JPH03286973A - Adsorptive type freezer - Google Patents

Adsorptive type freezer

Info

Publication number
JPH03286973A
JPH03286973A JP2088797A JP8879790A JPH03286973A JP H03286973 A JPH03286973 A JP H03286973A JP 2088797 A JP2088797 A JP 2088797A JP 8879790 A JP8879790 A JP 8879790A JP H03286973 A JPH03286973 A JP H03286973A
Authority
JP
Japan
Prior art keywords
refrigerant
regenerator
water
heat
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2088797A
Other languages
Japanese (ja)
Inventor
Akinori Nagamatsuya
長松谷 晃徳
Hiroshi Iizuka
弘 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2088797A priority Critical patent/JPH03286973A/en
Publication of JPH03286973A publication Critical patent/JPH03286973A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To prevent a corrosion of equipment material, eliminate a condensor and provide a small-sized and light weight freezer by a method wherein the freezer is provided with thermo-reversible moisture absorptive type high molecules for separating liquid refrigerant and adsorbing vapor refrigerant evaporated upon absorption of heat of cold water with the liquid refrigerant. CONSTITUTION:Thermo-reversible moisture absorbing type high molecules are filled in an absorber 1B and a regenerator 1A. Thermal medium heated by a heating source 4 passes through a four-way solenoid valve 9 by a heating thermal medium pump 13 and is sent to the regenerator 1A. Thermo-reversible type moisture absorbing high molecules sufficiently containing refrigerant are filled in the regenerator 1A. The thermo-reversible moisture absorbing high molecules shows a temperature higher than a phase transfer temperature with heat got from the heating source 4 and moisture is removed. Vapor refrigerant generated at the evaporator 2 passes through a vapor refrigerant pipe 6 and a three-way solenoid valve 10, enters an absorbing device 1B, is adsorbed by the thermo-reversible moisture absorbing type high molecules and then the generated adsorption heat is deposited from the outdoor device 5 with the thermal medium. A temperature of the regenerator can be set to a value less than 100 deg.C and a reduction of freezing capability generated by an occurrence of hydrogen gas caused by corrosion of material of the device can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水を冷媒とし、熱可逆型吸水性高分子を吸着
剤として用いる冷凍機に係り、特に、冷媒を蒸発・凝縮
することなく吸着剤から液冷媒の分離を可能とし、再生
器温度の低温化による機器材料の腐食防止並びに運転効
率の向上を行なうに好適な吸着型冷凍機に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a refrigerator that uses water as a refrigerant and a thermoreversible water-absorbing polymer as an adsorbent. The present invention relates to an adsorption refrigerator that enables separation of liquid refrigerant from an adsorbent and is suitable for preventing corrosion of equipment materials and improving operating efficiency by lowering the regenerator temperature.

〔従来の技術〕[Conventional technology]

従来の吸収式冷凍機においては、第2図に示されるよう
に、基本的に高温再生器21、低温再生器22、凝縮器
23、蒸発器24、吸収器25の各種熱交換器よりなる
。ここで高温再生器21は濃度の低い吸収溶液を5加熱
して冷媒蒸気を発生させるとともに吸収溶液の濃度を高
め、凝縮器23は蒸気冷媒を凝縮して液冷媒と、し、蒸
発器24は、液冷媒を再び蒸発させて蒸気冷媒とし、吸
収器25は、蒸気冷媒を前記濃度を高めた吸収溶液に吸
収させて濃度の低い吸収溶液とする機能を備えている。
As shown in FIG. 2, a conventional absorption refrigerator basically consists of various heat exchangers: a high temperature regenerator 21, a low temperature regenerator 22, a condenser 23, an evaporator 24, and an absorber 25. Here, the high-temperature regenerator 21 heats the absorption solution with low concentration to generate refrigerant vapor and increase the concentration of the absorption solution, the condenser 23 condenses the vapor refrigerant to liquid refrigerant, and the evaporator 24 The absorber 25 has a function of evaporating the liquid refrigerant again to form a vapor refrigerant, and absorbing the vapor refrigerant into the high-concentration absorption solution to form a low-concentration absorption solution.

冷凍作用は、低温領域で外部からの冷水の熱を奪う蒸発
器24で行われ、このとき発生した蒸気冷媒は吸収器2
5で濃厚塩水溶液(濃度を高めた吸収溶液)に吸収され
、吸収熱は外部に捨てられる。また低温再生器22で発
生した蒸気冷媒の凝縮熱も、同様に凝縮器23を通して
外部に捨てられる。第3図の圧力−温度線図で表わされ
るように、高温再生器から発生する蒸気冷媒を低温再生
器で凝縮させ、この時の凝縮熱を低温再生器内の吸収溶
液に加えて、吸収溶液から更に蒸気冷媒を発生させて効
率の向上を図っている。
Refrigeration is performed in the evaporator 24, which removes heat from external cold water in a low-temperature region, and the vapor refrigerant generated at this time is transferred to the absorber 2.
5, it is absorbed by a concentrated salt aqueous solution (absorbing solution with increased concentration), and the absorbed heat is discarded to the outside. Further, the heat of condensation of the vapor refrigerant generated in the low-temperature regenerator 22 is similarly discarded to the outside through the condenser 23. As shown in the pressure-temperature diagram in Figure 3, the vapor refrigerant generated from the high-temperature regenerator is condensed in the low-temperature regenerator, and the heat of condensation is added to the absorbent solution in the low-temperature regenerator. Furthermore, steam refrigerant is generated from the refrigerant to improve efficiency.

高温再生器は約150℃、凝縮器および吸収器は約40
℃、蒸発器は約5℃で運転されており、5℃で冷媒であ
る水を蒸発させるため、蒸発器の圧力は、5℃の水の飽
和蒸気圧力である約6.5wa Hgよりも常に低く維
持されている。
The temperature of the high temperature regenerator is approximately 150℃, and the temperature of the condenser and absorber is approximately 40℃.
℃, the evaporator is operated at about 5℃, and in order to evaporate the refrigerant water at 5℃, the pressure of the evaporator is always lower than the saturated vapor pressure of water at 5℃, which is about 6.5wa Hg. is kept low.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の公知技術にあっては、低温再生器の加熱源に高温
再生器から発生する蒸気冷媒の凝縮熱を利用するため、
高温再生器の加熱源温度が150℃以上と高くなり、蒸
発過程で必要な液冷媒は、低温再生器で吸収溶液の加熱
により得られた蒸気冷媒を凝縮器で再度凝縮させている
In conventional known technology, the heat of condensation of the vapor refrigerant generated from the high-temperature regenerator is used as the heating source for the low-temperature regenerator.
The heating source temperature of the high-temperature regenerator is as high as 150° C. or higher, and the liquid refrigerant required in the evaporation process is obtained by recondensing the vapor refrigerant obtained by heating the absorption solution in the low-temperature regenerator in the condenser.

そのため機器材料に使われる鋼材の腐食反応によって水
素ガスが発生し、機器内の圧力が所定の圧力よりも高く
なって冷媒蒸発温度が上昇し、冷凍能力が大幅に低下す
る。また−度発生させた蒸気冷媒を再度凝縮液化させる
過程を経るため、凝縮器という熱交換器が必要となり、
機器が大型化する。そして、冷媒を蒸気にして分離する
ため、液の状態で分離するときの10倍以上のエネルギ
ーを必要とし、運転効率が大幅に低下する。
As a result, hydrogen gas is generated due to a corrosion reaction in the steel materials used in the equipment, raising the pressure inside the equipment higher than the predetermined pressure, raising the refrigerant evaporation temperature, and significantly reducing the refrigeration capacity. In addition, a heat exchanger called a condenser is required to condense and liquefy the vapor refrigerant generated once again.
Equipment becomes larger. In addition, since the refrigerant is separated in the form of vapor, more than 10 times as much energy is required as in the case of separating the refrigerant in a liquid state, resulting in a significant drop in operating efficiency.

本発明の目的は、機器材料の腐食を防止し、入熱量を少
なくして冷凍能力を向上するとともに、凝縮器を不要に
して小型、軽重量化を図った吸着型冷凍機を提供するこ
とにある。
An object of the present invention is to provide an adsorption refrigerator that prevents corrosion of equipment materials, reduces heat input, improves refrigeration capacity, and eliminates the need for a condenser, making it smaller and lighter in weight. .

〔課題を解決するための手段〕[Means to solve the problem]

前記の目的を達成するため1本発明に係る吸着型冷凍機
は、液冷媒を分離し、かつ液冷媒が冷水の熱を吸収して
蒸発した蒸気冷媒を吸着する熱可逆型吸水性高分子を備
えた構成とする。
In order to achieve the above object, the adsorption refrigerator according to the present invention separates a liquid refrigerant, and the liquid refrigerant absorbs the heat of the cold water and adsorbs the evaporated vapor refrigerant. The structure shall be equipped with the following.

そして加熱されて液冷媒を分離する再生器と、液冷媒に
冷水の熱を吸収させて蒸気冷媒を発生させる蒸発器と、
蒸気冷媒を吸着しその吸着熱を排出する吸収器とを備え
、吸収器と再生器とに熱可逆型吸水性高分子を充填した
構成でも良い。
and a regenerator that is heated and separates the liquid refrigerant, and an evaporator that causes the liquid refrigerant to absorb the heat of cold water and generate a vapor refrigerant.
It may also be configured to include an absorber that adsorbs vapor refrigerant and discharges the heat of adsorption, and the absorber and regenerator are filled with a thermoreversible water-absorbing polymer.

また液冷媒は、熱可逆型吸水性高分子の相転移温度以上
で液体の状態で分離され、蒸気冷媒は、熱可逆型吸水性
高分子の相転移温度以下で水蒸気の状態で吸着される構
成とする。
In addition, the liquid refrigerant is separated in a liquid state at temperatures above the phase transition temperature of the thermoreversible water-absorbing polymer, and the vapor refrigerant is adsorbed in the form of water vapor at temperatures below the phase transition temperature of the thermoreversible water-absorbing polymer. shall be.

さらに熱可逆型吸水性高分子は、ポリ−N−置換アルキ
ルアミド、ポリ−N−11換アルキレンアクリルアミド
、ポリ−N−置換アルコキシアクリルアミド、ポリビニ
ルアルコール部分けん化物、ポリエチレンオキシド、メ
チルセルロース及びポリビニルアルコール 含んで形成される構成とする。
Additionally, thermoreversible water-absorbing polymers include poly-N-substituted alkylamides, poly-N-11 substituted alkylene acrylamides, poly-N-substituted alkoxy acrylamides, partially saponified polyvinyl alcohols, polyethylene oxide, methylcellulose, and polyvinyl alcohols. It is assumed that the configuration is formed.

〔作用〕[Effect]

本発明によれば、吸着型冷凍機の再生器と吸収器とに熱
可逆型吸水性高分子を充填することにより、加熱源から
の熱によって再生器内の熱可逆型吸水性高分子は相転移
温度以上となり、吸着していた冷媒を液冷媒として分離
する。この液冷媒は減圧されて蒸発器に入り、冷水の熱
を吸収して蒸発し冷水を冷却する。この冷水は冷房に使
用される。そして蒸発冷媒は吸収器に入り、相転移温度
以下で熱可逆型吸水性高分子に吸着され、その吸着熱は
外部に排出される。再生器は離水を完了したのち、吸収
器として使用できるため、相互に切り換えることにより
サイクルが繰り返えされる。
According to the present invention, by filling the regenerator and absorber of an adsorption refrigerator with a thermoreversible water-absorbing polymer, the heat from the heating source causes the thermoreversible water-absorbing polymer in the regenerator to phase out. When the temperature exceeds the transition temperature, the adsorbed refrigerant is separated as liquid refrigerant. This liquid refrigerant is depressurized and enters the evaporator, where it absorbs the heat of the cold water and evaporates to cool the cold water. This cold water is used for air conditioning. The evaporated refrigerant then enters the absorber and is adsorbed by the thermoreversible water-absorbing polymer at a temperature below the phase transition temperature, and the heat of adsorption is discharged to the outside. After the regenerator completes water separation, it can be used as an absorber, so the cycle can be repeated by switching between them.

〔実施例〕〔Example〕

本発明の一実施例を第3図を参照しながら説明する。 An embodiment of the present invention will be described with reference to FIG.

第1図に示されるように、加熱源4で加熱され5かつ加
熱媒ポンプ13により四方電磁弁9を経由して送られた
熱媒により加熱されて液冷媒を分離する再生器1Aと、
液冷媒管7を通って減圧弁8で減圧された液冷媒に冷水
の熱を吸収させて蒸気冷媒を発生させる蒸発器2と、蒸
気冷媒管6と三方電磁弁10とを通って流入する蒸気冷
媒を吸着しその吸着熱を温熱媒循環ポンプ14により室
外機5から排出する吸収器1Bとを備え、吸収器IBと
再生器IAとに熱可逆型吸水性高分子を充填するように
構成されている。
As shown in FIG. 1, a regenerator 1A that is heated by a heating source 4 and is heated by a heating medium sent via a four-way electromagnetic valve 9 by a heating medium pump 13 to separate a liquid refrigerant;
The evaporator 2 generates vapor refrigerant by absorbing the heat of chilled water into the liquid refrigerant that has passed through the liquid refrigerant pipe 7 and whose pressure has been reduced by the pressure reducing valve 8. Steam flows in through the vapor refrigerant pipe 6 and the three-way solenoid valve 10. It is equipped with an absorber 1B that adsorbs a refrigerant and discharges the adsorption heat from the outdoor unit 5 by a heating medium circulation pump 14, and is configured so that the absorber IB and the regenerator IA are filled with a thermoreversible water-absorbing polymer. ing.

そして熱可逆型吸水性高分子は、ポリ−N−イソプロピ
ルアクリルアミド、ジメチルアクリルアミドなどの各種
のポリ−N−置換アルキルアミド、ポリ−N−1F換ア
ルキレンアクリルアミド、ポリ−N−I!換アルコキシ
アクリルアミド、ポリビニルアルコール部分けん化物、
ポリエチレンオキシド、メチルセルロース及びポリビニ
ルアルコール 成とする。
The thermoreversible water-absorbing polymers include various poly-N-substituted alkylamides such as poly-N-isopropylacrylamide and dimethylacrylamide, poly-N-1F-substituted alkylene acrylamide, and poly-N-I! substituted alkoxy acrylamide, partially saponified polyvinyl alcohol,
Contains polyethylene oxide, methyl cellulose and polyvinyl alcohol.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

第1図において、加熱源4で加熱された熱媒は。In FIG. 1, the heating medium heated by the heating source 4 is:

加熱媒ポンプ13により四方電磁弁9を通過して、再生
器IAに送られる。再生器lA内には、冷媒を十分に含
んだ熱可逆型吸水性高分子が充填されており、加熱g4
からの熱で熱可逆型吸水性高分子は相転移温度以上とな
って離水する。熱可逆型吸水性高分子から離水した液冷
媒は、三方電磁弁11を通って減圧弁8で減圧され蒸発
器2に入る。
The heating medium pump 13 passes through the four-way solenoid valve 9 and is sent to the regenerator IA. The regenerator 1A is filled with a thermoreversible water-absorbing polymer containing sufficient refrigerant, and the heating g4
The heat from the water causes the thermoreversible water-absorbing polymer to reach the phase transition temperature or higher and separate water. The liquid refrigerant separated from the thermoreversible water-absorbing polymer passes through the three-way solenoid valve 11, is depressurized by the pressure reducing valve 8, and enters the evaporator 2.

蒸発器2に入った冷媒は5℃、(3,5moHgで蒸発
し、蒸発潜熱により冷水を冷却し、その冷水は冷熱媒循
環ポンプ12で室内機3に送られ、冷房に供される。
The refrigerant that has entered the evaporator 2 is evaporated at 5° C. (3.5 moHg), and the latent heat of vaporization cools the cold water. The cold water is sent to the indoor unit 3 by the refrigerant circulation pump 12 and used for cooling.

蒸発器2で発生した蒸気冷媒は、蒸気冷媒管6、三方電
磁弁10を通って吸収器1Bに入り、熱可逆型吸水性高
分子に吸着され、ここで、発生した吸着熱は、熱媒によ
り室外機5から外部に捨てられる。吸収器IB内の熱可
逆型吸水性高分子の温度は約40℃となり、この温度で
蒸発器2からの蒸気冷媒を吸着するため、この時の吸収
器IB内の圧力は6.5mmHg以下となる。
The vapor refrigerant generated in the evaporator 2 passes through the vapor refrigerant pipe 6 and the three-way solenoid valve 10, enters the absorber 1B, and is adsorbed by the thermoreversible water-absorbing polymer. Therefore, it is discarded from the outdoor unit 5 to the outside. The temperature of the thermoreversible water-absorbing polymer in the absorber IB is approximately 40°C, and since the vapor refrigerant from the evaporator 2 is adsorbed at this temperature, the pressure in the absorber IB at this time is 6.5 mmHg or less. Become.

吸収器IB内の熱可逆型吸水性高分子がある程度水蒸気
を吸着し1機器内圧が6.5anHg以上になり、さら
に再生器lA内の脱水が終了したとき、三方電磁弁及び
四方電磁弁が切り換わり、再生器IAが吸収器として働
き、吸収器IBが再生器として働いて同じサイクルを繰
り返す。
When the thermoreversible water-absorbing polymer in absorber IB adsorbs water vapor to a certain extent and the internal pressure of one device reaches 6.5 anHg or more, and dehydration in regenerator IA is completed, the three-way solenoid valve and the four-way solenoid valve are turned off. In turn, regenerator IA acts as an absorber and absorber IB acts as a regenerator to repeat the same cycle.

本実施例では、熱可逆型吸水性高分子を吸着剤として用
い、離水時は熱可逆型吸水性高分子の相転移温度以上に
加熱し、冷媒である水を液体の状態で分離する。また、
相転移温度以下では熱可逆型吸水性高分子は吸水状態に
あり、蒸発器で蒸発した冷媒を水蒸気の状態で吸着する
In this example, a thermoreversible water-absorbing polymer is used as an adsorbent, and during water separation, it is heated to a temperature higher than the phase transition temperature of the thermoreversible water-absorbing polymer to separate water, which is a refrigerant, in a liquid state. Also,
Below the phase transition temperature, the thermoreversible water-absorbing polymer is in a water-absorbing state and adsorbs the refrigerant evaporated in the evaporator in the form of water vapor.

冷房サイクルを考えた場合、熱可逆型吸水性高分子が蒸
気冷媒を吸着したときの熱を外部に捨てるため、熱可逆
型吸水性高分子の相転移温度は外気温度よりも高い温度
でなければならないが、温度が高すぎると、熱可逆型吸
水性高分子の耐久性や機器材料の腐食に問題があり、5
0℃〜70℃が適当である。
When considering a cooling cycle, the phase transition temperature of a thermoreversible water-absorbing polymer must be higher than the outside air temperature in order to dissipate the heat generated when the thermoreversible water-absorbing polymer adsorbs a vapor refrigerant to the outside. However, if the temperature is too high, there will be problems with the durability of thermoreversible water-absorbing polymers and corrosion of equipment materials.
A temperature of 0°C to 70°C is suitable.

可逆型吸水性高分子の吸湿性及び相転移温度はその種類
により第1表に示されるように異なり。
The hygroscopic properties and phase transition temperatures of reversible water-absorbing polymers vary depending on their type, as shown in Table 1.

なかでも、ポリジメチルアクリルアミドは他の熱可逆型
吸水性高分子と比較してかなり吸湿性が高く、吸湿率は
自重の20%以上あり、一般によく知られている吸着材
であるシリカゲルと同等の吸湿率を有しており有効な可
逆型吸水性高分子である。
Among them, polydimethylacrylamide has considerably higher hygroscopicity than other thermoreversible water-absorbing polymers, with a moisture absorption rate of over 20% of its own weight, which is equivalent to silica gel, a well-known adsorbent. It is an effective reversible water-absorbing polymer with a high moisture absorption rate.

第1表 本発明によれば、熱可逆型吸水性高分子の相転移温度に
より再生器温度が決定されるため、再生器温度を100
℃以下に設定でき、機器材料の腐食による水素ガス発生
で生じる冷凍能力の低下を防止できる。そして再生器内
で冷媒を液体の状態で分離可能なことにより、従来の冷
凍機のように冷媒を蒸気として分離しないため、再生器
への入熱量が少なくて済み、冷凍能力の向上に繋がる。
Table 1 According to the present invention, the regenerator temperature is determined by the phase transition temperature of the thermoreversible water-absorbing polymer.
It can be set to a temperature below ℃, which prevents a decrease in refrigeration capacity caused by hydrogen gas generation due to corrosion of equipment materials. Since the refrigerant can be separated in a liquid state within the regenerator, the refrigerant is not separated as vapor as in conventional refrigerators, so the amount of heat input to the regenerator is small, leading to improved refrigeration capacity.

また蒸気冷媒を凝縮させる凝縮器が不要となるため、冷
凍機の小型化、軽重量化、低価格化が可能となる。
Furthermore, since a condenser for condensing vapor refrigerant is not required, the refrigerator can be made smaller, lighter in weight, and lower in price.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、吸着型冷凍機の再生器と吸収器とに熱
可逆型吸水性高分子を充填することにより、再生器にお
いて低温度で液冷媒の分離が可能となり、入熱量が減少
するとともに機器材料の腐食が減少して冷凍能力を向上
できる。そして凝縮器が、不要になるため、小型化、軽
重量化及び低価格化が可能となる。
According to the present invention, by filling the regenerator and absorber of an adsorption refrigerator with a thermoreversible water-absorbing polymer, it is possible to separate the liquid refrigerant at a low temperature in the regenerator, thereby reducing the amount of heat input. At the same time, corrosion of equipment materials is reduced and refrigeration capacity can be improved. Since a condenser is not required, it is possible to reduce the size, weight, and cost of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は従来
の技術を示す構成図、第3図は臭化リチウム水溶液を用
いた従来の冷凍サイクルの圧力−温度関係を示す図であ
る。 IA・・・再生器、IB・・・吸収器、2・・・蒸発器
、3・・・室内機、4・・・加熱源、5・・・室外機。 第2
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing a conventional technique, and Fig. 3 is a diagram showing the pressure-temperature relationship of a conventional refrigeration cycle using an aqueous lithium bromide solution. It is. IA... Regenerator, IB... Absorber, 2... Evaporator, 3... Indoor unit, 4... Heating source, 5... Outdoor unit. Second

Claims (1)

【特許請求の範囲】 1、液冷媒を分離し、かつ該液冷媒が冷水の熱を吸収し
て蒸発した蒸気冷媒を吸着する熱可逆型吸水性高分子を
備えたことを特徴とする吸着型冷凍機。 2、加熱されて液冷媒を分離する再生器と、該液冷媒に
冷水の熱を吸収させて蒸気冷媒を発生させる蒸発器と、
該蒸気冷媒を吸着しその吸着熱を排出する吸収器とを備
え、該吸収器と前記再生器とに熱可逆型吸水性高分子を
充填したことを特徴とする請求項1記載の吸着型冷凍機
。 3、液冷媒は、熱可逆型吸水性高分子の相転移温度以上
で液体の状態で分離され、蒸気冷媒は、熱可逆型吸水性
高分子の相転移温度以下で水蒸気の状態で吸着されるこ
とを特徴とする請求項1又は2記載の吸着型冷凍機。 4、熱可逆型吸水式高分子は、ポリ−N−置換アルキル
アミド、ポリ−N−置換アルキレンアクリルアミド、ポ
リ−N−置換アルコキシアクリルアミド、ポリビニルア
ルコール部分けん化物、ポリエチレンオキシド、メチル
セルロース及びポリビニルメチルエテールのうち少なく
とも1種を含んで形成されることを特徴とする請求項1
、2又は3記載の吸着型冷凍機。
[Claims] 1. An adsorption type characterized by comprising a thermoreversible water-absorbing polymer that separates a liquid refrigerant and absorbs the heat of the cold water and adsorbs the evaporated vapor refrigerant. refrigerator. 2. A regenerator that is heated and separates a liquid refrigerant, and an evaporator that causes the liquid refrigerant to absorb heat of cold water and generate a vapor refrigerant;
The adsorption type refrigeration according to claim 1, further comprising an absorber for adsorbing the vapor refrigerant and discharging the heat of adsorption thereof, and wherein the absorber and the regenerator are filled with a thermoreversible water-absorbing polymer. Machine. 3. The liquid refrigerant is separated in a liquid state at temperatures above the phase transition temperature of the thermoreversible water-absorbing polymer, and the vapor refrigerant is adsorbed in the form of water vapor at temperatures below the phase transition temperature of the thermoreversible water-absorbing polymer. The adsorption refrigerator according to claim 1 or 2, characterized in that: 4. Thermoreversible water-absorbing polymers include poly-N-substituted alkylamide, poly-N-substituted alkylene acrylamide, poly-N-substituted alkoxy acrylamide, partially saponified polyvinyl alcohol, polyethylene oxide, methyl cellulose, and polyvinyl methyl ether. Claim 1 characterized in that it is formed by containing at least one kind of
, 2 or 3. The adsorption refrigerator according to .
JP2088797A 1990-04-03 1990-04-03 Adsorptive type freezer Pending JPH03286973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2088797A JPH03286973A (en) 1990-04-03 1990-04-03 Adsorptive type freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2088797A JPH03286973A (en) 1990-04-03 1990-04-03 Adsorptive type freezer

Publications (1)

Publication Number Publication Date
JPH03286973A true JPH03286973A (en) 1991-12-17

Family

ID=13952853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2088797A Pending JPH03286973A (en) 1990-04-03 1990-04-03 Adsorptive type freezer

Country Status (1)

Country Link
JP (1) JPH03286973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494432A (en) * 2011-12-12 2012-06-13 常州大学 Triple-effect adsorption, refrigeration and circulation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494432A (en) * 2011-12-12 2012-06-13 常州大学 Triple-effect adsorption, refrigeration and circulation system

Similar Documents

Publication Publication Date Title
JPH04268176A (en) Absorption type freezer device
JP2002147885A (en) Absorption refrigerating machine
JP2002162130A (en) Air conditioner
JPH03286973A (en) Adsorptive type freezer
JPH07301469A (en) Adsorption type refrigerator
JP2002250573A (en) Air conditioner
JP2678211B2 (en) Heat storage type cold / heat generator
KR102130336B1 (en) Absorption refrigeration system with reverse osmosis filter
JP3466018B2 (en) Liquid phase separation type absorption refrigeration system
JP2005172380A (en) Adsorption-type heat pump
JPH11223416A (en) Refrigerating device
JP2011191032A (en) Compression refrigerating cycle
JP4184196B2 (en) Hybrid absorption heat pump system
JPH04268170A (en) Absorption type heat pump device
JPH11223414A (en) Refrigerating device
JP2005127614A (en) Adsorption type refrigerating machine and its operating method
JPS6122224B2 (en)
JP4282225B2 (en) Absorption refrigerator
JPH11223415A (en) Refrigerating device
JPH0446342B2 (en)
KR200172397Y1 (en) High temperature generator for an absorption refrigerator
JPH0325259A (en) Operation method of adsorption type refrigerator
KR0137580Y1 (en) Cooling apparatus of liquid refrigerator absorptive airconditioner
JP3882242B2 (en) Adsorption refrigeration system
JPH05280823A (en) Double effective absorption refrigeration system