JPH03288515A - Rotary type gas treatment apparatus - Google Patents
Rotary type gas treatment apparatusInfo
- Publication number
- JPH03288515A JPH03288515A JP2086646A JP8664690A JPH03288515A JP H03288515 A JPH03288515 A JP H03288515A JP 2086646 A JP2086646 A JP 2086646A JP 8664690 A JP8664690 A JP 8664690A JP H03288515 A JPH03288515 A JP H03288515A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- activated carbon
- rotary body
- stage
- fine activated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 92
- 239000011148 porous material Substances 0.000 claims abstract description 36
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 6
- 238000003795 desorption Methods 0.000 claims description 50
- 238000001179 sorption measurement Methods 0.000 claims description 42
- 239000000470 constituent Substances 0.000 claims description 7
- 230000001172 regenerating effect Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 abstract description 79
- 230000008929 regeneration Effects 0.000 abstract description 29
- 238000011069 regeneration method Methods 0.000 abstract description 29
- 238000009825 accumulation Methods 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 88
- 239000002904 solvent Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 7
- 239000003973 paint Substances 0.000 description 7
- 238000009835 boiling Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000002336 sorption--desorption measurement Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000010422 painting Methods 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000006864 oxidative decomposition reaction Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
- F24F3/1423—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1032—Desiccant wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/104—Heat exchanger wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1056—Rotary wheel comprising a reheater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1072—Rotary wheel comprising two rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1084—Rotary wheel comprising two flow rotor segments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1088—Rotary wheel comprising three flow rotor segments
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Separation Of Gases By Adsorption (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、微細活性炭を主構成材とし、かつ、回転軸芯
方向に通気可能な複数の回転体を設け、それら回転体夫
々の回転域中に、被処理カスを通過させる吸着域と再生
ガスを通過させる脱着域とを設け、前記回転体夫々の前
記吸着域を−連の被処理ガス風路にその風路方向に並べ
て配置し、前記回転体表々の前記脱着域を再生ガス風路
に配置し、もって、回転体表々の吸着域と脱着域とにわ
たる回転により吸着と脱着を繰返して被処理ガスを連続
的に処理できるようにした回転式ガス処理装置に関する
。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a plurality of rotating bodies that are mainly composed of fine activated carbon and that can be ventilated in the direction of the axis of rotation, and the rotation range of each of the rotating bodies is an adsorption region through which the waste to be treated passes and a desorption region through which the regeneration gas passes; the adsorption regions of each of the rotating bodies are arranged in a series of to-be-treated gas air paths in the direction of the air paths; The desorption area on the surface of the rotating body is arranged in the regeneration gas air path, so that the gas to be treated can be continuously processed by repeating adsorption and desorption by rotation across the adsorption area and the desorption area on the surface of the rotating body. The present invention relates to a rotary gas treatment device.
従来、上記の如き回転式ガス処理装置においては、複数
の回転体表々の構成微細活性炭に平均細孔径が等しいも
のを使用していた。Conventionally, in the above-mentioned rotary gas treatment apparatus, fine activated carbon constituting the surfaces of a plurality of rotating bodies has been used that has the same average pore diameter.
しかし、被処理ガス中における被吸着物質(例えば塗装
ブースの排気中に含まれる溶剤等)の分子径が平均的で
、構成微細活性炭の平均細孔径がその平均的分子径に適
合していれば、上述の従来構成でも回転体の夫々におい
て吸脱着が適切に行われるが、上述の平均的分子径の被
吸着物質よりも分子径が大きくて、あるいは、吸脱着過
程で変質等により分子径が大径化し易くて吸着後、活性
炭との親和力が強すぎるために、又、細孔中で物理的に
挟持される状態になる等のために容易に脱着されない離
脱着性物質(例えば高沸点溶剤や重合性物質等)を少量
といえども上記平均的分子径の被吸着物質とともに含む
被処理ガスでは、離脱着性物質が吸着域での吸着後、脱
着域で脱着されずに回転体に集積するために吸脱着効率
が低下して回転体の寿命が大巾に短かくなり、又、その
ために維持経費が嵩む問題があった。However, if the molecular diameter of the adsorbed substance in the gas to be treated (for example, the solvent contained in the exhaust gas of a paint booth) is average, and the average pore diameter of the constituent fine activated carbon matches that average molecular diameter, then Even with the conventional configuration described above, adsorption and desorption are performed appropriately in each of the rotating bodies. Desorbable substances that easily become large in diameter and are not easily desorbed after adsorption because they have too strong an affinity for activated carbon or become physically trapped in the pores (e.g., high-boiling solvents) In the case of a gas to be treated that contains even a small amount of adsorbed substances (polymerizable substances, polymerizable substances, etc.) with the above-mentioned average molecular diameter, the desorption-adsorbable substances are not desorbed in the desorption area and accumulate on the rotating body after being adsorbed in the adsorption area. As a result, the efficiency of adsorption and desorption is reduced and the life of the rotating body is significantly shortened, which also poses the problem of increased maintenance costs.
本発明の目的は、各吸着域を一連の被処理ガス風路にそ
の風路方向に並べて配置する複数回転体を合理的に構成
することにより、上述の問題の解消を図る点にある。An object of the present invention is to solve the above-mentioned problems by rationally configuring a plurality of rotating bodies in which each adsorption region is arranged in a series of gas channels to be treated in the direction of the channels.
本発明による回転式ガス処理装置の第1の特徴構成は、
微細活性炭を主構成材とし、かつ、回転軸芯方向に通気
可能な複数の回転体を設け、それら回転体表々の回転域
中に、被処理ガスを通過させる吸着域と再生ガスを通過
させる脱着域とを設け、前記回転体表々の前記吸着域を
一連の被処理ガス風路にその風路方向に並べて配置し、
前記回転体表々の前記脱着域を再生ガス風路に配置する
構成において、
前記回転体のうち前記被処理ガス風路において上流側に
位置する前段回転体の構成微細活性炭を、下流側に位置
する後段回転体の構成微細活性炭よりも平均細孔径の大
なるものとしたことにあり、その作用・効果は次の通り
である。The first characteristic configuration of the rotary gas treatment apparatus according to the present invention is as follows:
A plurality of rotating bodies whose main constituent material is fine activated carbon and which can be ventilated in the direction of the rotation axis are provided, and an adsorption area through which the gas to be treated passes and a regenerating gas pass through the rotation area on the surface of the rotating bodies. a desorption area, and the adsorption area on the surface of the rotating body is arranged in a series of gas air passages in the direction of the air passage,
In the configuration in which the desorption area on the surface of the rotating body is arranged in the regeneration gas air path, the fine activated carbon constituting the pre-stage rotating body located on the upstream side in the to-be-treated gas air path of the rotating body is located on the downstream side. The second stage rotating body is made to have a larger average pore diameter than the fine activated carbon, and its functions and effects are as follows.
つまり、前段回転体の構成微細活性炭を、平均的分子径
の被吸着物質よりも分子径が大きい、あるいは、変質等
により分子径が大径化した離脱着性物質でも吸着域での
吸着後、脱着域で容易に脱着させることができる平均細
孔径の相対的に大きいものとし、これによって、前段回
転体を、上記平均的分子径の被吸着物質とともに被処理
ガスに含まれる比較的少量の離脱着性物質に対する専用
の回転体とする状態で、この前段回転体での吸脱着によ
り離脱着性物質を回転体に集積させることなく被処理ガ
スから適切に除去し、後段回転体への離脱着性均質の流
出を阻止する。In other words, even if the fine activated carbon constituting the first-stage rotor is adsorbed in the adsorption region, even if the molecular diameter is larger than the average molecular diameter of the adsorbed substance, or if the molecular diameter has increased due to alteration, etc., the fine activated carbon can be adsorbed. The average pore diameter is relatively large so that it can be easily desorbed in the desorption zone, and this allows the front-stage rotating body to desorb a relatively small amount of the gas contained in the gas to be treated together with the adsorbed substance having the above-mentioned average molecular diameter. With a dedicated rotating body for adhering substances, adsorption and desorption in the first stage rotary body properly removes the detachable substances from the gas to be treated without accumulating them on the rotating body, and the adsorption and desorption substances are removed from the gas to be removed and attached to the second stage rotary body. Prevent the outflow of sexual homogeneity.
一方、前段回転体の構成微細活性炭を離脱着性物質に適
合した相対的に平均細孔径が大きいものとすることによ
り、上記平均的分子径の被吸着物質に対する前段回転体
の吸着除去効率は低下するか、後段回転体の構成微細活
性炭を、平均的分子径の被吸着物質に適合(すなわち、
細孔内でそれに入り込む被吸着性物質と細孔との隙間が
比較的小さくて、吸着効果が高い状態)した相対的に平
均細孔径が小さいものとすることで、この後段回転体で
の吸脱着により平均的分子径の被吸着物質を被処理ガス
から効率良く除去する。On the other hand, by making the fine activated carbon that constitutes the pre-stage rotor to have a relatively large average pore diameter suitable for the detachable and adsorbable substances, the adsorption and removal efficiency of the pre-stage rotor for adsorbed substances with the above-mentioned average molecular diameter decreases. Alternatively, the fine activated carbon constituting the latter rotating body can be adjusted to match the average molecular size of the adsorbed substance (i.e.,
By making the average pore diameter relatively small, the gap between the pore and the adsorbed substance that enters the pore is relatively small, and the adsorption effect is high. By desorption, adsorbed substances with an average molecular size are efficiently removed from the gas to be treated.
そして、この後段回転体では、離脱着性物質が上流側の
前段回転体での吸脱着により既に被処理ガス中から除去
されていることから、離脱着性物質の集積が回避され、
又、平均的分子径の被吸着物質を吸着することにおいて
難脱着性物質が障害となることもないので平均的分子径
の被吸着物質に対する分離捕集効率が向上する。In this latter-stage rotary body, since the separable and adsorbable substances have already been removed from the gas to be treated by adsorption and desorption in the upstream front-stage rotary body, accumulation of the separable and adsorbable substances is avoided.
Furthermore, since the difficult-to-desorb substances do not become an obstacle in adsorbing substances with an average molecular diameter, the separation and collection efficiency for adsorbed substances with an average molecular diameter is improved.
以上の結果、本発明の第1特徴構成によれば、分子径が
平均的な被吸着物質とともに被処理ガス中に含まれる比
較的少量の離脱着性物質が吸着後、脱着されずに各回転
体に集積することを効果的に回避できて、各回転体の寿
命を従来に比して長くすることができ、又、それによっ
て維持経費を大巾に軽減し得るに至った。As a result of the above, according to the first characteristic configuration of the present invention, a relatively small amount of desorbable substances contained in the gas to be treated together with the adsorbed substance having an average molecular diameter are not desorbed after being adsorbed and are not desorbed at each rotation. Accumulation on the body can be effectively avoided, the lifespan of each rotating body can be extended compared to the conventional one, and maintenance costs can thereby be reduced to a large extent.
しかも、従来、回転体に集積されるだけで適切に分離捕
集できなかった、被処理ガス内に含まれる離脱着性物質
を前段回転体の回転による吸脱着により連続して適切に
分離捕集できることで、又、それによって、平均的分子
径の被吸着物質に対する後段回転体の分離捕集効率を高
く維持できるようになって、この種の回転式ガス処理装
置の処理性能及び汎用性をも向上し得るに至った。Moreover, the separable and adsorbable substances contained in the gas to be treated, which conventionally were only accumulated on the rotating body but could not be properly separated and collected, can be continuously and appropriately separated and collected by adsorption and desorption by the rotation of the preceding rotating body. This also makes it possible to maintain a high separation and collection efficiency of the downstream rotor for adsorbed substances with an average molecular diameter, thereby improving the processing performance and versatility of this type of rotary gas treatment equipment. I was able to improve it.
〔本発明の第2ないし第4特徴構成〕
本発明による回転式ガス処理装置の第2の特徴構成は、
前記前段回転体の構成微細活性炭の平均細孔径が、前記
後段回転体の構成微細活性炭の平均細孔径に対して1.
1倍以上で、かつ、35A以下であることにあり、
この第2特徴構成を採用すれば、実験結果、平均的分子
径の被吸着物質として塗料溶剤を含み、又、離脱着性物
質として比較的少量の高沸点溶剤、酸化分解して変質す
るケトン類、重合性物質等を含む塗装ブースからの排気
の処理において、前述第1特徴構成の効果を顕著に奏し
得る。[Second to fourth characteristic configurations of the present invention] The second characteristic configuration of the rotary gas treatment apparatus according to the present invention is as follows:
The average pore diameter of the fine activated carbon constituting the first-stage rotary body is 1.
It is more than 1 times and less than 35A.If this second characteristic configuration is adopted, experimental results show that paint solvent is included as an adsorbed substance with an average molecular diameter, and compared as a detachable and adsorbable substance. In the treatment of exhaust gas from a paint booth that contains a small amount of high-boiling point solvent, ketones that undergo oxidative decomposition and deterioration in quality, polymerizable substances, etc., the effect of the above-mentioned first characteristic configuration can be brought out significantly.
詳しくは、塗装ブースからの排気の処理においては、前
記平均的分子径の被吸着物質を効率良く吸脱着させるた
めには、後段回転体の構成微細活性炭の平均細孔径は1
4人〜23λ程度の範囲内とすることが望ましい。Specifically, in the treatment of exhaust gas from a paint booth, in order to efficiently adsorb and desorb the adsorbed substances with the above-mentioned average molecular diameter, the average pore diameter of the fine activated carbon constituting the latter rotating body must be 1.
It is desirable that the number of people be within the range of about 4 people to 23λ.
これは、平均細孔径が小さ過ぎると活性炭と被吸着物質
との親和力が強くなって脱着性が低下し、又、平均細孔
径が大きすぎると逆に活性炭と被吸着物質との親和力が
弱くなって吸着性が低下する等の理由によるものであり
、これらの場合共に処理性能の低下の原因となる。This is because if the average pore diameter is too small, the affinity between the activated carbon and the adsorbed substance will be strong and the desorption performance will be reduced, and if the average pore diameter is too large, the affinity between the activated carbon and the adsorbed substance will be weakened. This is due to reasons such as a decrease in adsorption properties, and both of these cases cause a decrease in processing performance.
又、前段回転体の構成微細活性炭の平均細孔径が、後段
回転体の構成微細活性炭の平均細孔径の1.1倍以上で
あれば、前段回転体における上記離脱着性物質の脱着性
は後段回転体と比べ有意的に向上する。Furthermore, if the average pore diameter of the fine activated carbon constituting the first-stage rotary body is 1.1 times or more the average pore diameter of the fine activated carbon constituting the second-stage rotary body, the desorption performance of the detachable substance in the first-stage rotary body will be lower than that of the second-stage rotary body. Significant improvement compared to rotating bodies.
しかしながら、前段回転体の平均細孔径が35人より大
きいと活性炭の性質上、活性炭の比表面積が小さいもの
となって、吸着容量の低下、更には、上記離脱着性物質
に対する吸着効率の低下が起こる場合がある。However, if the average pore diameter of the pre-stage rotor is larger than 35 pores, the specific surface area of activated carbon will be small due to the nature of activated carbon, resulting in a decrease in adsorption capacity and further a decrease in adsorption efficiency for the above-mentioned detachable substances. It may happen.
尚、ここで平均細孔径とは、−船釣に用いられる値、例
えばN2ガスを用いたB、E、T法にて求められる比表
面積ならびに細孔容積により算出される値を言う。Here, the average pore diameter refers to a value used in boat fishing, for example, a value calculated from the specific surface area and pore volume determined by the B, E, T method using N2 gas.
又、前記微細活性炭と他の物質よりなるハとカム構造等
の成形体では、その成形体の比表面積、細孔容積を測定
することにより得られる前記成形体の平均細孔径は、前
記成形体に用いられた微細活性炭の平均細孔径の値と全
く一致する。In addition, in the case of a molded body such as a cam structure made of the fine activated carbon and other substances, the average pore diameter of the molded body obtained by measuring the specific surface area and pore volume of the molded body is the same as that of the molded body. The average pore diameter value of the fine activated carbon used in
本発明の回転式ガス処理装置の第3の特徴構成は、前記
前段回転体の回転速度を前記後段回転体の回転速度より
も小としたことにあり、この第3特徴構戊を採用すれば
、前段回転体の吸着域での吸着時間、脱着域での脱着時
間の夫々を後段回転体に比べ長くできることにより、平
均的分子径の被吸着物質に比べ量的に少なくて吸着効率
が低く、又、本来的に脱着効率も低い離脱着性物質に対
する前段回転体の吸脱着効率を向上でき、これによって
、後段回転体に比して前段回転体の構成微細活性炭を相
対的に平均細孔径が大きいものとする前述第1特徴構成
の作用と相俟って、平均的分子径の被吸着物質とともに
被処理ガス内に一部含まれる離脱着性物質に対する前段
回転体の脱着効率を一層向上できる。A third characteristic configuration of the rotary gas treatment apparatus of the present invention resides in that the rotational speed of the first stage rotary body is made smaller than the rotational speed of the second stage rotary body, and if this third characteristic configuration is adopted, By making the adsorption time in the adsorption zone and the desorption time in the desorption zone of the front-stage rotor longer than those of the rear-stage rotor, the amount of the adsorbed substance is smaller than that of the average molecular diameter, and the adsorption efficiency is low. In addition, it is possible to improve the adsorption and desorption efficiency of the front-stage rotor for detachable substances that inherently have low desorption efficiency, and as a result, the average pore diameter of the fine activated carbon that constitutes the front-stage rotor is relatively smaller than that of the rear-stage rotor. Coupled with the effect of the first characteristic configuration that makes the particle size larger, it is possible to further improve the desorption efficiency of the pre-stage rotating body for the desorbable substances partially contained in the gas to be treated together with the adsorbed substance having an average molecular diameter. .
本発明による回転式ガス処理装置の第4の特徴構成は、
前記前段回転体を、前記後段回転体よりも回転軸芯方向
の厚みが小さいものとしたことにあり、
高沸点溶剤等の離脱着性物質は吸着し易くて吸着帯が短
くてよいこと、及び、離脱着性物質の量が平均的分子径
の被吸着物質に比べて少量の場合は、前段回転体の厚み
が小さくても回転体中で飽和することがないから回転体
の厚みを小さくできること等を裏付けとして、この第4
特徴構成を採用すれば、前段回転体における脱着域での
再生ガス入口から出口へかけての再生ガスの温度降下中
を後段回転体に比べ小さくすることができて、平均的分
子径の被吸着物質に比して本来的に脱着しにくい離脱着
性物質の前段回転体での脱着を上述温度降下中の縮小に
よる再生ガスの高温維持をもって促進することができ、
これによって、前述第1特徴構成の作用と相部って、又
、前述の第3特徴構成を採用する場合は第3特徴構成の
作用とも相部って、前段回転体での離脱着性物質の脱着
効率をより一層向上し得る。A fourth characteristic configuration of the rotary gas treatment apparatus according to the present invention is as follows:
The first stage rotating body is made to have a thickness smaller in the direction of the axis of rotation than the second stage rotating body, and detachment and adhesion substances such as high boiling point solvents can be easily adsorbed and the adsorption zone can be short. If the amount of the detachable and adsorbable substance is small compared to the adsorbed substance of average molecular size, the thickness of the rotating body can be made smaller because it will not become saturated in the rotating body even if the thickness of the preceding stage rotating body is small. Based on the above, this fourth
By adopting this characteristic configuration, it is possible to reduce the temperature drop of the regeneration gas from the regeneration gas inlet to the outlet in the desorption zone of the front-stage rotor compared to that of the rear-stage rotor, and to reduce the temperature drop of the regeneration gas from the regeneration gas inlet to the outlet in the desorption zone of the front-stage rotor. The desorption of the detachable substance, which is inherently difficult to desorb compared to the substance, at the front rotor can be promoted by maintaining the high temperature of the regeneration gas by shrinking during the temperature drop as described above,
As a result, in conjunction with the effect of the first characteristic configuration described above, and also in conjunction with the effect of the third characteristic configuration when the third characteristic configuration described above is adopted, the separable adhesion substance in the preceding stage rotating body is desorption efficiency can be further improved.
又、前段回転体の回転軸芯方向、すなわち、被処理ガス
や再生ガスの通過方向における厚みを小とすることによ
り、装置全体として被処理ガス風路や再生ガス風路での
圧損を低減できて、ファン動力を節減し得る。In addition, by reducing the thickness of the front-stage rotor in the direction of the rotational axis, that is, in the direction in which the gas to be treated and the regeneration gas pass, the pressure loss in the air path for the gas to be treated and the regeneration gas can be reduced for the entire device. Therefore, fan power can be saved.
第1図及び第2図は、塗装ブースからの排気を被処理ガ
スとし、この排気中に含まれる塗料溶剤等を分離捕集し
て被処理ガスとしての排気を浄化する回転式のガス処理
装置を示し、繊維状の微細活性炭を主構成材とした/S
ニカム構造で回転軸芯(P)方向に通気可能な2つの円
盤状回転体(1)、(2)を構成し、これら回転体(1
)、 (2)を適当間隔を隔ててケーシング(3)内で
同芯状に配置しである。Figures 1 and 2 show a rotary gas treatment device that uses exhaust gas from a painting booth as a gas to be treated, and separates and collects paint solvents, etc. contained in this exhaust gas to purify the exhaust gas as a gas to be treated. /S with fibrous fine activated carbon as the main constituent material
It consists of two disc-shaped rotating bodies (1) and (2) that have a nicum structure and can ventilate in the direction of the rotational axis (P), and these rotating bodies (1)
) and (2) are arranged concentrically within the casing (3) at appropriate intervals.
ケーシング(3)は、回転体並設方向(すなわち、回転
体(1)、 (2)の回転軸芯(P)方向)の−端から
被処理ガス(G)を流入させ、この流入被処理ガス(G
)を両回転体(1)、 (2)夫々の回転域における同
一の特定位相部分(A1)、 (A2)で両回転体(1
)、(2)に順次通過させて処理した後、他端から排出
する一連の被処理ガス風路(GF)を形成している。The casing (3) allows the gas to be treated (G) to flow in from the - end in the direction in which the rotating bodies are arranged side by side (i.e., in the direction of the rotation axes (P) of the rotating bodies (1) and (2)). Gas (G
) for both rotating bodies (1), (2) the same specific phase portion (A1) in each rotation range, (A2) for both rotating bodies (1).
), (2), a series of gas flow paths (GF) are formed in which the gas to be treated passes through the gas in sequence, is processed, and is then discharged from the other end.
又、ケーシング(3)内には、両回転体(1)、 (2
)夫々の回転域における他の同一位相部分(B+)。Also, inside the casing (3) are both rotating bodies (1) and (2
) Other same phase portions (B+) in each rotation range.
(B2)で各回転体(1)、(2)に高温再生ガス()
I)を通過させる再生ガス風路(HF、 )、 (HF
2 )を仕切形威しである。At (B2), high-temperature regeneration gas () is applied to each rotating body (1) and (2).
I) regeneration gas air path (HF, ), (HF
2) is a partition form.
つまり、各回転体(1)、(2)の回転域において、被
処理ガス(G)を通過させる上記特定部分(AI)。That is, in the rotation range of each rotating body (1), (2), the specific portion (AI) allows the gas to be processed (G) to pass through.
(A2)を吸着域とし、かつ、再生ガス(H)を通過さ
せる上記の他の部分(B1)、(B2)を脱着域とし、
もって、両回転体(1)、 (2)の回転に伴い、上記
吸着域(A1)、(A2)において被処理ガス(G)中
の被吸着物質(すなわち、塗装ブースからの排気中に含
まれる塗料溶剤等)を回転体(1)、(2)の構成微細
活性炭に吸着させることと、この吸着した被吸着物質を
上記脱着域(B1)、(B2)において回転体(1)、
(2)の構成微細活性炭から高温再生ガス(H)中へ脱
着させることとを繰返すことにより、被処理ガス(G)
である排気から塗料溶剤等を連続的に分離捕集するよう
にしである。(A2) is an adsorption area, and the other parts (B1) and (B2) above which pass the regeneration gas (H) are desorption areas,
As a result, as the two rotating bodies (1) and (2) rotate, the adsorbed substances in the gas to be treated (G) (i.e., contained in the exhaust gas from the coating booth) are absorbed in the adsorption areas (A1) and (A2). (painting solvent, etc.) is adsorbed onto the fine activated carbon constituting the rotating bodies (1) and (2), and the adsorbed substance is absorbed into the rotating bodies (1) and the adsorbed substances in the desorption zones (B1) and (B2).
By repeating the desorption from the fine activated carbon in (2) into the high temperature regeneration gas (H), the gas to be treated (G) is
Paint solvents, etc. are continuously separated and collected from the exhaust gas.
尚、各回転体(1)、(2)の脱着域(B1)、(B2
)に対する再生ガス風路(HF、 )、 (HF2)は
互いに直列接続した一連の風路としてあり、そして、こ
の一連の再生ガス風路(I(F+)、(HF2)におい
て両回転体(1)、(2)の脱着域(B、)、 (B2
)どうしの間には、上流側の脱着域(B2)通過により
温度降下した再生ガス(H)を昇温する中間加熱器(4
)を設けである。In addition, the attachment and detachment areas (B1) and (B2) of each rotating body (1) and (2)
), the regeneration gas air paths (HF, ), (2) desorption area (B, ), (B2
) between them, there is an intermediate heater (4
) is provided.
又、両脱着域(Bl )、 (B2)を順次通過させた
再生ガス(H)はその後、燃焼装置へ送り、この燃焼装
置において、再生ガス(H)中の溶剤等の含有脱着物質
を焼却処理する。Furthermore, the regeneration gas (H) that has sequentially passed through both desorption zones (Bl) and (B2) is then sent to a combustion device, where the desorption substances such as solvents in the regeneration gas (H) are incinerated. Process.
両回転体(1)、(2)を構成するに、それら回転体(
1)、 (2)のうち被処理ガス風路(GF’)におい
て上流側に位置する前段回転体(1)の構成微細活性炭
は、下流側に位置する後段回転体(2)の構成微細活性
炭よりも平均細孔径(d)が大きいものとしてあり、具
体的には、分子径が平均的な主なる被吸着物質としての
一般溶剤とともに、それら平均的分子径の一般溶剤より
も分子径が大きくて、あるいは、吸脱着過程で変質等に
より分子径が大径化し易くて吸着後の脱着が行われにく
い離脱着性物質(例えば、一部の高沸点溶剤、酸化分解
して変質するケトン類、重合性物質等)を少量含む、塗
装ブースからの排気を被処理ガス(G)とする本例では
、
前段回転体(1)の構成微細活性炭として、その平均細
孔径(d1)が25A〜30人の範囲内のもので上記離
脱着性物質の吸脱着(特に脱着)に適したものを使用し
、一方、後段回転体(2)の構成微細活性炭として、そ
の平均細孔径(d2)が14人〜23人の範囲内のもの
で上記平均的分子径の主なる被吸着物質としての一般溶
剤の吸脱着に適したものを使用しである。To configure both rotating bodies (1) and (2), these rotating bodies (
Among 1) and (2), the fine activated carbon constituting the first rotary body (1) located upstream in the gas flow path (GF') to be treated is the same as the fine activated carbon constituting the second rotary body (2) located downstream. The average pore diameter (d) is larger than that of the average pore diameter (d), and specifically, along with general solvents that are the main adsorbed substances with an average molecular size, Alternatively, desorbable substances whose molecular diameters tend to increase due to deterioration during the adsorption/desorption process and are difficult to desorb after adsorption (e.g., some high-boiling point solvents, ketones that deteriorate through oxidative decomposition, etc.) In this example, the gas to be treated (G) is exhaust gas from a painting booth, which contains a small amount of polymerizable substances (polymerizable substances, etc.). Use a material that is within the range of humans and is suitable for adsorption and desorption (especially desorption) of the above-mentioned separable and adsorbable substances, and on the other hand, as the constituent fine activated carbon of the latter rotating body (2), the average pore diameter (d2) is 14 A material with an average molecular diameter of 1 to 23 people and suitable for adsorption and desorption of a general solvent as the main adsorbed substance is used.
すなわち、前段回転体(1)の構成微細活性炭に上記平
均細孔径(di)のものを適用することにより、離脱着
性物質が吸着後、脱着されないままで前段回転体(1)
に集積することを回避し、これによって、前段回転体(
1)を、平均的分子径の主なる被吸着物質とともに被処
理ガス(G)に含まれる離脱着性物質に対する専用の回
転体とする状態で、この前段回転体(1)での吸脱着に
より離脱着性物質を被処理ガス(G)から適切に除去し
、又、これによって、後段回転体(2)での離脱着性物
質の集積を回避する。That is, by applying fine activated carbon having the above average pore diameter (di) to the constituent fine activated carbon of the pre-stage rotating body (1), the detachable and adsorbable substances are adsorbed and remain undesorbed.
This prevents the accumulation on the front rotating body (
1) is used as a rotating body exclusively for the detachable and adsorbable substances contained in the gas to be treated (G) together with the main adsorbed substance having an average molecular diameter. The detachable and adhesion substances are appropriately removed from the gas to be treated (G), and thereby the accumulation of the detachment and adhesion substances on the subsequent rotating body (2) is avoided.
そして、前段回転体(1)で吸着捕捉されずに後段回転
体(2)に至った平均的分子径の被吸着物質(一般溶剤
)については、その平均的分子径の吸脱着に適した平均
細孔径(d2)を有する微細活性炭で構成した上記後段
回転体(2)での吸脱着により被処理ガス(G)から効
率良く除去し、もって、全体として、離脱着性物質の集
積による回転体(1)、(2)の寿命低下を効果的に回
避しながら、平均的分子径の被吸着物質(一般溶剤)及
び離脱着性物質の夫々を効率良く分離捕集できるように
しである。For adsorbed substances (general solvents) with average molecular diameters that are not adsorbed and captured by the first rotary body (1) and reach the second rotary body (2), the average molecular size suitable for adsorption and desorption is determined. The latter rotating body (2) made of fine activated carbon having a pore diameter (d2) efficiently removes it from the gas to be treated (G) by adsorption and desorption, and as a result, the rotating body as a whole is caused by the accumulation of detachable substances. This makes it possible to efficiently separate and collect adsorbed substances (general solvents) and detachable and adhesion substances having average molecular diameters while effectively avoiding the decrease in lifespan of (1) and (2).
前段回転体(1)の回転軸(la)及び後段回転体(2
)の回転軸(2a)は、両回転体(1)、 (2)を互
いに異なる回転速度(v1)、(v2)で回転させ得る
ように互いに独立した回転軸としてあり、そして、両回
転体(1)、(2)の回転駆動においては、前段回転体
(1)の回転速度(■1)を後段回転体(2)の回転速
度(v2)よりも小(Vl<V2)に設定(実用的には
v、/v2=0.3〜0.7の範囲内で)しである。The rotation axis (la) of the front stage rotor (1) and the rear stage rotor (2)
) are independent rotation axes so that both rotating bodies (1) and (2) can be rotated at mutually different rotational speeds (v1) and (v2), and both rotating bodies In the rotational drives of (1) and (2), the rotational speed (■1) of the first-stage rotary body (1) is set to be smaller than the rotational speed (v2) of the second-stage rotary body (2) (Vl<V2) ( Practically speaking, it is within the range of v,/v2=0.3 to 0.7).
すなわち、上記回転速度設定により、前段回転体(1)
の吸着域(A1)での吸着時間、及び、脱着域(B1)
での脱着時間の夫々を後段回転体(2)に比べ長くし、
これによって、平均的分子径の被吸着物質に比べ量的に
少なくて吸着効率が低く、又、本来的に脱着効率も低い
離脱着性物質に対する前段回転体(1)の吸脱着効率を
向上させるようにしである。That is, with the above rotational speed setting, the front rotating body (1)
Adsorption time in the adsorption area (A1) and desorption area (B1)
The attachment/detachment time of each of the parts is made longer than that of the latter rotating body (2),
This improves the adsorption/desorption efficiency of the pre-stage rotating body (1) for the detachable substances which are smaller in quantity and have lower adsorption efficiency than adsorbed substances of average molecular size, and which also inherently have lower desorption efficiency. That's how it is.
両回転体(1)、 (2)を構成するにあたっては、前
段回転体(1)を後段回転体(2)よりも回転軸芯(P
)方向の厚みが小さい(2+<22)ものに形成(実用
的には11/ l! 2=0.3〜0.7の範囲内で)
してあり、これによって、前段回転体(1)における脱
着域(B+)での再生ガス(H)の入口から出口へかけ
ての温度降下中を後段回転体(2)に比べ小さくして再
生ガス(H)を脱着域出口まで高温に維持することで、
平均的分子径の被吸着物質に比して本来的に脱着しにく
い離脱着性物質の前段回転体(1)での脱着を一層促進
するようにしである。When configuring both rotating bodies (1) and (2), the front rotating body (1) should be placed closer to the rotational axis (P) than the latter rotating body (2).
) with a small thickness (2+<22) (practically within the range of 11/l!2=0.3 to 0.7)
As a result, the temperature drop during the period from the inlet to the outlet of the regeneration gas (H) in the desorption zone (B+) in the first stage rotor (1) is made smaller than that in the second stage rotor (2). By maintaining the gas (H) at high temperature until the exit of the desorption zone,
This is to further promote the desorption of detachable and adsorbable substances, which are inherently difficult to desorb compared to adsorbed substances of average molecular size, on the upstream rotating body (1).
尚、高沸点溶剤等の離脱着性物質は吸着し易くて吸着帯
が短くてよく、又、離脱着性物質の量は平均的分子径の
被吸着物質に比べ少量であるから、前段回転体(1)の
厚み(11)か小さくても1回転中の吸着時間内に回転
体中で飽和することはなく、前段回転体(1)でほぼ完
全に捕集され、後段回転体(2)へ流出することはない
。It should be noted that adsorbing substances such as high boiling point solvents are easily adsorbed and the adsorption zone is short, and the amount of adsorbing substances such as high boiling point solvents is small compared to the adsorbed substance with an average molecular diameter, so Even if the thickness (11) of (1) is small, it will not become saturated in the rotating body within the adsorption time of one rotation, and will be almost completely collected in the first stage rotating body (1), and will be collected in the second stage rotating body (2). There will be no leakage.
又、同様に前段回転体(1)での離脱着性物質の脱着効
率の一層の向上を目的として本例においては、前段回転
体(1)の脱着域(B1)に供給する再生ガス(H)の
温度(t1)を、後段回転体(2)の脱着域(B2)に
供給する再生ガス(H)の温度(t2)よりも高温に設
定(例えばt 、 = 150°Cに対してt2=13
0°C)しである。Similarly, in this example, for the purpose of further improving the desorption efficiency of the separable adsorbable substance in the pre-rotating body (1), regeneration gas (H ) is set to a higher temperature (t2) than the temperature (t2) of the regeneration gas (H) supplied to the desorption zone (B2) of the subsequent rotating body (2) (for example, t2 for t = 150 °C). =13
0°C).
次に本発明の別実施例を列記する。 Next, other embodiments of the present invention will be listed.
(a) 回転体(1)、(2)の構成微細活性炭は繊
維状のものに限定されるものではなく、粒状等であって
も良い。(a) Structure of the rotating bodies (1) and (2) The fine activated carbon is not limited to a fibrous form, but may be a granular form.
(b) 微細活性炭を主構成材として回転軸芯(P)
方向に通気可能な回転体(1)、(2)を構成するに、
微細活性炭をハニカム構造に形成する以外の形成構造を
採用しても良い。(b) Rotating shaft core (P) with fine activated carbon as the main component
To configure the rotating bodies (1) and (2) that can be ventilated in the direction,
A formation structure other than forming fine activated carbon into a honeycomb structure may be adopted.
(C) 回転体(1)、 (2)の個数は3個以上の
複数であっても良く、又、その場合、一連の被処理ガス
風路(GF)において上流側の何個の回転体を離脱着性
物質吸脱着用の前段回転体(1)とするかは適宜決定す
れば良い。(C) The number of rotating bodies (1) and (2) may be three or more, and in that case, the number of rotating bodies on the upstream side in the series of gas flow paths (GF) to be treated is determined. It may be determined as appropriate whether to use the front-stage rotary body (1) for adsorbing and desorbing detachable substances.
(d) 各回転体(1)、(2)の吸着域(AI )
、 (A2 )を風路方向に並べて配置する一連の被処
理ガス風路(GF)の具体的形成構造は種々の構成変更
が可能である。(d) Adsorption area (AI) of each rotating body (1), (2)
, (A2) are arranged side by side in the air path direction, the specific formation structure of a series of gas air paths (GF) to be processed can be modified in various ways.
(e)各回転体(1)、(2)夫々の脱着域(B1)、
(B2)に再生ガス(H)を通風する再生ガス風路(H
FI)。(e) Each rotating body (1), (2) each desorption area (B1),
Regeneration gas air path (H
FI).
(HF2)を、前述実施例の如く一連の風路とするに代
えて、例えば第3図に示すように互いに独立した風路と
しても良く、又、これら再生ガス風路(HFI )、
(HF2)の具体的形成構造も種々の構成変更が可能で
ある。(HF2) may be formed as a series of air paths as in the above embodiment, but may be independent air paths as shown in FIG. 3, and these regenerating gas air paths (HFI),
The specific formation structure of (HF2) can also be changed in various ways.
(f) 再生ガス(H)には空気等の種々の気体を適
用できるが、特に、前段回転体(1)において離脱着性
物質が酸化変質により一層難脱着性が高くなることを防
止して、前段回転体(1)での離脱着性物質の脱着効率
を向上すべく、前段回転体(1)に対する再生ガス(H
)に不活性ガスを適用するようにしても良い。(f) Various gases such as air can be used as the regeneration gas (H), but in particular, it is necessary to prevent the releasable substances from becoming more difficult to detach due to oxidation and deterioration in the former rotating body (1). In order to improve the desorption efficiency of the separable and adsorbable substances in the front stage rotor (1), regeneration gas (H
) may be applied with an inert gas.
(g) 前段回転体(1)での離脱着性物質の脱着を
促進すべく、前段回転体(1)に対する再生ガス供給量
を後段回転体(2)に対する再生ガス供給量よりも大に
しても良い。(g) In order to promote the desorption of the separable and adsorbable substance in the first stage rotary body (1), the amount of regeneration gas supplied to the first stage rotary body (1) is made larger than the amount of regeneration gas supplied to the second stage rotary body (2). Also good.
(h) 前段回転体(1)の構成微細活性炭を後段回
転体(2)の構成微細活性炭よりも平均細孔径が大きい
ものとするに、それら前段及び後段回転体(1)、(2
)夫々の構成微細活性炭の具体的平均細孔径は、各々吸
脱着の対象である離脱着性物質及び平均的分子径の被吸
着物質に応じて適宜決定すれば良い。(h) Assuming that the fine activated carbon constituting the first-stage rotary body (1) has a larger average pore diameter than the fine activated carbon constituting the second-stage rotary body (2), the first-stage and second-stage rotary bodies (1), (2)
) The specific average pore diameter of each of the constituent fine activated carbons may be appropriately determined depending on the separable and adsorbable substance to be adsorbed and desorbed and the adsorbed substance having an average molecular diameter.
(i) 前段回転体(1)の回転速度(■1)と後段
回転体(2)の回転速度(v2)とは、それらを互いに
異なる速度とする場合、及び、同一の速度とする場合の
いずれにおいても、吸脱着効率等を考慮して適宜決定す
れば良い。(i) The rotational speed (■1) of the front-stage rotor (1) and the rotational speed (v2) of the rear-stage rotor (2) are different from each other and when they are the same speed. In either case, it may be determined as appropriate in consideration of adsorption/desorption efficiency, etc.
(j)前段回転体(1)の回転軸芯(P)方向の厚み(
11)と後段回転体(2)の回転軸芯(P)方向の厚み
(12)とは、それらを互いに異なる厚みとする場合、
及び、同一の厚みとする場合のいずれにおいても、吸脱
着効率や風路圧損等を考慮して適宜決定すれば良い。(j) Thickness of the front rotor (1) in the rotation axis (P) direction (
11) and the thickness (12) of the rear rotating body (2) in the direction of the rotation axis (P), when they are different from each other,
In any case where the thickness is the same, the thickness may be appropriately determined in consideration of adsorption/desorption efficiency, air path pressure loss, etc.
(k) 本発明は、塗装ブースからの排気に限らず、
種々の分野における各種気体の処理に適用できる。(k) The present invention is not limited to exhaust from a paint booth;
It can be applied to processing various gases in various fields.
尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.
第1図及び第2図は本発明の実施例を示し、第1図は概
略装置構成を示す斜視図、第2図は縦断面図である。第
3図は本発明の別実施例を示す縦断面図である。
(1)・・・・・・前段回転体、(2)・・・・・・後
段回転体、(A1)、(A2)・・・・・・吸着域、(
B1)、(B2)・・・・・・脱着域、(GF)・・・
・・・被処理ガス風路、(HF1)、 (HF2)・山
・・再生ガス風路、(G)・・・・・・被処理ガス、(
H)・・・・・・再生ガス、(d)・・・・・・平均細
孔径、(v)・・・・・・回転速度、(f)・・・・・
・厚み、(P)・・・・・・回転軸芯。1 and 2 show an embodiment of the present invention, with FIG. 1 being a perspective view showing a schematic configuration of the device, and FIG. 2 being a longitudinal sectional view. FIG. 3 is a longitudinal sectional view showing another embodiment of the present invention. (1)...First-stage rotating body, (2)... Second-stage rotating body, (A1), (A2)...Adsorption area, (
B1), (B2)...Desorption area, (GF)...
...To-be-processed gas air path, (HF1), (HF2)・mountain...Regeneration gas air path, (G)......To-be-processed gas, (
H)...Regeneration gas, (d)...Average pore diameter, (v)...Rotation speed, (f)...
・Thickness, (P)...Rotation axis center.
Claims (1)
方向に通気可能な複数の回転体(1)、(2)を設け、
それら回転体(1)、(2)夫々の回転域中に、被処理
ガス(G)を通過させる吸着域(A_1)、(A_2)
と再生ガス(H)を通過させる脱着域(B_1)、(B
_2)とを設け、前記回転体(1)、(2)夫々の前記
吸着域(A_1)、(A_2)を一連の被処理ガス風路
(GF)にその風路方向に並べて配置し、前記回転体(
1)、(2)夫々の前記脱着域(B_1)、(B_2)
を再生ガス風路(HF_1)、(HF_2)に配置した
回転式ガス処理装置であって、 前記回転体(1)、(2)のうち前記被処理ガス風路(
GF)において上流側に位置する前段回転体(1)の構
成微細活性炭を、下流側に位置する後段回転体(2)の
構成微細活性炭よりも平均細孔径(d)の大なるものと
した回転式ガス処理装置。 2、前記前段回転体(1)の構成微細活性炭の平均細孔
径(d_1)が、前記後段回転体(2)の構成微細活性
炭の平均細孔径(d_2)に対して1.1倍以上で、か
つ、35Å以下である請求項1記載の回転式ガス処理装
置。 3、前記前段回転体(1)の回転速度(v_1)を前記
後段回転体(2)の回転速度(v_2)よりも小とした
請求項1又は2記載の回転式ガス処理装置。 4、前記前段回転体(1)を、前記後段回転体(2)よ
りも回転軸芯(P)方向の厚み(l)が小さいものとし
た請求項1、2又は3記載の回転式ガス処理装置。[Claims] 1. The main constituent material is fine activated carbon, and the rotation axis (P)
A plurality of rotating bodies (1) and (2) that can be ventilated in the direction are provided,
Adsorption areas (A_1) and (A_2) through which the gas to be treated (G) passes through the rotation areas of the rotating bodies (1) and (2), respectively.
and desorption zone (B_1), (B
_2), and the adsorption areas (A_1) and (A_2) of the rotating bodies (1) and (2) are arranged in a series of gas flow paths (GF) in the direction of the air flow path, and Rotating body(
1), (2) the respective desorption areas (B_1), (B_2)
is arranged in the regenerating gas air passages (HF_1) and (HF_2), the rotary gas processing apparatus comprising: the to-be-processed gas air passage (
GF), the rotation in which the fine activated carbon that constitutes the first-stage rotary body (1) located on the upstream side has a larger average pore diameter (d) than the fine activated carbon that constitutes the second-stage rotary body (2) located on the downstream side. type gas processing equipment. 2. The average pore diameter (d_1) of the fine activated carbon constituting the first-stage rotary body (1) is 1.1 times or more the average pore diameter (d_2) of the fine activated carbon constituting the second-stage rotary body (2), The rotary gas treatment apparatus according to claim 1, wherein the thickness is 35 Å or less. 3. The rotary gas processing apparatus according to claim 1 or 2, wherein the rotational speed (v_1) of the first-stage rotary body (1) is smaller than the rotational speed (v_2) of the second-stage rotary body (2). 4. The rotary gas treatment according to claim 1, 2 or 3, wherein the first stage rotary body (1) has a thickness (l) smaller in the rotation axis (P) direction than the second stage rotary body (2). Device.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2086646A JP2950899B2 (en) | 1990-03-31 | 1990-03-31 | Rotary gas processing equipment |
CA002039440A CA2039440C (en) | 1990-03-31 | 1991-03-28 | Rotary gas treating apparatus |
ES91302818T ES2097182T3 (en) | 1990-03-31 | 1991-03-28 | ROTATION DEVICE FOR GAS TREATMENT. |
EP91302818A EP0450888B1 (en) | 1990-03-31 | 1991-03-28 | Rotary gas treating apparatus |
DE69123072T DE69123072T2 (en) | 1990-03-31 | 1991-03-28 | Rotary gas treatment apparatus |
US07/676,879 US5167679A (en) | 1990-03-31 | 1991-03-28 | Rotary gas treating apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2086646A JP2950899B2 (en) | 1990-03-31 | 1990-03-31 | Rotary gas processing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03288515A true JPH03288515A (en) | 1991-12-18 |
JP2950899B2 JP2950899B2 (en) | 1999-09-20 |
Family
ID=13892796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2086646A Expired - Fee Related JP2950899B2 (en) | 1990-03-31 | 1990-03-31 | Rotary gas processing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2950899B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011031160A (en) * | 2009-07-31 | 2011-02-17 | Toyobo Co Ltd | Organic solvent-containing gas treatment system |
JP2011031159A (en) * | 2009-07-31 | 2011-02-17 | Toyobo Co Ltd | Organic solvent recovery system |
JP2018051464A (en) * | 2016-09-28 | 2018-04-05 | 東洋紡株式会社 | Organic compound recovery system |
-
1990
- 1990-03-31 JP JP2086646A patent/JP2950899B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011031160A (en) * | 2009-07-31 | 2011-02-17 | Toyobo Co Ltd | Organic solvent-containing gas treatment system |
JP2011031159A (en) * | 2009-07-31 | 2011-02-17 | Toyobo Co Ltd | Organic solvent recovery system |
JP2018051464A (en) * | 2016-09-28 | 2018-04-05 | 東洋紡株式会社 | Organic compound recovery system |
Also Published As
Publication number | Publication date |
---|---|
JP2950899B2 (en) | 1999-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0775714A (en) | Organic solvent vapor adsorption apparatus | |
JP2009142816A (en) | Air cleaning system for maintaining nitrogen and oxygen rates by reproducible cleaning unit, and its method | |
JPH11511058A (en) | Double filter unit | |
WO2002074422A8 (en) | Gas drying apparatus and method | |
JP2002509016A (en) | Two-stage rotary concentrator | |
FR2585968A1 (en) | INSTALLATION FOR RECOVERING SOLVENTS IN A TREATMENT GAS CURRENT | |
CN101107053A (en) | Method and apparatus for treatment of exhaust gas | |
JPH03288515A (en) | Rotary type gas treatment apparatus | |
JPH05200231A (en) | Dry dehumidifier | |
US6165252A (en) | Adsorption process and apparatus | |
CN105333544A (en) | Novel dehumidification system | |
JPH0947627A (en) | Apparatus for cleaning exhaust gas | |
JP2999794B2 (en) | Rotary gas processing equipment | |
CN216909759U (en) | VOCs exhaust-gas treatment system | |
JPH03288516A (en) | Rotary type gas treatment apparatus | |
JP2002186822A (en) | Adsorbing and desorbing apparatus | |
JPH1066814A (en) | Bag filter for treating exhaust gas and its production | |
JPH09187621A (en) | Waste gas treating method and device therefor | |
JPH1015339A (en) | Deodorizing device | |
JPH11290636A (en) | Air cleaner | |
JP2003144831A (en) | Rotor type dehumidifier | |
JPH1024215A (en) | Waste gas purifier | |
JP2891560B2 (en) | Pressure swing type gas separator | |
JP3531187B2 (en) | Deodorizing device and deodorizing method | |
JPS6377516A (en) | Gas separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |