JPH03287740A - Manufacture of raw material for rare earth permanent magnet - Google Patents

Manufacture of raw material for rare earth permanent magnet

Info

Publication number
JPH03287740A
JPH03287740A JP2089701A JP8970190A JPH03287740A JP H03287740 A JPH03287740 A JP H03287740A JP 2089701 A JP2089701 A JP 2089701A JP 8970190 A JP8970190 A JP 8970190A JP H03287740 A JPH03287740 A JP H03287740A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
metal
raw material
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2089701A
Other languages
Japanese (ja)
Other versions
JP2994685B2 (en
Inventor
Kimio Uchida
内田 公穂
Makoto Ushijima
誠 牛嶋
Takeshi Mizuhara
水原 猛
Harutaka Shibusawa
渋沢 治孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2089701A priority Critical patent/JP2994685B2/en
Publication of JPH03287740A publication Critical patent/JPH03287740A/en
Application granted granted Critical
Publication of JP2994685B2 publication Critical patent/JP2994685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture a raw material for a rare earth permanent magnet excellent in magnetic properties at a low cost by heating and reducing a material constituted of the oxides of rare earth elements and the oxides of specified elements, thereafter washing the material, subjecting it to pulverizing, compacting and sintering and executing its componental regulation. CONSTITUTION:A material constituted of the oxides of rare earth elements R (where R denotes one or more kinds among La, Ce, Pr Nd, Sm or the like) and the oxides of elements M (where M denotes one or more kinds among Co, Fe, Ni, Mo, Cu or the like) is mixed with a reducing agent such as metallic Ca and metallic Mg, and this mixture is heated and reduced to form an RM series alloy. This RM series alloy is thereafter washed to remove CaO, MgO or the like which are reaction by-products. Next, the RM alloy is pulverized and is compacted, and this green compact is sintered in the atmosphere of an inert gas or in vacuum. After that, this sintered body is added to a molten metal constituted of R and/or M blended so as to form an RM series alloy having prescribed components including R and M in the sintered body, which is melted to manufacture an RM series alloy having prescribed components. In this way, the rare earth permanent magnet satisfactorily maintaining the magnetic properties of its own can be obtd. at a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えばSva −Co系若しくはNd−Fe−
B系のような希土類永久磁石用の原料を製造する方法に
関するものであり、特に磁気特性に優れた希土類永久磁
石の製造が可能であると共に、製造コストが安価である
原料の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is applicable to, for example, Sva-Co or Nd-Fe-
It relates to a method for producing raw materials for rare earth permanent magnets such as B-series, and in particular, it relates to a method for producing raw materials that allows production of rare earth permanent magnets with excellent magnetic properties and is inexpensive. be.

〔従来の技術〕[Conventional technology]

希土類永久磁石はSm −Co系のものが開発されて以
来、物性的研究の進展と相俟って磁気的特性が逐次向上
し、近年におけるNd−Fe−B系のものも含めてこれ
らが適用される機器、装置の小型軽量化、高性能化に大
きく貢献すると共に、更に新分野の開拓にも寄与してい
る。上記希土類永久磁石を製造する場合には、粉末冶金
手段によるものが通常であり、まず原料粉を製造する必
要がある。
Since the Sm-Co-based rare earth permanent magnets were developed, their magnetic properties have gradually improved with the progress of physical property research, and these, including the Nd-Fe-B-based ones, have been applied in recent years. This has greatly contributed to the miniaturization, weight reduction, and high performance of equipment and devices used in this field, and has also contributed to the development of new fields. When producing the above-mentioned rare earth permanent magnets, powder metallurgy is usually used, and it is first necessary to produce raw material powder.

最も一般的な5sCo s型の希土類コバルト永久磁石
の場合に例をとると、まずSa+38重量%、Co62
重量%からなる合金をAr雰囲気中において高周波熔解
し、鋳造手段を経て得たインゴットを粗粉砕した後、保
護雰囲気中においてボールミル等によって微粉砕して平
均粒径5μm程度の原料粉を作製する。上記のようにし
て得た原料粉に適量の焼結助剤を添加し、磁場中に配設
した成形型によって圧縮成形し、この成形体を1100
℃以上で焼結する。焼結体に900℃で約1時間以内の
熱処理を施すことにより、高エネルギー積を有する希土
類永久磁石を得ることができる。
Taking the case of the most common 5sCo s type rare earth cobalt permanent magnet, first, Sa+38% by weight, Co62
The alloy consisting of % by weight is melted at high frequency in an Ar atmosphere, and the ingot obtained through casting means is coarsely pulverized, and then finely pulverized by a ball mill or the like in a protected atmosphere to produce raw material powder with an average particle size of about 5 μm. An appropriate amount of sintering aid is added to the raw material powder obtained as described above, and compression molding is performed using a mold placed in a magnetic field.
Sinter at temperatures above ℃. By subjecting the sintered body to heat treatment at 900° C. for about 1 hour or less, a rare earth permanent magnet having a high energy product can be obtained.

一方上記原料粉の別な製造方法として還元拡散法若しく
はR/D法と称される方法がある。この方法においては
例えばSmzOs+ Co、 Fe、 Cu、 Zrお
よび金属Caを粉体状態で混合した後、950〜110
0℃で数時間加熱してSm2O3を還元拡散するもので
ある。すなわち2−17系の希土類磁石の場合に例をと
ると、 SmzO,+Co+Fe+Cu+Zr+Ca=Sm(C
o、 Fe、 Cu、 Zr)x+caOの反応により
Sm(Co、 Fe、 Cu+ Zr)xを得るのであ
る。
On the other hand, as another method for producing the raw material powder, there is a method called reduction diffusion method or R/D method. In this method, for example, after mixing SmzOs+ Co, Fe, Cu, Zr and metal Ca in a powder state,
It is heated at 0° C. for several hours to reduce and diffuse Sm2O3. In other words, taking the case of a 2-17 rare earth magnet as an example, SmzO,+Co+Fe+Cu+Zr+Ca=Sm(C
Sm(Co, Fe, Cu+ Zr)x is obtained by the reaction of 0, Fe, Cu, Zr)x+caO.

また、希土類永久磁石用原料粉を安価に製造する方法と
して、希土類金属酸化物と、金属Mと、金属Caとを混
合した後、加熱還元してRM5合金を製造し、この合金
を溶融状態の金属M中に添加した後粉化することを内容
とする上記の還元拡散法と溶解法とを併用したような提
案が開示されている(特開昭60−238403号公報
参照)。上記合金の添加手段としては例えばSmCo5
ベレットをFe −Cu −Zr系合金溶湯中に添加す
る旨の記載がある。
In addition, as a method of manufacturing raw material powder for rare earth permanent magnets at low cost, a rare earth metal oxide, metal M, and metal Ca are mixed, then heated and reduced to produce RM5 alloy, and this alloy is in a molten state. A proposal has been disclosed in which the above-mentioned reduction diffusion method and dissolution method are used in combination, in which M is added to metal M and then powdered (see Japanese Patent Application Laid-Open No. 60-238403). As a means of adding the above alloy, for example, SmCo5
There is a description that pellets are added to a molten Fe-Cu-Zr alloy.

[発明が解決しようとする課題] 上記のような希土類永久磁石用の原料粉を溶解および鋳
造手段によって製造する場合には、出発原料として金属
希土類元素を使用する必要があるが、この金属希土類元
素は極めて高価であるため、原料粉もまた高価にならざ
るを得ないという問題点がある。上記R/D法による原
料粉を使用して製造した場合には、高価な金属希土類元
素に代えて比較的安価な希土類元素の酸化物、弗化物、
塩化物等を使用できるため、原料粉の製造コストを低減
できるという利点がある。
[Problems to be Solved by the Invention] When producing raw material powder for rare earth permanent magnets as described above by melting and casting means, it is necessary to use a metallic rare earth element as a starting material. Since it is extremely expensive, there is a problem that the raw material powder also has to be expensive. In the case of manufacturing using the raw material powder by the above R/D method, relatively inexpensive rare earth element oxides, fluorides,
Since chloride etc. can be used, there is an advantage that the manufacturing cost of the raw material powder can be reduced.

しかし一方、永久磁石の磁気特性が低下するという問題
点がある。すなわち、まず還元拡散反応が完全に進行せ
ずに、組成が不均一になるという欠点がある。また還元
側として添加した非磁性のCaが合金中に不純物として
混入する。更にこのCaが例えば2−17系希土類磁石
では合金組成となるべきCuと反応してCa −Cu合
金を生成し、組成変動を惹起する場合があると共に、C
aの挙動を完全に制御できないという欠点がある。また
更に合金組成中に0□が混入する。上記のような諸要因
の存在により、永久磁石として要求される磁気特性を低
下させるという問題点がある。
However, on the other hand, there is a problem that the magnetic properties of the permanent magnet deteriorate. That is, there is a drawback that the reduction-diffusion reaction does not proceed completely and the composition becomes non-uniform. In addition, non-magnetic Ca added as a reduction side mixes into the alloy as an impurity. Furthermore, in 2-17 rare earth magnets, for example, this Ca may react with Cu, which should form an alloy composition, to form a Ca-Cu alloy, causing compositional fluctuations.
The disadvantage is that the behavior of a cannot be completely controlled. Furthermore, 0□ is mixed into the alloy composition. Due to the presence of the above-mentioned factors, there is a problem in that the magnetic properties required for a permanent magnet are degraded.

また、還元拡散法と溶解法を併用した前記の提案ではS
mCo 、を粉体状態から単に成形したベレットとして
添加した場合には、このペレットが多孔質体であること
および0□を内封しているため、高4溶湯により容易に
酸化されるのみならず、O6が混入する原因ともなる。
In addition, in the above proposal using both the reduction diffusion method and the dissolution method, S
When mCo is added as a pellet simply formed from a powder, it is not only easily oxidized by the high-4 molten metal, but also because the pellet is porous and contains 0□. , O6 may also be mixed in.

従って溶解歩留が大幅に低下すると共に、磁気特性を低
下させる懸念もあり、磁気特性を保持しつつ原料粉の製
造コストを低減させるという要求を満足することが困難
であるという問題点がある。
Therefore, there is a concern that the dissolution yield will be significantly lowered and the magnetic properties will be lowered, and there is a problem that it is difficult to satisfy the requirement of reducing the manufacturing cost of the raw material powder while maintaining the magnetic properties.

本発明は上記従来技術に存在する問題点を解決し、希土
類永久磁石としての本来固有の磁気特性を充分に保持す
ると共に、製造コストの大幅な低減が可能である希土類
永久磁石用原料粉の製造方法を提供することを目的とす
る。
The present invention solves the problems existing in the above-mentioned prior art, and produces raw material powder for rare earth permanent magnets that sufficiently retains the magnetic properties inherent to rare earth permanent magnets and can significantly reduce manufacturing costs. The purpose is to provide a method.

〔課題を解決するための手段〕 上記目的を達成するために、本発明者は希土類元素Rと
その酸化物もしくは希土類元素Rの酸化物(RはLa、
 Ce、 Pr、 Nd、 Sm、 Gd、 Tb、 
Dy、 H。
[Means for Solving the Problems] In order to achieve the above object, the present inventors have developed a rare earth element R and its oxide or an oxide of the rare earth element R (R is La,
Ce, Pr, Nd, Sm, Gd, Tb,
Dy, H.

Erのうちの1種または2種以上)と、元素Mとその酸
化物もしくは元素Mの酸化物(MはCo、 FeNi、
 Mo、 Cu、 Zr、 Hf、 Nb、 Ta、 
Ti、 Al、 Ga、  BSi、 Cのうちの1種
または2種以上)からなる材料に金属Ca、 CaHz
、金属−g等の還元側を添加混合した後加熱還元してR
M系合金を生成し、このRM系合金を水洗して反応副生
成物であるCab。
one or more of Er) and element M and its oxide or oxide of element M (M is Co, FeNi,
Mo, Cu, Zr, Hf, Nb, Ta,
(Ti, Al, Ga, BSi, C) and metal Ca, CaHz
, after adding and mixing the reducing side such as metal-g, heat and reduce to R.
An M-based alloy is produced, and this RM-based alloy is washed with water to produce Cab, which is a reaction by-product.

MgO等を除去した後粉砕し、これを成形して成形体と
し、成形体を不活性ガス雰囲気、還元性ガス雰囲気ある
いは実質的な真空中にて焼結して焼結体とし、この焼結
体をこの焼結体中のR,Mを含めて所定成分のRM系合
金となるように配合したRおよび/またはMからなる溶
湯中に添加して溶解しRM系合金を製造するという技術
的手段を採用した。上記の本発明においては、希土類元
素の酸化物とM元素の酸化物を含有する材料に金属Ca
After removing MgO, etc., it is pulverized, molded into a molded body, and the molded body is sintered in an inert gas atmosphere, a reducing gas atmosphere, or in a substantial vacuum to form a sintered body. A technical method of manufacturing an RM alloy by adding the sintered body to a molten metal consisting of R and/or M blended to form an RM alloy with a predetermined composition including R and M in this sintered body and melting it. adopted the means. In the present invention described above, metal Ca is added to the material containing the oxide of rare earth element and the oxide of M element.
.

CaFI2.金属Mg等の還元剤を添加混合し、これを
加熱還元してRM系合金を生成する。この際これらの還
元剤による希土類元素の酸化物とM元素の酸化物の還元
反応は発熱を伴うため、還元反応後の元素の拡散による
RM系合金の形成が促進されるという利点がある。
CaFI2. A reducing agent such as metallic Mg is added and mixed, and this is heated and reduced to produce an RM alloy. At this time, since the reduction reaction between the rare earth element oxide and the M element oxide by these reducing agents is accompanied by heat generation, there is an advantage that the formation of the RM alloy by diffusion of the elements after the reduction reaction is promoted.

次にこのRM系合金を水洗するのであるが、この過程で
材料が含有していた02のほとんどがCaO又はMgO
の形で除去される。還元剤の添加量は材料が含有する0
、を還元するに足る添加量(化学量論的な等量)で充分
であるが、還元を完璧に行なうために通常は還元に必要
な化学量論的な必要量よりも過多に具体的には化学量論
的な必要量の1.1〜2.5重量倍を添加する。2.5
重量倍より多い添加では還元剤のコストが多大になると
ともに水洗後のRM系合金中の還元剤の残存量が多くな
るために好ましくない。加熱還元処理はアルゴンガス等
の不活性ガス雰囲気、水素ガス等の還元性ガス雰囲気あ
るいは実質的な真空中でおこなわれる。加熱温度は材料
の組成によって若干異なるが通常900〜1200℃の
範囲の温度が選ばれる。
Next, this RM alloy is washed with water, but in this process, most of the 02 contained in the material is converted to CaO or Mg.
removed in the form of The amount of reducing agent added is 0
It is sufficient to add a sufficient amount (equivalent stoichiometric amount) to reduce the is added in an amount of 1.1 to 2.5 times the stoichiometric amount by weight. 2.5
Addition of more than twice the weight is not preferable because the cost of the reducing agent increases and the amount of reducing agent remaining in the RM alloy after washing with water increases. The thermal reduction treatment is performed in an inert gas atmosphere such as argon gas, a reducing gas atmosphere such as hydrogen gas, or in a substantial vacuum. Although the heating temperature varies slightly depending on the composition of the material, a temperature in the range of 900 to 1200°C is usually selected.

本発明においては次に得られたRM金合金粉砕し、これ
を成形した後焼結し、焼結体を溶湯に添加して所定のR
M金合金する。成形体の焼結はアルゴンガス等の不活性
ガス雰囲気、水素ガス等の還元性ガス雰囲気あるいは実
質的な真空中でおこなわれる。焼結温度は成形体の組成
によって異なるが950〜1250℃の範囲の温度が選
ばれる。溶解は例えば真空誘導溶解炉内に所定量の材料
を装入し、次いで溶解炉を密封して炉内を真空状態に保
持して通電し、材料を溶解して溶湯を形成した後この溶
湯にあらかじめ溶解炉内に用意された上記RMM金焼結
体の所定量を添加することによっておこなわれる。溶湯
に焼結体が溶解した後、溶湯は金型に鋳造される。
In the present invention, the obtained RM gold alloy is then crushed, molded and sintered, and the sintered body is added to the molten metal to achieve a predetermined R.
M-gold alloy. The compact is sintered in an inert gas atmosphere such as argon gas, a reducing gas atmosphere such as hydrogen gas, or in a substantial vacuum. The sintering temperature varies depending on the composition of the compact, but a temperature in the range of 950 to 1250°C is selected. For melting, for example, a predetermined amount of material is charged into a vacuum induction melting furnace, then the melting furnace is sealed, the inside of the furnace is maintained in a vacuum state, and electricity is applied to melt the material and form molten metal. This is carried out by adding a predetermined amount of the RMM gold sintered body previously prepared in the melting furnace. After the sintered body is dissolved in the molten metal, the molten metal is cast into a mold.

こうして得られた所定の組成を有するRM金合金インゴ
ットは、例えばこれを粉砕して焼結永久磁石用の原料と
したり、また例えばこれを再溶解後溶湯状態で急冷凝固
させ同じく永久磁石用の原料とするなど用途に応じた使
用が可能である。
The RM gold alloy ingot having a predetermined composition obtained in this way can be used, for example, as a raw material for sintered permanent magnets by pulverizing it, or for example, by remelting it and rapidly solidifying it in a molten state to produce the same raw material for permanent magnets. It can be used depending on the purpose.

〔作 用〕[For production]

上記の構成により、まず材料に含有されている0□が還
元剤によって還元され、水洗時にその大部分がCaOあ
るus41gOの形で除去される。次に得られたRM金
合金粉砕、成形、焼結の工程を経て焼結体としてRおよ
び/またはMからなる溶湯に添加されて溶解し、所定の
RM系系合金溶湯得られる。この場合不純物として含ま
れる残存CaOMgO等はスラグとなって浮上し、RM
M合金溶湯中にCa、 Mg、 0□が侵入することが
ない。また焼結体の外殻に存在する表面酸化層もまた殻
状を呈してスラグと共に浮上するから、非所望なo2の
侵入を防止することができる。
With the above configuration, 0□ contained in the material is first reduced by the reducing agent, and most of it is removed in the form of CaO, us41gO, during washing with water. Next, the obtained RM gold alloy undergoes the steps of crushing, molding, and sintering, and is added as a sintered body to a molten metal consisting of R and/or M and melted to obtain a predetermined RM-based alloy molten metal. In this case, residual CaOMgO, etc. contained as impurities floats up as slag, and the RM
Ca, Mg, and 0□ do not enter the molten M alloy. Further, since the surface oxidized layer present on the outer shell of the sintered body also takes on a shell shape and floats together with the slag, undesired intrusion of O2 can be prevented.

(実施例)−1 NdzO:+ 3500g 、 DytOx 575g
 、 Fe粉 5650 g 。
(Example)-1 NdzO: + 3500g, DytOx 575g
, Fe powder 5650 g.

FezO=粉500 g 、 フエoボo7粉(B=2
0%)500 g、 金属Ca 2357 gを混合し
アルゴンガス雰囲気中で1100℃×2時間の加熱還元
処理をおこなった。次に得られた反応生成物を水洗し反
応副生成物であるCaOを除去してNd−Dy−Fe−
B合金を得た。得られたNd−Dy−Fe−B合金の組
成を分析したところ重量%でNd 30.0%、py5
.o%、B140%、CaO,12%、o、o、2%、
残部Feであった。
FezO=500g powder, FezO7 powder (B=2
0%) and 2357 g of metallic Ca were mixed and subjected to heat reduction treatment at 1100° C. for 2 hours in an argon gas atmosphere. Next, the obtained reaction product was washed with water to remove CaO, which is a reaction by-product, and Nd-Dy-Fe-
B alloy was obtained. Analysis of the composition of the obtained Nd-Dy-Fe-B alloy revealed that the weight percentage was 30.0% Nd, py5
.. o%, B140%, CaO, 12%, o, o, 2%,
The remainder was Fe.

この合金をジェットミルで平均粒径10μmの粉末とし
、この粉末を1.5 ton / cIIlの成形圧で
成形して成形体とした。さらに成形体をアルゴンガス雰
囲気中で1120℃×3時間の条件で焼結して焼結体と
した。
This alloy was made into powder with an average particle size of 10 μm using a jet mill, and this powder was molded at a molding pressure of 1.5 ton/cIIl to form a compact. Further, the molded body was sintered in an argon gas atmosphere at 1120° C. for 3 hours to obtain a sintered body.

一方真空誘導溶解炉内に原材料としてNdメタル196
0g、 Fe 3786 g、フェロボロン(B=20
%)360 g 、フェロニオブ(Nb= 80%)9
4gを装入し、これらを溶解して溶湯を形成し、これに
前記の焼結体を合計で3800 g順次添加して溶解し
、金型に鋳造してインゴットを得た。得られたインゴッ
トの組成を分析したところ重量%でNd31.0%。
On the other hand, Nd metal 196 is used as a raw material in the vacuum induction melting furnace.
0 g, Fe 3786 g, ferroboron (B=20
%) 360 g, ferroniobium (Nb = 80%) 9
A total of 3,800 g of the sintered body was added to the molten metal, and the sintered body was sequentially added thereto, melted, and cast into a mold to obtain an ingot. The composition of the obtained ingot was analyzed and found to be 31.0% Nd by weight.

Dy 1.9%、B1.1%、Nb0.75%、Ca<
0.01%。
Dy 1.9%, B1.1%, Nb0.75%, Ca<
0.01%.

Ot<0.01%、残部Feであった。Ot<0.01%, the balance being Fe.

この合金を粗粉砕、微粉砕、成形、焼結、熱処理して永
久磁石を形成した。磁気特性を測定した結果を表に示す
。なお比較例として従来のR/D法によって作製した原
料によるものを併記した。
This alloy was coarsely pulverized, finely pulverized, molded, sintered, and heat treated to form a permanent magnet. The results of measuring the magnetic properties are shown in the table. In addition, as a comparative example, one using a raw material produced by the conventional R/D method is also shown.

表から明らかなように、比較例においては、Br。As is clear from the table, in the comparative example, Br.

!IHcO値が低く、(BH)□8の値が低下している
! The IHcO value is low, and the value of (BH)□8 is decreased.

これに対して実施例においてはBr+ IIHcO値が
大であると共に、(BH)、□の値が大であり、これら
の値はNdメタル、 Dyメタルを溶解して作製した原
料によるものと時間−である。
On the other hand, in the example, the Br + IIHcO value is large, and the (BH) and □ values are large, and these values are due to the raw materials prepared by melting Nd metal and Dy metal. It is.

(実施例)−2 Dy2036200 g 、 Fe粉4000 g 、
 Pet’s粉858 g 。
(Example)-2 Dy2036200 g, Fe powder 4000 g,
858 g of Pet's flour.

金属Ca 3570 gを混合しアルゴンガス雰囲気中
で1050℃×3時間の加熱還元処理をおこなった。次
に得られた反応生成物を水洗し反応副生成物であるCa
Oを除去してDy −Fe合金を得た。得られたDy−
Fe合金の組成を分析したところ重量%でDy54.0
%、CaO,09%、ozo、13%、残部Feであっ
た。
3570 g of metallic Ca was mixed and subjected to heating reduction treatment at 1050° C. for 3 hours in an argon gas atmosphere. Next, the reaction product obtained was washed with water, and the reaction by-product Ca
O was removed to obtain a Dy-Fe alloy. The obtained Dy-
When the composition of the Fe alloy was analyzed, it was Dy54.0 in weight%.
%, CaO, 09%, ozo, 13%, and the balance was Fe.

この合金をジェットミルで平均粒径20μmの粉末とし
、この粉末を3.0ton/−の成形圧で成形して成形
体とした。さらに成形体を実質的な真空中で1080℃
×1時間の条件で焼結して焼結体とした。
This alloy was made into powder with an average particle size of 20 μm using a jet mill, and this powder was molded at a molding pressure of 3.0 tons/− to form a compact. Furthermore, the molded body is heated to 1080°C in a substantial vacuum.
It was sintered under the conditions of x1 hour to obtain a sintered body.

一方真空誘導炉内に原材料としてNdメタル3010g
、フェロボロン(B=20%)  600 g 、 F
e5742gを装入し、これらを溶解して溶湯を形成し
、これに前記の焼結体を合計で648g順次添加して溶
解し、金型に鋳造してインゴットを得た。得られたイン
ゴットの組成を分析したところ重量%でNd30.1%
、Dy3.5%、B1.2%、Ca<0.01%0□<
0.01%、残部Feであった。
On the other hand, 3010 g of Nd metal was placed as raw material in the vacuum induction furnace.
, Ferroboron (B=20%) 600 g, F
A total of 648 g of the above-mentioned sintered body was sequentially added to the molten metal, melted, and cast into a mold to obtain an ingot. Analysis of the composition of the obtained ingot revealed that Nd was 30.1% by weight.
, Dy3.5%, B1.2%, Ca<0.01%0□<
The balance was 0.01% Fe.

この合金を粗粉砕、微粉砕、成形、焼結、熱処理して永
久磁石を形成した。磁気特性を測定した結果を表に示す
。なお比較例として従来のR/D法によって作製した原
料によるものを併記した。
This alloy was coarsely pulverized, finely pulverized, molded, sintered, and heat treated to form a permanent magnet. The results of measuring the magnetic properties are shown in the table. In addition, as a comparative example, one using a raw material produced by the conventional R/D method is also shown.

表から明らかなように、比較例においては、Br。As is clear from the table, in the comparative example, Br.

ml(Cの値が低く、(Bll)、、、の値が低下して
いる。
The value of ml(C is low, and the value of (Bll), . . . is decreasing.

これに対して実施例においてはBr+ JcO値が大で
あると共に、(BH)、□の値が大であり、これらの値
はNdメタル、Dyメタルを溶解して作製した原料によ
るものと時間−である。
On the other hand, in the example, the Br + JcO value is large, and the (BH) and □ values are large, and these values are due to the raw materials made by melting Nd metal and Dy metal. It is.

(実施例)−3 DyzOz 5798 g 、 Co粉4700 g 
、 CozO3粉211 g 。
(Example)-3 DyzOz 5798 g, Co powder 4700 g
, 211 g of CozO3 powder.

Fe、03粉143g、金属Ca 2663 gを混合
しアルゴンガス雰囲気中で1100℃×5時間の加熱還
元処理をおこなった。次に得られた反応生成物を水洗し
反応副生成物であるCaOを除去してDy −Co −
Fe合金を得た。得られたDy −Co−Fe合金の組
成を分析したところ重量%でoy50.5%、Fe1.
0%、 CaO,1%、ozo、12%、残部Coであ
った。
143 g of Fe, 03 powder, and 2663 g of metallic Ca were mixed and subjected to heat reduction treatment at 1100° C. for 5 hours in an argon gas atmosphere. Next, the obtained reaction product was washed with water to remove CaO, which is a reaction by-product, and Dy-Co-
An Fe alloy was obtained. When the composition of the obtained Dy-Co-Fe alloy was analyzed, it was found that oy was 50.5% and Fe was 1.5% by weight.
0%, CaO, 1%, ozo, 12%, and the balance was Co.

この合金をジェットミルで平均粒径5μmの粉末とし、
この粉末を1. Oton/−の成形圧で成形して成形
体とした。さらに成形体をアルゴンガス雰囲気中で11
00℃×2時間の条件で焼結して焼結体とした。
This alloy was made into powder with an average particle size of 5 μm using a jet mill,
Add this powder to 1. A molded article was obtained by molding at a molding pressure of Oton/-. Further, the molded body was placed in an argon gas atmosphere for 11 days.
A sintered body was obtained by sintering at 00°C for 2 hours.

一方真空誘導炉中に原材料としてNdメタル2980g
、Coメタル2g、 フェロボロン(B=20%)65
0g、 Fe 5774gを装入し、これらを溶解して
溶湯を形成し、これに前記の焼結体を合計で594g順
次添加して溶解し、金型に鋳造してインゴットを得た。
Meanwhile, 2980g of Nd metal was placed in the vacuum induction furnace as a raw material.
, Co metal 2g, ferroboron (B=20%) 65
0 g and 5774 g of Fe were charged and melted to form a molten metal, to which a total of 594 g of the sintered body was successively added and melted, and cast into a mold to obtain an ingot.

得られたインゴットの組成を分析したところ重量%でN
d 29.8%、oy3.o%、Co2.9%。
Analysis of the composition of the obtained ingot revealed that it was N by weight%.
d 29.8%, oy3. o%, Co2.9%.

81.3%、Ca<0.01%、Ot<0.01%、残
部Feであった。
81.3%, Ca<0.01%, Ot<0.01%, and the balance was Fe.

この合金を粗粉砕、微粉砕、成形、焼結、熱処理して永
久磁石を形成した。磁気特性を測定した結果を表に示す
。なお比較例として従来のR/D法によって作製した原
料によるものを併記した。
This alloy was coarsely pulverized, finely pulverized, molded, sintered, and heat treated to form a permanent magnet. The results of measuring the magnetic properties are shown in the table. In addition, as a comparative example, one using a raw material produced by the conventional R/D method is also shown.

表から明らかなように、比較例においては、Br。As is clear from the table, in the comparative example, Br.

s+)[cの値が低く、(Bl()□8の値が低下して
いる。
The value of s+)[c is low, and the value of (Bl()□8) is low.

これに対して実施例においてはBr、 、H,の値が大
であると共に、(Bl()。πの値が大であり、これら
の値はNdメタル、 Dyメタルを溶解して作製した原
料によるものと時間−である。
On the other hand, in the example, the values of Br, , H, and (Bl().π) are large, and these values are different from those of the raw materials prepared by melting Nd metal and Dy metal. It depends on the time and time.

(実施例)−4 SLllgoz 5220g、 Co粉4554 g、
 Coxes粉600 g 。
(Example)-4 SLllgoz 5220g, Co powder 4554g,
600 g of Coxes flour.

Fe粉450g、 Pe203100 g、金属Ca 
2884gを混合しアルゴンガス雰囲気中で1150℃
×4時間の加熱還元処理をおこなった。次に得られた反
応生成物を水洗して反応副生成物であるCaOを除去し
てSs −Co −Fe合金を得た。得られたSs −
Co −Fe合金の組成を分析したところ重量%でSm
45.0%、 Fe5.2%、Ca0.1%、o、0.
08%、残部Coであった。
Fe powder 450g, Pe203100g, metal Ca
2884g was mixed and heated to 1150℃ in an argon gas atmosphere.
A heating reduction treatment was performed for 4 hours. Next, the obtained reaction product was washed with water to remove CaO, a reaction by-product, to obtain an Ss-Co-Fe alloy. Obtained Ss −
Analysis of the composition of the Co-Fe alloy revealed that Sm in weight%
45.0%, Fe5.2%, Ca0.1%, o, 0.
The balance was Co.

この合金をジェットミルで平均粒径4μmの粉末とし、
この粉末を2.0 ton/−の成形圧で成形して成形
体とした。さらに成形体を水素ガス雰囲気中で1140
℃×3時間の条件で焼結して焼結体とした。
This alloy was made into powder with an average particle size of 4 μm using a jet mill,
This powder was molded at a molding pressure of 2.0 ton/- to form a molded body. Further, the molded body was heated to 1140°C in a hydrogen gas atmosphere.
A sintered body was obtained by sintering at ℃×3 hours.

一方真空誘導炉内に原材料としてSsメタル2520g
、Coメタル7671g、 Fe 2B09g、 Cu
 470g、 Zr230gを装入し、これらを溶解し
て溶湯を形成し、これに前記の焼結体を合計で5600
 g順次添加して溶解し、金型に鋳造してインゴットを
得た。得られたインゴットの組成を分析したところ重量
%でSo+ 25.2%、Fe15.5%、Cu4.7
%、Zr2.3%。
Meanwhile, 2520g of Ss metal was placed as raw material in the vacuum induction furnace.
, Co metal 7671g, Fe 2B09g, Cu
470 g of Zr and 230 g of Zr were charged, and these were melted to form a molten metal, and the above-mentioned sintered body was added to this to a total of 5,600 g.
g was sequentially added, melted, and cast into a mold to obtain an ingot. Analysis of the composition of the obtained ingot revealed that it contained So+ 25.2%, Fe 15.5%, and Cu 4.7% by weight.
%, Zr2.3%.

Ca<0.01%、02<0.01%、残部Coであっ
た。
Ca<0.01%, 02<0.01%, and the balance was Co.

この合金を粗粉砕、微粉砕、成形、焼結、熱処理して永
久磁石を形成した。磁気特性を測定した結果を表に示す
。なお比較例として従来のR/D法によって作製した原
料によるものを併記した。
This alloy was coarsely pulverized, finely pulverized, molded, sintered, and heat treated to form a permanent magnet. The results of measuring the magnetic properties are shown in the table. In addition, as a comparative example, one using a raw material produced by the conventional R/D method is also shown.

表から明らかなように、比較例においては、Br。As is clear from the table, in the comparative example, Br.

11HCの値が低く、(BH)、□の値が低下している
The value of 11HC is low, and the values of (BH) and □ are decreased.

これに対して実施例においてはBr+ 1HeO値が大
であると共に、(Bl()、、、の値が大であり、これ
らの値はSmメタルを100%溶解して作製した原料に
よるものと時間−である。
On the other hand, in the example, the Br+ 1HeO value is large, and the value of (Bl(),...) is large, and these values are due to the raw material made by melting 100% Sm metal. − is.

(実施例)−5 溶解法によってSmCo 、系永久磁石材料用の合金を
溶解する際に溶湯表面に浮上し溶湯を注湯後ルツボに残
留した物質を回収し分析したところ、5LII。
(Example)-5 When a SmCo alloy for permanent magnet material was melted by the melting method, the substance that floated to the surface of the molten metal and remained in the crucible after pouring the molten metal was collected and analyzed, and it was found to be 5LII.

SmzOz+Co、 C0103が主成分であることが
わかった。
It was found that SmzOz+Co, C0103 was the main component.

回収した残留物を粗粉砕しその含有0□量を測定したと
ころ重量比率で6%(60000ppm)であった。
The recovered residue was coarsely pulverized and the amount of 0□ contained therein was measured, and the weight ratio was 6% (60,000 ppm).

この粗粉10000 gに粒状の金属Ca 1954 
gを添加混合しアルゴンガス雰囲気中で1050℃×4
時間の加熱還元処理をおこなった。次に得られた反応生
成物を水洗し反応副生成物であるCaOを除去してSm
 −Co合金を得た。このS11!−Co合金の組成を
分析したところ重量比率でS+m 67.8%、 Ca
O,15%。
10,000 g of this coarse powder contains granular metal Ca 1954
Add and mix g and heat at 1050°C x 4 in an argon gas atmosphere.
A heating reduction treatment was performed for several hours. Next, the obtained reaction product was washed with water to remove CaO, a reaction by-product, and Sm
-Co alloy was obtained. This S11! Analysis of the composition of the -Co alloy revealed that the weight ratio was S+m 67.8%, Ca
O, 15%.

0□0.2%、残部Coであった。このSm −Co合
金をジェットミルで粉砕し平均粒径8μmの粉末とした
0□0.2%, the balance being Co. This Sm-Co alloy was pulverized with a jet mill to obtain a powder with an average particle size of 8 μm.

次にこの粉末を冷間静水圧プレスにより3. Oton
/cdの成形圧力で成形した。さらに成形体をアルゴン
ガス雰囲気中で1100℃×3時間の条件で焼結して焼
結体とした。
This powder was then subjected to cold isostatic pressing in 3. Oton
Molding was performed at a molding pressure of /cd. Further, the molded body was sintered in an argon gas atmosphere at 1100° C. for 3 hours to obtain a sintered body.

一方真空誘導溶解炉内に原材料としてGo 4162g
、 Fe 1400 g+ Cu 500g、 Zr 
250gを装入し、次いで溶解炉を密封して炉内を10
−’Torrの真空状態に保持して通電し、これらの原
材料を溶解して溶湯を形成した。次にArガスを封入し
て溶解炉内を一30cmHgの状態に保持した後、あら
かじめ溶解炉内に用意しておいた前記のS+m−Co合
金焼結体を合計で3688 g 1174次溶湯に添加
した。焼結体を添加後更に通電することによってこれを
溶解し、その後通電を停止して合金溶湯を金型に鋳造し
てインゴットを得た。得られたインゴットの組成を分析
したところ重量比率でSa+ 25.0%、Fe13.
9%、Cu4.9%、Zr2.5%、Ca<0.01%
、0□〈0.01%、残部Coであった。
Meanwhile, 4162g of Go was placed in the vacuum induction melting furnace as a raw material.
, Fe 1400g+Cu 500g, Zr
After charging 250g, the melting furnace was sealed and the inside of the furnace was heated to 100g.
-'Torr vacuum state was maintained and electricity was applied to melt these raw materials to form a molten metal. Next, after filling Ar gas and maintaining the inside of the melting furnace at -30 cmHg, a total of 3688 g of the above-mentioned S+m-Co alloy sintered body prepared in the melting furnace was added to the 1174th molten metal. did. After adding the sintered body, the sintered body was further melted by applying electricity, and then the electricity was stopped and the molten alloy was cast into a mold to obtain an ingot. Analysis of the composition of the obtained ingot revealed that the weight ratio was Sa+ 25.0%, Fe13.
9%, Cu4.9%, Zr2.5%, Ca<0.01%
, 0□<0.01%, the balance being Co.

この合金を粗粉砕、微粉砕、成形、焼結、熱処理して永
久磁石を形成した。磁気特性を測定した結果を表に示す
。なお比較例として従来のR/D法によって作製した原
料によるものを併記した。
This alloy was coarsely pulverized, finely pulverized, molded, sintered, and heat treated to form a permanent magnet. The results of measuring the magnetic properties are shown in the table. In addition, as a comparative example, one using a raw material produced by the conventional R/D method is also shown.

表から明らかなように、比較例においては、Br。As is clear from the table, in the comparative example, Br.

lHc+ +Hcの値が低く、(B)I)、、xの値が
低下している。これに対して実施例においてはBr+ 
JcO値が大であると共に、(BH)、、、の値が大で
あり、これらの値は5Lllメタルを溶解して作製した
原料によるものと時間−である。なお原料の製造コスト
は上記溶製原料の場合と比較して20〜30%低減させ
得ることを確認した。
The value of lHc+ +Hc is low, and the value of (B)I), , x is decreased. On the other hand, in the embodiment, Br+
The JcO value is large, and the values of (BH), . It has been confirmed that the manufacturing cost of the raw material can be reduced by 20 to 30% compared to the case of the above-mentioned melted raw material.

(実施例)−6 S蒙zCOtt系永久磁石のカケ不良品、寸法不良品な
どのいわゆるスクラップを溶解法によって溶解する際に
溶湯の表面に浮上し溶湯を柱湯後ルツボに残留した物質
を回収して分析したところSva。
(Example)-6 When so-called scrap such as defective chips or defective dimensions of S-Cott type permanent magnets is melted by the melting method, the substances that float to the surface of the molten metal and remain in the crucible after the molten metal is poured are recovered. When analyzed, Sva.

5ltOz+ Co、 CozOa+ Fe+ Pez
O3+ Cut Cub、 Zr。
5ltOz+ Co, CozOa+ Fe+ Pez
O3+ Cut Cub, Zr.

ZrO□が主成分であることがわかった。この回収した
残留物を粗粉砕しその含有02量を測定したところ重量
比率で5%(50000ppm)であった。この粗粉1
0000 gに粒状の金属Ca 1879 gを添加混
合しアルゴンガス雰囲気中で1150℃×2時間の加熱
還元処理をおこなった。次に得られた反応生成物を水洗
し反応副生成物であるCaOを診去してSo+ −C。
It was found that ZrO□ was the main component. The recovered residue was coarsely pulverized and the amount of 02 contained therein was measured, and the weight ratio was 5% (50,000 ppm). This coarse powder 1
0,000 g and 1,879 g of granular metal Ca were added and mixed, and heat reduction treatment was performed at 1,150° C. for 2 hours in an argon gas atmosphere. Next, the obtained reaction product is washed with water to remove CaO, which is a reaction by-product, to form So+ -C.

−Fe −Cu −Zr合金を得た。得られたSs −
Co −Fe −Cu −Zr合金の組成を分析したと
ころ重量%で5rR30,2%、Fe13.4%、Cu
4.8%、Zr2.4%、 CaOolO%、020.
15%、残部Coであった。
-Fe-Cu-Zr alloy was obtained. Obtained Ss −
Analysis of the composition of the Co-Fe-Cu-Zr alloy revealed that the weight percentage was 5rR30.2%, Fe13.4%, Cu
4.8%, Zr2.4%, CaOolO%, 020.
15%, the balance being Co.

この合金を実施例1と同じ要領で平均粒径5.0μmの
粉末とし、この粉末を2.0ton/−の成形圧で成形
して成形体とした。さらに成形体をH2ガス雰囲気中で
1200℃×2時間の条件で焼結して焼結体とした。
This alloy was made into a powder having an average particle size of 5.0 μm in the same manner as in Example 1, and this powder was molded at a molding pressure of 2.0 ton/− to form a compact. Further, the molded body was sintered in an H2 gas atmosphere at 1200° C. for 2 hours to obtain a sintered body.

一方真空誘導溶解内に原材料としてSmメタル2520
g、 Co 5813 g、 Pa 24B2 g、 
Cu 600g、 Zr・240gを装入し、実施例1
と同じ要領でこれらを溶解して溶湯を成形し、これに前
記の焼結体を合計で8345 g順次添加して溶解し、
金型に鋳造してインゴットを得た。得られたインゴット
の組成を分析したところ重量%でSm25.2%、 F
e17.9%。
Meanwhile, Sm metal 2520 is used as raw material in vacuum induction melting.
g, Co 5813 g, Pa 24B2 g,
Example 1: 600 g of Cu and 240 g of Zr were charged.
These were melted in the same manner as above to form a molten metal, and a total of 8345 g of the sintered body was sequentially added to this and melted.
An ingot was obtained by casting into a mold. Analysis of the composition of the obtained ingot revealed that Sm was 25.2% and F was 25.2% by weight.
e17.9%.

Cu5.0%、Zr2.1%、Ca<0.01%、02
<0.01%、残部Coであった。
Cu5.0%, Zr2.1%, Ca<0.01%, 02
<0.01%, the balance being Co.

この合金を粗粉砕、微粉砕、成形、焼結、熱処理して永
久磁石を形成した。磁気特性を測定した結果を表に示す
。なお比較例として従来のR/D法によって作製した原
料によるものを併記した。
This alloy was coarsely pulverized, finely pulverized, molded, sintered, and heat treated to form a permanent magnet. The results of measuring the magnetic properties are shown in the table. In addition, as a comparative example, one using a raw material produced by the conventional R/D method is also shown.

表から明らかなように、比較例においては、Brflo
e、 IHCの値が低く、(B)I)□、の値が低下し
ている。これに対して実施例においてはBr、 g)l
cの値が大であると共に、(B)l)□9の値が大であ
り、これらの値はSmメタルを溶解して作製した原料に
よるものと時間−である。
As is clear from the table, in the comparative example, Brflo
e, IHC value is low, and (B)I)□, value is decreased. On the other hand, in the example, Br, g)l
The value of c is large, and the value of (B)l)□9 is large, and these values are due to the raw material prepared by melting Sm metal and time.

(実施例)−7 溶解法によってNd−Fe−B系永久磁石材料用の合金
を溶解する際に溶湯の表面に浮上し溶湯を注湯後ルツボ
に残留した物質を分析したところ、NdNd2O3,D
y+ Dyz03+ Fe、 FezO3,B、 Bz
Oiが主成分であることがわかった。
(Example)-7 Analysis of the substances that floated to the surface of the molten metal and remained in the crucible after pouring the molten metal when melting an alloy for Nd-Fe-B permanent magnet materials by the melting method revealed that NdNd2O3,D
y+ Dyz03+ Fe, FezO3,B, Bz
It was found that Oi was the main component.

この残留物を粗粉砕しその含有02量を測定したところ
重量比率で7%(70000ppa+)であった。この
粗粉10000 gに粒状金属Ca 2192 gを混
合した後実施例1と同じ要領で1100℃×2時間の加
熱還元処理をおこない、得られた反応生成物を水洗して
Nd−Fe−B系の合金を得た。得られた合金の組成を
分析したところ重量%でNd 49.8%、Dy2.5
%、81.2%、CaO,08%、O12,25%、残
部Feであった。この合金を同じ〈実施例1と同じ要領
で平均粒径15μmの粉末とし、この粉末を3.0to
n /−の成形圧力で成形して成形体とした。さらに成
形体を実質的な真空中で1130℃×1時間の条件で焼
結して焼結体とした。
This residue was roughly pulverized and the amount of 02 contained therein was measured, and the weight ratio was 7% (70,000 ppa+). After mixing 2192 g of granular metal Ca with 10000 g of this coarse powder, heat reduction treatment was performed at 1100°C for 2 hours in the same manner as in Example 1, and the obtained reaction product was washed with water to form an Nd-Fe-B system. An alloy of Analysis of the composition of the obtained alloy revealed that Nd was 49.8% and Dy was 2.5% by weight.
%, 81.2%, CaO, 08%, O12, 25%, and the balance was Fe. This alloy was made into powder with an average particle size of 15 μm in the same manner as in Example 1, and this powder was
A molded article was obtained by molding at a molding pressure of n/-. Further, the molded body was sintered in a substantial vacuum at 1130° C. for 1 hour to obtain a sintered body.

一方真空誘導溶解内に原材料としてNdメタル1550
g、 hメタル145g、 Fe 5917 g、 C
o 300g。
Meanwhile, Nd metal 1550 is used as raw material in vacuum induction melting.
g, hMetal 145g, Fe 5917g, C
o 300g.

ati 150g、フェロボロン525g(820%)
ati 150g, ferroboron 525g (820%)
.

フェロニオブ188g (Nb80%)を装入し、実施
例1と同じ要領でこれらを溶解して溶湯を成形し、これ
に前記の焼結体を合計で6225 g順次添加して溶解
し、金型に鋳造してインゴットを得た。得られたインゴ
ットの組成を分析したところ重量%でNd30.9%、
DV2.0%、Co2.0%、At’1.0%B1.2
%、Nb1.0%、Ca<0.01%、02<0.01
%、残部Feであった。
188 g of ferroniobium (Nb 80%) was charged and melted in the same manner as in Example 1 to form a molten metal.To this, a total of 6225 g of the sintered bodies were successively added, melted, and placed in the mold. I got an ingot by casting. Analysis of the composition of the obtained ingot revealed that Nd was 30.9% by weight;
DV2.0%, Co2.0%, At'1.0%B1.2
%, Nb1.0%, Ca<0.01%, 02<0.01
%, the balance being Fe.

この合金を粗粉砕、微粉砕、成形、焼結、熱処理して永
久磁石を形成した。磁気特性を測定した結果を表に示す
。なお比較例として従来のR/D法によって作製した原
料によるものを併記した。
This alloy was coarsely pulverized, finely pulverized, molded, sintered, and heat treated to form a permanent magnet. The results of measuring the magnetic properties are shown in the table. In addition, as a comparative example, one using a raw material produced by the conventional R/D method is also shown.

表から明らかなように、比較例においては、Br。As is clear from the table, in the comparative example, Br.

11HCの値が低く、(BH)、、、の値が低下してい
る。
The value of 11HC is low, and the values of (BH), . . . are decreasing.

これに対して実施例においてはBr+ Jcの値が大で
あると共に、(BH)、□の値が大であり、これらの値
はNdメタル、 Dyメタルを溶解して作製した原料に
よるものと時間−である。
On the other hand, in the example, the value of Br + Jc is large, and the values of (BH) and □ are large, and these values are due to the raw materials made by melting Nd metal and Dy metal. − is.

(実施例)−8 Nd−Fe−B系を永久磁石のカケ不良品、寸法不良品
などのいわゆるスクラップ、溶解法によって再溶解する
際に分析したところNd、 NdzO*、DV。
(Example) -8 Nd, NdzO*, and DV were analyzed when Nd-Fe-B system was remelted by so-called scraps such as permanent magnets with defective chips and dimensional defects, and by a melting method.

Dy2O3,Pr、 Pr6O11、Ce、 Ce0z
、  B、 B2O3,FeFe20sが主成分である
ことがわかった。この残留物を粗粉砕しその含有02量
を測定したところ重量比率で6.5%(65000pp
m)であった。この粗粉10000 gに粒状の金属C
a 2931 gを添加混合しアルゴンガス雰囲気中で
1020℃×5時間の加熱還元処理をおこなった。次に
得られた反応生成物を水洗し反応副生成物であるCaO
除去してNd−Fe−B系の合金を得た。得られた合金
の組成を分析したところ重量%でNd 22.1%、D
y1.2%、Pr7.5%Ce3.0%、B1.0%、
CaO,1%、020.3%、残部Feであった。
Dy2O3, Pr, Pr6O11, Ce, Ce0z
, B, B2O3, and FeFe20s were found to be the main components. This residue was coarsely pulverized and the amount of 02 contained was measured, and the weight ratio was 6.5% (65,000pp).
m). Add granular metal C to 10,000 g of this coarse powder.
2931 g of a was added and mixed, and heat reduction treatment was performed at 1020° C. for 5 hours in an argon gas atmosphere. Next, the obtained reaction product was washed with water and the reaction by-product CaO
After removal, a Nd-Fe-B alloy was obtained. Analysis of the composition of the obtained alloy revealed that Nd was 22.1% and D was 22.1% by weight.
y1.2%, Pr7.5%Ce3.0%, B1.0%,
CaO, 1%, 020.3%, balance Fe.

この合金を実施例1と同じ要領で平均粒径15μmの粉
末としこの粉末を3. Oton/−の成形圧で成形し
て成形体とした。さらに成形体を実質的な真空中で10
70℃×3時間の条件で焼結して焼結体とした。
This alloy was made into powder with an average particle size of 15 μm in the same manner as in Example 1. A molded article was obtained by molding at a molding pressure of Oton/-. Further, the molded body was placed in a substantial vacuum for 10
A sintered body was obtained by sintering at 70° C. for 3 hours.

一方真空誘導溶解内に原材料としてNdメタル2000
 g 、 Dyメタル291g、Prメタル721g、
Ceメタル428g、 B 120g、 Fe7390
gを装入し、実施例1と同じ要領でこれらを溶解して溶
湯を形成し、これに前記の焼結体を合計で9050 g
順次添加して溶解し、金型に鋳造してインゴットを得ら
れたインゴットの組成を分析したところ重量%でNd1
9.9%、Pr6.8%、Ce3.5%、Dy2.0%
、B1.0%Ca<0.01%、(h<0.01%、残
部Feであった。
Meanwhile, Nd metal 2000 is used as raw material in vacuum induction melting.
g, Dy metal 291g, Pr metal 721g,
Ce metal 428g, B 120g, Fe7390
g and melted them in the same manner as in Example 1 to form a molten metal, and to this, a total of 9050 g of the sintered body was added.
Analysis of the composition of the ingot obtained by adding it sequentially, melting it, and casting it into a mold revealed that Nd1 was added in weight%.
9.9%, Pr6.8%, Ce3.5%, Dy2.0%
, B1.0%Ca<0.01%, (h<0.01%, balance Fe.

この合金を粗粉砕、微粉砕、成形、焼結、熱処理して永
久磁石を形成した。磁気特性を測定した結果を表に示す
。なお比較例として従来のR/D法によって作製した原
料によるものを併記した。
This alloy was coarsely pulverized, finely pulverized, molded, sintered, and heat treated to form a permanent magnet. The results of measuring the magnetic properties are shown in the table. In addition, as a comparative example, one using a raw material produced by the conventional R/D method is also shown.

表から明らかなように、比較例においては、Br。As is clear from the table, in the comparative example, Br.

1tlco  1ncO値が低く、(BH)、□の値が
低下している。これに対して実施例においてはBr+ 
IHcO値が大であると共に、(BH)、、、の値が大
であり、これらの値はNdメタル、 Prメタル、 C
eメタル、Dyメタルを溶解して作製した原料によるも
のと時間−である。
1tlco 1ncO value is low, and (BH) and □ values are decreased. On the other hand, in the embodiment, Br+
The IHcO value is large, and the values of (BH), , are large, and these values are the same for Nd metal, Pr metal, C
These are materials made by melting e-metal and Dy-metal, and time.

〔発明の効果〕〔Effect of the invention〕

本発明は以上記述のような構成および作用であるから、
下記の効果を奏し得る。
Since the present invention has the structure and operation as described above,
The following effects can be achieved.

(1)  希土類元素Rの酸化物を含有する材料を還元
剤で還元しこれを焼結体の形で溶湯に添加してRM系合
金を製造することによって、RM金合金必要な希土類元
素の全てもしくは1部を酸化物含有の希土類元素によっ
て調達することができ、RM系合金の製造原価を大幅に
低減できる。
(1) By reducing the material containing the oxide of the rare earth element R with a reducing agent and adding it to the molten metal in the form of a sintered body to produce the RM alloy, the RM gold alloy can contain all the necessary rare earth elements. Alternatively, a part can be procured from rare earth elements containing oxides, and the manufacturing cost of the RM alloy can be significantly reduced.

(2)希土類元素Rの酸化物とM元素の酸化物を含有す
る材料を還元する際には発熱を伴うため、拡散によるR
M系合金の形成が促進される。
(2) Because heat is generated when reducing a material containing an oxide of rare earth element R and an oxide of M element, R due to diffusion
The formation of M-based alloys is promoted.

(3)還元拡散処理によって得られたRM系合金の還元
拡散が若干不充分であっても、その後の焼結、溶解手段
により組成の均一化が図れる。
(3) Even if the reduction and diffusion of the RM alloy obtained by the reduction and diffusion treatment is somewhat insufficient, the composition can be made uniform by the subsequent sintering and melting means.

(4)還元処理用の金属Ca、 CaHl、金属Mgあ
るいは反応副生成物のCaO, MgOは溶解工程にお
いてスラグとして浮上するから、RM系合金に混入する
ことがない。
(4) Metals Ca, CaHl, metal Mg for reduction treatment, and reaction by-products CaO and MgO float as slag during the melting process, so they do not mix into the RM alloy.

(5)出発材料中に存在する。2も溶解工程においてス
ラグ中に吸収除去され、RM系合金中への侵入を防止で
きる。
(5) Present in the starting material. 2 is also absorbed and removed by the slag in the melting process, thereby preventing it from penetrating into the RM alloy.

(6)以上のことからRM系合金の組成を均一に確保し
、非磁性材料からなる不純物の侵入を防止し得るため、
希土類永久磁石とした場合の磁気特性を100%溶解材
を原料とするものと同等のレベルまで向上させ得る。
(6) From the above, in order to ensure a uniform composition of the RM alloy and prevent the intrusion of impurities made of non-magnetic materials,
The magnetic properties of rare earth permanent magnets can be improved to the same level as those made from 100% molten material.

Claims (1)

【特許請求の範囲】[Claims]  希土類元素Rとその酸化物もしくは希土類元素Rの酸
化物(RはLa,Ce,Pr,Nd,Sm,Gd,Td
,Dy,Ho,Erのうちの1種または2種以上)と、
元素Mとその酸化物もしくは元素Mの酸化物(MはCo
,Fe,Ni,Mo,Cu,Zr,Hf,Nb,Ta,
Ti,Al,Ga,B,Si,Cのうちの1種または2
種以上)からなる材料に金属Ca,CaH_2,金属M
g等の還元剤を添加混合した後加熱還元してRM系合金
を生成し、このRM系合金を水洗して反応副生成物であ
るCaO,MgO等を除去した後粉砕し、これを成形し
て成形体とし、成形体を不活性ガス雰囲気、還元性ガス
雰囲気あるいは実質的な真空中にて焼結して焼結体とし
、この焼結体をこの焼結体中のR,Mを含めて所定成分
のRM系合金となるように配合したRおよび/またはM
からなる溶湯中に添加して溶解しRM系合金を製造する
ことを特徴とする希土類永久磁石用原料の製造方法。
Rare earth element R and its oxide or oxide of rare earth element R (R is La, Ce, Pr, Nd, Sm, Gd, Td
, Dy, Ho, Er) and
Element M and its oxide or oxide of element M (M is Co
, Fe, Ni, Mo, Cu, Zr, Hf, Nb, Ta,
One or two of Ti, Al, Ga, B, Si, and C
metal Ca, CaH_2, metal M
After adding and mixing a reducing agent such as g, heat reduction is performed to produce an RM-based alloy, this RM-based alloy is washed with water to remove reaction by-products such as CaO, MgO, etc., and then pulverized and molded. The molded body is sintered in an inert gas atmosphere, a reducing gas atmosphere, or a substantial vacuum to form a sintered body, and this sintered body is sintered, including R and M in this sintered body. R and/or M blended to form an RM alloy with predetermined components.
A method for producing a raw material for rare earth permanent magnets, which comprises adding and melting into a molten metal to produce an RM-based alloy.
JP2089701A 1990-04-04 1990-04-04 Production method of raw material for rare earth permanent magnet Expired - Fee Related JP2994685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2089701A JP2994685B2 (en) 1990-04-04 1990-04-04 Production method of raw material for rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2089701A JP2994685B2 (en) 1990-04-04 1990-04-04 Production method of raw material for rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPH03287740A true JPH03287740A (en) 1991-12-18
JP2994685B2 JP2994685B2 (en) 1999-12-27

Family

ID=13978081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2089701A Expired - Fee Related JP2994685B2 (en) 1990-04-04 1990-04-04 Production method of raw material for rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP2994685B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480371A (en) * 2014-12-24 2015-04-01 宁波市鄞州商业精密铸造有限公司 Preparation method of wear-resistant ferroalloy
JP2016041839A (en) * 2014-08-18 2016-03-31 日立金属株式会社 Method for regenerating oxide of rare earth element including boron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041839A (en) * 2014-08-18 2016-03-31 日立金属株式会社 Method for regenerating oxide of rare earth element including boron
CN104480371A (en) * 2014-12-24 2015-04-01 宁波市鄞州商业精密铸造有限公司 Preparation method of wear-resistant ferroalloy

Also Published As

Publication number Publication date
JP2994685B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
KR900006193B1 (en) Making method for nd-fe-b permanent magnet
JP2005223263A (en) Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JPH0340082B2 (en)
JPH11329811A (en) Raw material powder for r-fe-b magnet and manufacture of r-fe-b based magnet
JPH0424401B2 (en)
JPH03287740A (en) Manufacture of raw material for rare earth permanent magnet
JPS6227506A (en) Production of alloy powder for rare earth-boron-ferrous permanent magnet
JPH05271852A (en) Production of rare earth magnet alloy
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0718366A (en) Production of r-fe-b permanent magnet material
JP2994684B2 (en) Production method of raw material for rare earth permanent magnet
JPH03198304A (en) Manufacture of material powder for rare earth permanent magnet
JP2770248B2 (en) Manufacturing method of rare earth cobalt magnet
JPH0524975B2 (en)
JPH11307330A (en) Manufacture of r-fe-b system magnet
HU199904B (en) Process for production of alloy-dust based on rare earth metall-cobalt of improved quality
JP2005281795A (en) R-T-B BASED SINTERED MAGNET ALLOY CONTAINING Dy AND Tb AND ITS PRODUCTION METHOD
JP3020717B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH03162546A (en) Manufacture of permanent magnet alloy having excellent oxidation resistance
JPH0745413A (en) Manufacture of raw material powder for r-fe-b permanent magnet and alloy powder for adjusting raw material powder
JP3157660B2 (en) Method for producing R-Fe-B permanent magnet material
JP2986598B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0623401B2 (en) Heavy rare earth alloy powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees