or intermittent X-ray measurement by the X-ray detector, and the fixed value is changed. Further, the other rotating mechanism is further rotated and scanned to perform continuous or intermittent X-ray measurement by the X-ray detector. Thereafter, the above-mentioned change in the constant value and the continuous or intermittent X-ray measurement are repeated. And finally measuring an X-ray intensity distribution in a two-dimensional area which is within the predetermined range of the rotation angle of the rotation mechanism and the predetermined range of the rotation angle of the X-ray rotation mechanism. X-ray measurement method.
【請求項2】 X線を発生させ単色化させるX線源と、 少なくとも被測定試料の3方向の移動機構と1方向の回
転機構とを有して成るゴニオメータ装置と、 上記被測定試料によって反射された上記X線を検出する
X線検出器と、 上記X線源と上記X線検出器とをそれぞれ同期させて回
転させることにより上記被測定試料の測定点に対する方
向を変更するX線回転機構と、 上記1方向の回転機構の回転制御を行う第1の回転制御
手段と、 上記X線回転機構の回転制御を行う第2の回転制御手段
とを備えたX線測定装置であって、 上記被測定試料の一結晶面におけるブラッグ反射条件を
満たす第1の回転制御手段の回転角及び第2の回転制御
手段の回転角と、 該第1の回転制御手段の回転角を中心として行われる第
1の回転制御手段による回転走査の走査範囲と、 該第2の回転制御手段回転角を中心として行われる第2
の回転制御手段による回転走査の走査範囲とが制御プロ
グラムに対して与えられ、 上記制御プログラムを用いて、上記第1の回転制御手段
及び上記第2の回転制御手段のうちいずれか一方の回転
制御手段が上記走査範囲内の一定値である状態に対し
て、他方の回転制御手段による回転走査及び上記X線検
出器による連続的又は断続的なX線測定がなされ、 上記一方の回転制御手段の上記走査範囲内の一定値を該
走査範囲内で変更された一定値として、上記他方の回転
制御手段による回転走査及び上記X線検出器による連続
的又は断続的なX線測定が繰り返され、 最終的に上記第1の回転制御手段による上記回転走査の
走査範囲内でかつ上記第2の回転制御手段による上記回
転走査の走査範囲内である2次元領域内のX線強度分布
が得られることを特徴とするX線測定装置。
2. A goniometer device comprising: an X-ray source for generating X-rays to make it monochromatic; a goniometer device having at least a three-way moving mechanism and a one-way rotating mechanism for the sample to be measured; and a reflection by the sample to be measured. An X-ray detector for detecting the detected X-ray, and an X-ray rotation mechanism for changing the direction of the sample to be measured with respect to the measurement point by rotating the X-ray source and the X-ray detector in synchronization with each other. An X-ray measuring apparatus comprising: first rotation control means for controlling rotation of the one-way rotation mechanism; and second rotation control means for controlling rotation of the X-ray rotation mechanism. A rotation angle of the first rotation control means and a rotation angle of the second rotation control means satisfying a Bragg reflection condition on one crystal plane of the sample to be measured; and a rotation angle centered on the rotation angle of the first rotation control means. Rotation by 1 rotation control means A scanning range of the scanning, the second taking place about a rotation control means the rotation angle of the second
And the scanning range of the rotational scanning by the rotation control means is given to the control program. Using the control program, the rotation control of one of the first rotation control means and the second rotation control means is performed. With respect to a state where the means is a constant value within the scanning range, rotational scanning by the other rotation control means and continuous or intermittent X-ray measurement by the X-ray detector are performed. The constant value in the scanning range is set as a constant value changed in the scanning range, and the rotation scanning by the other rotation control means and the continuous or intermittent X-ray measurement by the X-ray detector are repeated. In particular, an X-ray intensity distribution in a two-dimensional area within the scanning range of the rotation scanning by the first rotation control means and within the scanning range of the rotation scanning by the second rotation control means is obtained. X-ray measuring apparatus according to claim and.
JP11536098A 1998-04-24 1998-04-24 X-ray measurement method and x-ray measurement device Pending JPH11304729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11536098A JPH11304729A (en) 1998-04-24 1998-04-24 X-ray measurement method and x-ray measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11536098A JPH11304729A (en) 1998-04-24 1998-04-24 X-ray measurement method and x-ray measurement device

Publications (1)

Publication Number Publication Date
JPH11304729A true JPH11304729A (en) 1999-11-05

Family

ID=14660608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11536098A Pending JPH11304729A (en) 1998-04-24 1998-04-24 X-ray measurement method and x-ray measurement device

Country Status (1)

Country Link
JP (1) JPH11304729A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482304A2 (en) * 2003-05-29 2004-12-01 Rigaku Corporation Method of setting measuring range of reciprocal-space mapping
JP2005203583A (en) * 2004-01-16 2005-07-28 Shin Etsu Handotai Co Ltd Method for distortion amount measurement of laminated distorted wafer
JP2005300305A (en) * 2004-04-09 2005-10-27 Rigaku Corp X-ray analyzing method and x-ray analyzer
JP2007303944A (en) * 2006-05-10 2007-11-22 Osaka Univ Evaluation method for hard tissue
CN104105959A (en) * 2012-02-06 2014-10-15 国立大学法人京都大学 Microcrystal structure analysis device, microcrystal structure analysis method, and X-ray shield device
JP2016502119A (en) * 2013-01-07 2016-01-21 ブルカー・エイエックスエス・インコーポレイテッドBruker AXS, Inc. Apparatus and method for surface mapping using in-plane oblique incidence diffraction
EP3258254A1 (en) 2016-06-15 2017-12-20 Rigaku Corporation X-ray diffractometer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482304A3 (en) * 2003-05-29 2005-01-26 Rigaku Corporation Method of setting measuring range of reciprocal-space mapping
US6999557B2 (en) 2003-05-29 2006-02-14 Rigaku Corporation Method of setting measuring range of reciprocal-space mapping
EP1482304A2 (en) * 2003-05-29 2004-12-01 Rigaku Corporation Method of setting measuring range of reciprocal-space mapping
JP4507604B2 (en) * 2004-01-16 2010-07-21 信越半導体株式会社 Method for measuring strain of bonded strained wafer
JP2005203583A (en) * 2004-01-16 2005-07-28 Shin Etsu Handotai Co Ltd Method for distortion amount measurement of laminated distorted wafer
WO2005069374A1 (en) * 2004-01-16 2005-07-28 Shin-Etsu Handotai Co., Ltd. Method for measuring amount of strain of bonded strained wafer
US7521265B2 (en) 2004-01-16 2009-04-21 Shin-Etsu Handotai Co., Ltd. Method for measuring an amount of strain of a bonded strained wafer
JP2005300305A (en) * 2004-04-09 2005-10-27 Rigaku Corp X-ray analyzing method and x-ray analyzer
JP2007303944A (en) * 2006-05-10 2007-11-22 Osaka Univ Evaluation method for hard tissue
CN104105959A (en) * 2012-02-06 2014-10-15 国立大学法人京都大学 Microcrystal structure analysis device, microcrystal structure analysis method, and X-ray shield device
JP2016502119A (en) * 2013-01-07 2016-01-21 ブルカー・エイエックスエス・インコーポレイテッドBruker AXS, Inc. Apparatus and method for surface mapping using in-plane oblique incidence diffraction
EP3258254A1 (en) 2016-06-15 2017-12-20 Rigaku Corporation X-ray diffractometer
US10585053B2 (en) 2016-06-15 2020-03-10 Rigaku Corporation X-ray diffractometer

Similar Documents

Publication Publication Date Title
US6385289B1 (en) X-ray diffraction apparatus and method for measuring X-ray rocking curves
US7769135B2 (en) X-ray diffraction wafer mapping method for rhombohedral super-hetero-epitaxy
US8437450B2 (en) Fast measurement of X-ray diffraction from tilted layers
JP4685877B2 (en) Method and apparatus for measuring orientation distribution of microcrystalline grains
JP2017223539A (en) X-ray diffraction device
US9080944B2 (en) Method and apparatus for surface mapping using in-plane grazing incidence diffraction
Zolotov et al. The possibility of identifying the spatial location of single dislocations by topo-tomography on laboratory setups
JP2013137298A (en) X-ray analyzer
Tanner et al. Advanced X-ray scattering techniques for the characterization of semiconducting materials
JPH11304729A (en) X-ray measurement method and x-ray measurement device
JP2003194741A (en) X-ray diffractometer, method of measuring reflected x-ray, and method of drawing up reciprocal lattice space map
JP2006329821A (en) X-ray diffraction apparatus and measuring method of x-ray diffraction pattern
EP3835767B1 (en) Control apparatus, system, method, and program
JP3968350B2 (en) X-ray diffraction apparatus and method
Bauch et al. X‐ray Rotation‐Tilt‐Method—First Results of a new X‐ray Diffraction Technique
JPH05107203A (en) X-ray apparatus for evaluating surface condition of sample
JP2905659B2 (en) X-ray apparatus and evaluation analysis method using the apparatus
JPH1048159A (en) Method and apparatus for analyzing structure
Otálora et al. Mosaic spread characterization of microgravity-grown tetragonal lysozyme single crystals
JP2921597B2 (en) Total reflection spectrum measurement device
Fewster Reciprocal space mapping
JPH03289547A (en) Method and apparatus for measuring grating constant
JPH09145641A (en) Method and device for evaluating crystallinity of single crystal
JP2002031609A (en) Method for analyzing crystal structure
SU1622803A1 (en) Method of determining the degree of disturbance of surface of volume of monocrystalline plates