JPH0328620A - Hydrocarbon modifying device for fuel cell - Google Patents

Hydrocarbon modifying device for fuel cell

Info

Publication number
JPH0328620A
JPH0328620A JP1165620A JP16562089A JPH0328620A JP H0328620 A JPH0328620 A JP H0328620A JP 1165620 A JP1165620 A JP 1165620A JP 16562089 A JP16562089 A JP 16562089A JP H0328620 A JPH0328620 A JP H0328620A
Authority
JP
Japan
Prior art keywords
gas
combustion gas
passage
raw material
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1165620A
Other languages
Japanese (ja)
Inventor
Takeyoshi Kamiyama
剛由 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1165620A priority Critical patent/JPH0328620A/en
Publication of JPH0328620A publication Critical patent/JPH0328620A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

PURPOSE:To reduce starting time and improve operational safety and stability during low load operation by installing a vapor generation pipeline to a combustion gas intake passage comprising a concentric multilayer ring-shaped passage, which is laid out to a reactive cylinder filled with catalyzer. CONSTITUTION:When steady operation is being carried out and especially when a load factor exceeds 50%, a change over valve (f) is shut down, and raw water which enters a pipeline (d) from a water supply pump (c), is fed into a water vapor generator (e). The generated vapor is fed to an intake pipeline 21 where it is mixed with raw gas and the mixed gas is introduced to a modifying device. On the other hand, when the load factor fails to exceeds 50% or when a fuel cell is starting, the change over valve (f) is opened to introduce the raw water to a pipeline (a). The raw water rises in a water vapor generator A which is laid out at the position at which heat arrives most quickly as a cell system, and turns into water vapor. That water vapor enters a separator (h) by way of pipelines (j) and (i), heats the whole system and enters the modifying device. It is, therefore, possible to shorten starting time and stabilize operational stability during low load operation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、メタン等の炭化水素をスチームリフォーミン
グによって改質する燃料電池用炭化水素改質装置に関し
、詳細には起動時及び燃料電池の負荷低減時のいずれに
おいても効率良く運転することができ、しかも装置をコ
ンパクト化することのできる燃料電池用炭化水素改質装
置に関するものである. [従来の技術] 加熱管内に触媒を充填し、炭化水素とスチームを流して
加熱管内で改質反応を起こさせる装置としては、例えば
特開昭59−102801号公報に示される様な改質装
置を挙げることができる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hydrocarbon reformer for fuel cells that reform hydrocarbons such as methane by steam reforming. This invention relates to a hydrocarbon reformer for fuel cells that can be operated efficiently even when the load is reduced and that can be made more compact. [Prior Art] An example of a device for filling a heating tube with a catalyst and causing a reforming reaction in the heating tube by flowing hydrocarbon and steam is a reforming device such as that shown in Japanese Patent Laid-Open No. 102801/1983. can be mentioned.

この装置は、中心部に燃焼排ガス排出路を設けた三重管
構造の反応管とこの反応管の更に外周面側に設けた燃料
供給・燃焼路からなり、反応管の外周面側で燃料を燃焼
させると共に燃焼排ガスを中心部へ導くLいう構成を採
用することによって、反応管を内外面から加熱するもの
である.そして原料ガスは、三重管構造の反応管の内層
通路から外層通路へ、燃焼ガスと対向するように通され
、その間に熱補給を受{・プて吸熱反応である水蒸気改
質反応を起こし改質される。
This device consists of a triple-tube structure reaction tube with a combustion exhaust gas discharge path in the center, and a fuel supply/combustion path provided on the outer circumferential side of this reaction tube, and the fuel is combusted on the outer circumferential side of the reaction tube. The reactor tube is heated from the inside and outside by adopting a configuration called L that allows the combustion exhaust gas to flow into the center of the tube. Then, the raw material gas is passed from the inner layer passage to the outer layer passage of the triple-pipe structure reaction tube so as to face the combustion gas, and during this time it receives heat and undergoes an endothermic steam reforming reaction. questioned.

このような従来の炭化水素改質装置においては、系外へ
の放熱を少なくすることによって熱効率を高める手段と
して断熱構造を採用しているが、上記装置では燃料供給
・燃焼路が反応管の外周面側に位置している為、反応管
の外側に比較的高温の燃焼ガスが流れる.従って燃料供
給・燃焼路の周囲に設ける断熱材壁を相当に分厚いもの
とする必要が生じ、装置の大型化を招くという問題があ
った. また給熱源である燃焼ガスと原料ガスとが対向流となる
ように構威されているため、燃焼ガスの流れC沿ったガ
ス温度は第3図のBGで示すように変化し、逆に原料ガ
スもしくは改質ガスのガス温度は同図のMGで示すよう
に変化する.つまり人口部分側の比較的高温の燃焼ガス
により加熱される外層通路内の触媒層には、すでに内層
通路において出口側の燃焼ガスからの伝熱によって温度
の上昇した原料ガスもしくは改質ガスが流れている.こ
のため上記入口部分側の燃焼ガスと外層通路内の触媒層
との温度差は比較的小さくなっており、上記高温部の燃
焼ガスの熱を有効に利用することができないという問題
がある。
In such conventional hydrocarbon reformers, a heat insulating structure is adopted as a means of increasing thermal efficiency by reducing heat radiation to the outside of the system. Since it is located on the surface side, relatively high temperature combustion gas flows outside the reaction tube. Therefore, it became necessary to make the insulation wall provided around the fuel supply/combustion path considerably thicker, which caused the problem of increasing the size of the device. In addition, since the combustion gas, which is a heat supply source, and the raw material gas are configured to flow in opposite directions, the gas temperature along the flow C of the combustion gas changes as shown by BG in Figure 3, and conversely, the raw material gas The gas temperature of the gas or reformed gas changes as shown by MG in the figure. In other words, raw material gas or reformed gas whose temperature has already increased due to heat transfer from the combustion gas on the outlet side in the inner layer passage flows into the catalyst layer in the outer layer passage which is heated by the relatively high temperature combustion gas on the artificial part side. ing. For this reason, the temperature difference between the combustion gas on the inlet portion side and the catalyst layer in the outer layer passage is relatively small, and there is a problem that the heat of the combustion gas in the high temperature section cannot be used effectively.

また上記外層通路の出口部から出てくる改質ガスはその
ガス温度が比較的高い(例えば800℃程度)ために、
この改質ガス温度を所定温度まで低下させてから取出す
必要がある.このため上記改質ガスと原料ガスとの熱交
換部を炉頂部に別途設ける必要があり、装置の大型化の
一因ともなっている。
In addition, since the reformed gas coming out from the outlet of the outer layer passage has a relatively high gas temperature (for example, about 800°C),
It is necessary to lower the temperature of this reformed gas to a specified temperature before taking it out. For this reason, it is necessary to separately provide a heat exchange section between the reformed gas and the raw material gas at the top of the furnace, which is also a factor in increasing the size of the apparatus.

本発明者等かねてより上記事情を憂慮し、種々検討を重
ねた結果、装置全体の熱効率を高めることができるとと
もに、従来よりもコンパクトにすることができる炭化水
素の改質装置を堤供することに戒功し、特願昭63−9
4083号(未公開)として特許出願した。
The inventors of the present invention have long been concerned about the above circumstances, and as a result of various studies, we have decided to provide a hydrocarbon reforming device that can increase the thermal efficiency of the entire device and be more compact than conventional ones. Performed precepts and received a special request in 1983-9.
A patent application was filed as No. 4083 (unpublished).

そこでまず前記特許出願に係る発明を説明する. 当該発明装置によれば、多層環状通路で構成される反応
管の最内層に内接して燃焼ガス誘導路を形成し、該燃焼
ガス誘導路と連通ずる燃焼ガス導出路を多層環状通路の
最外層に外接して形成している.その結果、最内層側で
反応管側に給熱することによって自らは降温した燃焼排
ガスが反応管の外周側を通ることになるので,外周側か
ら中心側へ燃焼ガスが流れる従来方式の改質装置に比べ
ると断熱構造を簡素化することができる。しかも燃焼排
ガス導出路の外周側には原料ガス導入路を形戊している
ので燃焼排ガスは予熱されていない原料ガスによる気相
断熱作用を受けてその分だけ断熱構造をより簡素なもの
にすることができる. 一方原料ガスは、燃焼ガス導出路に外接する原料ガス導
入路を通る間に予熱されて反応管の多層通路に導入され
るので反応管内における原料ガスの急激な温度上昇が回
避されてC析出反応を防止することができる.ところで
予熱された原料ガスを反応管へ導入するに当たっては多
層通路の内層側から外層側へ流す方式(原判ガスと燃焼
ガスが並行して流れる方式)と多層通路の外層側から内
層側へ流す方式(原料ガスと燃焼ガスが対向して流れる
方式)があり、後者の対向流方式を採用する場合には原
料ガスMG及び燃焼ガスBGの流れに沿った温度変化は
前記第3図に示す通りとなる。即ち対向流方式の場合に
は、原料ガスMGはまず燃焼ガス導出路に隣接する反応
管外層通路中を通る間に昇温するが、前記した通り燃焼
ガス導出路のガス温度は燃焼ガス誘導路のガス温度より
低いのでガス温度の上昇は紐やかであり、反応管の内層
通路に到達して始めて高温度の燃焼ガスBGに接するこ
とになる。従ってこの場合には、原料ガス人口部分にお
ける燃焼ガスと原料ガス(若しくは改質ガス)との温度
差が小さくなり、燃焼ガス保有熱の利用効率はどうして
も低くなる。他方反応管の内層通路の出口部は比較的高
温の燃焼ガスと接触するので出口部から出てくる改質ガ
スの温度がかなり高< 11る。この為改質ガス温度を
所定温度まで低下させる冷却装置あるいは熱交換装置を
設けることが多く、装置の大型化の一因となっている。
First, the invention related to the above patent application will be explained. According to the device of the present invention, a combustion gas guiding path is formed inscribed in the innermost layer of the reaction tube composed of a multilayer annular passage, and a combustion gas outlet passage communicating with the combustion gas guiding path is formed in the outermost layer of the multilayer annular passage. It is formed by circumscribing the . As a result, the combustion exhaust gas whose temperature has been lowered by supplying heat to the reaction tube side from the innermost layer side passes through the outer circumference of the reaction tube, so the conventional method of reforming in which combustion gas flows from the outer circumference to the center side The insulation structure can be simplified compared to other devices. Moreover, since the raw material gas introduction passage is formed on the outer periphery of the combustion exhaust gas outlet passage, the combustion exhaust gas receives the vapor phase insulation effect from the unpreheated raw material gas, which makes the insulation structure simpler. be able to. On the other hand, the raw material gas is preheated while passing through the raw material gas introduction passage circumscribing the combustion gas outlet passage and introduced into the multilayer passage of the reaction tube, so that a rapid temperature rise of the raw material gas in the reaction tube is avoided and the C precipitation reaction takes place. can be prevented. By the way, when introducing the preheated raw material gas into the reaction tube, there are two methods: one method in which it flows from the inner layer side to the outer layer side of the multilayer passageway (the original gas and the combustion gas flow in parallel), and the other method in which it flows from the outer layer side to the inner layer side of the multilayer passageway. When the latter counterflow method is adopted, the temperature changes along the flow of the raw material gas MG and the combustion gas BG are as shown in Fig. 3 above. becomes. That is, in the case of the counterflow method, the raw material gas MG first rises in temperature while passing through the reaction tube outer layer passage adjacent to the combustion gas guideway, but as described above, the gas temperature in the combustion gas guideway is lower than that in the combustion gas guideway. Since the gas temperature is lower than the gas temperature of , the rise in gas temperature is slow, and it is not until it reaches the inner layer passage of the reaction tube that it comes into contact with the high-temperature combustion gas BG. Therefore, in this case, the temperature difference between the combustion gas and the raw material gas (or reformed gas) in the raw material gas population portion becomes small, and the utilization efficiency of the heat retained in the combustion gas inevitably becomes low. On the other hand, since the outlet of the inner layer passage of the reaction tube comes into contact with relatively high temperature combustion gas, the temperature of the reformed gas coming out from the outlet is quite high. For this reason, a cooling device or a heat exchange device that lowers the temperature of the reformed gas to a predetermined temperature is often provided, which is one of the causes of an increase in the size of the device.

これに対し原料ガスMGを反応管の外層通路から内層通
路へ流す並行流方式を採用した場合には、原料ガスMG
及び燃焼ガスBGの流れに沿った温度変化は第2図に示
す通りとなる。即ち並行流方式の場合には、原料ガスM
’ Gは、まず燃焼ガス誘導路の高温ガス領域と接する
内層通路へ導入されるので原料ガス人口部分における原
料ガスMGと燃焼ガスBGとの温度差が相当に大きくな
り、前記対向流方式に比べると燃焼ガス保有熱の利用効
率は高くなる。そして内層通路から外層通路へ通過した
原料ガス(改質ガス)MGは、反応管から系外へ導出さ
れる出口部で燃焼ガス導出路出口部の比較的温度の低い
燃焼ガスと接することになるので前記対向流方式に比べ
ると改質ガス温度を低くすることができる.その結果、
改質ガス温度を下げる為の冷却装置や熱交換装置を省略
することができる, 第4図は前記特許出願発明装置のうち並行流方式を示す
断面説明図で、1は反応管、2は原料ガス導入路,3は
燃焼バーナー 4は燃焼ガス誘導路、5は炉体、42は
燃焼ガス導出路を夫々示している。
On the other hand, when a parallel flow method is adopted in which the raw material gas MG flows from the outer layer passage to the inner layer passage of the reaction tube, the raw material gas MG
The temperature change along the flow of the combustion gas BG is as shown in FIG. In other words, in the case of parallel flow system, raw material gas M
' Since G is first introduced into the inner layer passage in contact with the high-temperature gas region of the combustion gas guide path, the temperature difference between the raw material gas MG and the combustion gas BG in the raw material gas population area becomes considerably large, compared to the above-mentioned counterflow method. This increases the efficiency of using the heat retained in the combustion gas. Then, the raw material gas (reformed gas) MG that has passed from the inner layer passage to the outer layer passage comes into contact with relatively low temperature combustion gas at the outlet of the combustion gas outlet passage at the outlet where it is led out of the system from the reaction tube. Therefore, the reformed gas temperature can be lowered compared to the counterflow method mentioned above. the result,
It is possible to omit the cooling device and heat exchange device for lowering the temperature of the reformed gas. Fig. 4 is a cross-sectional explanatory diagram showing the parallel flow type of the device invented in the patent application, 1 is a reaction tube, 2 is a raw material 3 is a combustion burner, 4 is a combustion gas guiding path, 5 is a furnace body, and 42 is a combustion gas outlet path.

反応管1は内筒11、中筒12、外筒13を互いに離間
して同心状に配置した三重管からなり、内筒1!と中筒
!2の間に環状の内層通路l4、中筒12と外筒13と
の間に環状の外層通路15を夫々形成したものである。
The reaction tube 1 consists of a triple tube in which an inner tube 11, a middle tube 12, and an outer tube 13 are spaced apart from each other and arranged concentrically, and the inner tube 1! And Chutsutsu! 2, and an annular outer layer passage 15 is formed between the middle cylinder 12 and the outer cylinder 13.

内層通路14と外層通路15は内筒1lと外筒l3を連
結すると共に中筒12の下端部を切除することによって
連通しており、内層通路14及び外層通路15の内部に
はアルよナーニッケル系の改質触媒Sが充填されている
.そして上記内筒11の上端を延設して蓋部51に固定
することにより反応管1は炉体5内に中吊り状態で支持
されている。
The inner layer passage 14 and the outer layer passage 15 communicate with each other by connecting the inner cylinder 1l and the outer cylinder 13 and cutting off the lower end of the middle cylinder 12. The system is filled with reforming catalyst S. The reaction tube 1 is supported in the furnace body 5 in a suspended state by extending the upper end of the inner cylinder 11 and fixing it to the lid part 51.

さらに炉体5の内壁面(沿って環状の原料ガス導入路2
が形成されており、原料ガス導入路2の下端部は炉休5
を貫通する導入管21に接続され、一方原料ガス導入路
2の上端部は導管22を介して反応管1の内層通路14
に接続されている.又反応管1の上方には、反応管と同
心的にマニホールド61が配置され、反応管の外層通路
I5の複数箇所から取出された分岐v62が上記マニホ
ールド61に接続されており、さらにマニホールド6I
からは、炉体5を貫通する改質ガス取出し管63が引出
されている。
Further, the inner wall surface of the furnace body 5 (along which is the annular raw material gas introduction passage 2
is formed, and the lower end of the raw material gas introduction path 2 is
The upper end of the raw material gas introduction path 2 is connected to the inner layer passage 14 of the reaction tube 1 via the conduit 22.
It is connected to the. Further, above the reaction tube 1, a manifold 61 is arranged concentrically with the reaction tube, and branches v62 taken out from a plurality of locations of the outer layer passage I5 of the reaction tube are connected to the manifold 61.
A reformed gas take-off pipe 63 that penetrates the furnace body 5 is pulled out from.

反応管1の中心側空間は燃焼ガス誘導路4を構威し、該
中心側空間の上方に蓋体51に支持された燃焼バーナー
3が下向きに取付けられ、且つ燃焼バーナー3の先端は
耐熱タイル31によって被覆されている。反応管1と原
料ガス導入路2の間の環状空間は燃焼ガス導出路42と
して機能し、下方で燃焼ガス誘導路4と連通ずると共に
、燃焼ガス導出路42の中間位置にはアルミナ製ボール
若しくはラシヒリングBが充填され、これにより燃焼ガ
スの滞留時間を延長すると共に伝熱を促進している。そ
して燃焼ガス導出路42の上端は蓋体5!に挿設された
燃焼ガス排出管43に連通している。尚炉体5及び蓋体
51は断熱材で形威されでいる。
The center side space of the reaction tube 1 constitutes a combustion gas guide path 4, and a combustion burner 3 supported by a lid body 51 is installed downward in the upper part of the center side space, and the tip of the combustion burner 3 is connected to a heat-resistant tile. 31. The annular space between the reaction tube 1 and the raw material gas introduction path 2 functions as a combustion gas derivation path 42, and communicates with the combustion gas guide path 4 at the bottom. A Raschig ring B is filled, thereby extending the residence time of combustion gas and promoting heat transfer. The upper end of the combustion gas outlet path 42 is the lid 5! It communicates with a combustion gas exhaust pipe 43 inserted into the combustion gas exhaust pipe 43 . Incidentally, the furnace body 5 and the lid body 51 are made of a heat insulating material.

上記構成の改質装置において、メタンなどの燃料と空気
を燃焼バーナー3に供給して燃焼させることにより高温
の燃焼ガスを発生させる。燃焼ガ又は中心部の燃焼ガス
銹淳路4を下降し、反応管1の下端を廻り込んで折返し
、燃焼ガス導出路42を上昇して燃焼ガス排出管43か
ら排出される. 一方、天然ガスなどのガス状炭化水素および水蒸気等か
らなる原料ガスが原料ガス導入路2から供給され、導管
22を通して反応管1の内層通路14へ供給される。そ
して内層通路14内を下降した後、その下端部で折返し
て外層通路15を上昇する。原判ガスは内層通路14及
び外層通路15の触媒層を通過する間に、周囲から熱を
受け′C改質反応を起こし、主としてH2とcoからな
る改質ガスに変化する。この改質ガスは、外層通路15
上端から分岐管62を介してマニホールド61C集めら
れ、改質ガス取出し管63より抜出される。尚燃焼ガス
誘導路4及び燃焼ガス導出路42から原料ガスへの給熱
は、輻射伝熱及び充填物を介した伝熱の双方による。
In the reformer configured as described above, fuel such as methane and air are supplied to the combustion burner 3 and combusted to generate high-temperature combustion gas. The combustion gas descends through the combustion gas passage 4 in the center, goes around the lower end of the reaction tube 1, turns around, ascends the combustion gas outlet passage 42, and is discharged from the combustion gas discharge pipe 43. On the other hand, a raw material gas consisting of gaseous hydrocarbons such as natural gas, water vapor, etc. is supplied from the raw material gas introduction path 2, and is supplied to the inner layer passage 14 of the reaction tube 1 through the conduit 22. After descending within the inner layer passage 14, it turns back at the lower end and ascends through the outer layer passage 15. While the original gas passes through the catalyst layers of the inner layer passage 14 and the outer layer passage 15, it receives heat from the surroundings and causes a C reforming reaction, changing into a reformed gas mainly consisting of H2 and co. This reformed gas flows through the outer layer passage 15
The manifold 61C is collected from the upper end via the branch pipe 62 and extracted from the reformed gas take-off pipe 63. Note that heat is supplied from the combustion gas guide path 4 and the combustion gas outlet path 42 to the raw material gas by both radiation heat transfer and heat transfer via the filler.

本実施例においては、上記説明及び第4図から理解され
るように原料ガスと燃焼ガスは並行して流れるので前記
第2図に示した様に原料ガス導入位置における温度差が
大きく、高い熱利用効率を得ることができる。そして燃
焼直後の高塩燃焼ガスの熱を有効に利用することにより
触媒層の反応性が増大し、単位体積当たりの改質量が大
きくなる。この結果必要触媒量を従来より少なくするこ
とができ、装置のコンパクト化に寄与することができる
.例えば水素発生量が数千m’/hまでの中・小型の改
質装置であれば第4図に示す様な反応管が1基だけの改
質装置で設計することができ、装置をコンパクトに構成
することができる。
In this embodiment, as can be understood from the above explanation and FIG. 4, the raw material gas and the combustion gas flow in parallel, so as shown in FIG. Utilization efficiency can be obtained. By effectively utilizing the heat of the high-salt combustion gas immediately after combustion, the reactivity of the catalyst layer increases, and the amount of modification per unit volume increases. As a result, the required amount of catalyst can be reduced compared to conventional methods, contributing to the downsizing of the device. For example, in the case of a small to medium-sized reformer with a hydrogen generation rate of several thousand m'/h, it is possible to design a reformer with only one reaction tube as shown in Figure 4, making the device compact. It can be configured as follows.

さらに並行流であることにより、燃焼ガスの人口部分に
おいては、未だこの燃焼ガスからの給熱を受けない原料
ガスが内層通路14の上端部を流れ、この結果内筒11
の壁面が冷却されて反応管1の壁温Wは第2図に破線で
示すように推移する。即ち対向流方式の改質装置に比べ
て壁温Wは低くなり、反応管1として低いグレードの素
材を使用することができ、コストを低減することができ
る。
Further, due to the parallel flow, in the artificial part of the combustion gas, the raw material gas that has not yet received heat from the combustion gas flows through the upper end of the inner layer passage 14, and as a result, the inner cylinder 11
As the wall surface of the reaction tube 1 is cooled, the wall temperature W of the reaction tube 1 changes as shown by the broken line in FIG. That is, the wall temperature W is lower than that of a counter-flow type reformer, and a lower grade material can be used for the reaction tube 1, thereby reducing costs.

また原料ガス導入路2内の原料ガスは、燃焼ガス導出路
42内の燃焼ガスと熱交換されることにより予熱され、
一方この熱交換によって燃焼ガス温度は低下する。即ち
原料ガスを原料ガス導入路を経ることなく直接反応管1
へ導入する場合に比べると燃焼ガス温度は低くなるので
、この影響をうけて外層通路15の出口部における改質
ガス温度を低下させることができる。
Further, the raw material gas in the raw material gas introduction path 2 is preheated by exchanging heat with the combustion gas in the combustion gas outlet path 42,
On the other hand, this heat exchange lowers the combustion gas temperature. In other words, the raw material gas is directly supplied to the reaction tube 1 without passing through the raw material gas introduction path.
Since the combustion gas temperature is lower than that when the combustion gas is introduced into the fuel cell, the temperature of the reformed gas at the outlet of the outer layer passage 15 can be lowered under this influence.

こうした効果にも増して当該発明装置の最犬の特長は炉
体5の断熱材Pの厚みを小さくできる点にあった。即ち
反応管外周側の燃焼ガス導出路4にはバーナーから放出
されたばかりの燃焼ガスに比べると温度の低い燃焼ガス
が流れ、且つこの燃焼ガス導出路42は原料ガス導入路
2に囲まれているので原料ガスによる気相断熱作用を受
け、これらの結果、炉体5に加わる熱的負荷は従来に比
べると格段に小さなものとなっており、上記効果を享受
することができる。尚安全性の点から炉体5の外面を6
0℃以下に保持するのに必要な断熱材Pの厚みを、従来
に比べて薄くできることは勿論であるが、特に上記原料
ガス導入路2で囲まない場合に比べても約%一%の厚み
まで断熱材厚さを薄くすることができ、装置をコンパク
ト化することができる. その他、燃焼ガス導出路4内の充填物Bは、その量及び
種類を変化させることにより燃焼ガスの滞留時間などを
変化させることができ、熱交換の度合を調整する機能を
発揮するが、勿論、上記充填物を全く充填しないことも
許される.第5図は当該先願発明の他の実施例を示す断
面説明図で、原料ガスと燃焼ガスが対向して流れる場合
を示している。
In addition to these effects, the most important feature of the device of the present invention is that the thickness of the heat insulating material P of the furnace body 5 can be reduced. That is, combustion gas whose temperature is lower than that of the combustion gas just released from the burner flows through the combustion gas outlet passage 4 on the outer peripheral side of the reaction tube, and this combustion gas outlet passage 42 is surrounded by the raw material gas introduction passage 2. As a result, the thermal load applied to the furnace body 5 is much smaller than in the past, and the above-mentioned effects can be enjoyed. For safety reasons, the outer surface of the furnace body 5 is
Of course, the thickness of the heat insulating material P required to maintain the temperature below 0°C can be made thinner than in the past, but it is also about 1% thicker than in the case where it is not surrounded by the raw material gas introduction path 2. The thickness of the insulation material can be made as thin as possible, and the equipment can be made more compact. In addition, by changing the amount and type of the filler B in the combustion gas outlet path 4, the retention time of the combustion gas can be changed, and it also functions to adjust the degree of heat exchange. , it is also permissible not to fill with the above-mentioned fillings at all. FIG. 5 is a cross-sectional explanatory view showing another embodiment of the invention of the prior application, and shows a case where raw material gas and combustion gas flow oppositely.

第5図において装置の概要は第4図例とほぼ同等である
が、原料ガス導入路2の上端は、反応管1の外層通路1
5aと導管22aによって接続されでおり、マニホール
ド61aは分岐管62aによって内層通路14aの上端
と接続されている.これによって原料ガス導入路から供
給される原料ガスは、まず燃焼ガス導出路4ヒ接する外
層通路15aに流され、下端部で折り返して内層通路1
4aを上昇するように流れる。この結果、原料ガス若し
くは改質ガスは燃焼ガスと対向するように流れる。
In FIG. 5, the outline of the apparatus is almost the same as the example in FIG. 4, but the upper end of the raw material gas introduction path 2 is
5a by a conduit 22a, and the manifold 61a is connected to the upper end of the inner layer passage 14a by a branch pipe 62a. As a result, the raw material gas supplied from the raw material gas introduction passage is first flowed into the outer layer passage 15a that contacts the combustion gas outlet passage 4, and is turned back at the lower end to form the inner layer passage 15a.
It flows upward through 4a. As a result, the raw material gas or the reformed gas flows opposite to the combustion gas.

この様な対向流方式においても、反応管の外周側は比較
的温度の低い燃焼ガスが流れ、しかも該燃焼ガスはその
外周側を流れる導入原料ガスによって気相断熱されるの
で、これらによって断熱材Pの厚みは大幅に低減するこ
とができる。尚第4図および第5図等に示される改質装
置は、その装置全体を横向き、斜め向きあるいは上下逆
転して配置しても同じ作用効果を得ることができる. また上記例では、原料ガス導入路、反応管、燃焼ガス通
路を環状に形成したが、通路形状はこれに限らずコイル
状等に形成してもよい。さらに中心側の燃焼ガス誘導路
にアルくナ系の燃焼触媒を充填するようにしてもよい。
Even in such a counterflow system, relatively low-temperature combustion gas flows around the outer periphery of the reaction tube, and the combustion gas is thermally insulated in the vapor phase by the introduced raw material gas flowing around the outer periphery. The thickness of P can be significantly reduced. Note that the reforming apparatus shown in FIGS. 4 and 5 can obtain the same effect even if the entire apparatus is placed horizontally, diagonally, or upside down. Further, in the above example, the raw material gas introduction passage, the reaction tube, and the combustion gas passage were formed in an annular shape, but the shape of the passage is not limited to this, and may be formed in a coil shape or the like. Furthermore, an alkuna-based combustion catalyst may be filled in the combustion gas guiding path on the center side.

[発明が解決しようとする課題] 上記先願発明は装置全体の熱効率を向上させると共は、
装置のコンパクト化を・もたらすという優れた効果を発
揮するものであったが、尚燃料電池システム全体から見
ると次の様な問題を残すものであることが分かった。
[Problems to be solved by the invention] The invention of the prior application improves the thermal efficiency of the entire device, and also
Although this method had the excellent effect of making the device more compact, it was found that the following problems remained when viewed from the perspective of the entire fuel cell system.

(1)第4.5図の改質装置では、起動時及び定常運転
中のいずれにおいても、別系統に独立して設けた水蒸気
発生器から水蒸気の供給を受けなければならない。従っ
て特に起動に際しては、系外での水蒸気発生を待つ間燃
料電池としてのスタートを切ることができないという問
題がある.(2)上記装置では燃料電池の負荷が低下し
たとき、燃料電池で未反応であった燃′J4(電池排燃
料)を全量燃焼させると、第4,5図の燃焼バーナー3
で得られる燃焼熱量が改質に必要な熱量に対して過剰気
味になり改質炉木体め温度が上昇することになる。その
息改質炉冷却用の空気を上記バーナー3から導入すると
いった対策が必要となり、その九の空気ラインを付設す
ることとなって燃料電池システム全体としては複雑化し
てくる。
(1) In the reformer shown in Fig. 4.5, steam must be supplied from a steam generator independently provided in a separate system both at startup and during steady operation. Therefore, especially at startup, there is a problem in that the fuel cell cannot be started while waiting for water vapor to be generated outside the system. (2) In the above device, when the load on the fuel cell decreases, if the entire amount of fuel J4 (cell waste fuel) that has not reacted in the fuel cell is combusted, the combustion burner 3 shown in Figs.
The amount of combustion heat obtained is a little excessive compared to the amount of heat required for reforming, and the temperature of the wood of the reforming furnace increases. Measures such as introducing air for cooling the breath reforming furnace from the burner 3 are required, and the addition of nine air lines complicates the overall fuel cell system.

(3)同じく負荷低減時には、次の負荷上昇に備えて原
料ガス中の(スチーム)/(天然ガス)比を大きくする
必要が生じ、スチーム必要量が系全体として不足気味に
なり、操業の安定性が悪くなる. (4)燃焼ガス導出路42を流れる燃焼排ガスは元々伝
熱係数が小さいものである。そこで伝熱係数を高くする
ための充填物Bを装入することが改質炉の標準装備とな
っているが、その熱容量がかなり大きいものである九負
荷変動に対する応答性が悪くなっている. 本発明はこの様な事情に鑑みてなされたものであって、
上記問題点を克服することのできる様な燃料電池用改質
装置の提供を目的とするものである。
(3) Similarly, when the load is reduced, it becomes necessary to increase the (steam)/(natural gas) ratio in the raw material gas in preparation for the next load increase, and the required amount of steam tends to be insufficient for the entire system, resulting in stable operation. Sexuality becomes worse. (4) The combustion exhaust gas flowing through the combustion gas outlet path 42 originally has a small heat transfer coefficient. Therefore, it is standard equipment for reforming furnaces to charge filler B to increase the heat transfer coefficient, but since the heat capacity is quite large, the response to load fluctuations is poor. The present invention was made in view of these circumstances, and
The object of the present invention is to provide a fuel cell reformer that can overcome the above problems.

[課題を解決するための手段] 上記目的を達成することのできた本発明の改質装置とは
、上記の様な先願発明装置に対し、燃焼ガス導出路中に
水蒸気発生用管路を設けたことを要旨とするものである
[Means for Solving the Problems] The reforming device of the present invention that has achieved the above object is different from the device of the prior invention as described above, in that a steam generation pipe is provided in the combustion gas outlet path. The main points are as follows.

[作用及び実施例] 第1図は第4図の装置に本発明思想の改良を加えたもの
であり、燃焼ガス導出路42に水蒸気発生蛇管Aを取付
けたものである。この蛇管Aの下方には原料水導入管路
aを連結すると共に上方には生戊スチーム排出管bを連
結する。一方系外には給水ポンブC、管路d及び専用の
水蒸気発生器(例えば燃料電池の排熱を利用したもの)
eが設けられ、管路dは原料水導入管aに分岐すると共
に原料水導入管a(は切換弁fを設ける.また生成スチ
ーム排出管bは逆止弁gを介して気水分離器hに連結さ
れる管路iと導入管21に連結される管路jに分岐され
る.また水蒸気発生器eで発生した水蒸気についても、
管路hを介して導入管21に送給できる様に構成される
. 定常運転中、特に負荷率50%以上の状態で運転してい
るときには、切換弁fを遮断しておき給水ボンブCから
管路dに入る原料水は全て水蒸気発生器eに送り、ここ
で生成した水蒸気を管路kから導入管21に送って原料
ガスと混合状態で改質装置内に導入しているが、負荷率
が50%より少なくなったとき、或は燃料電池の起動時
には、切換弁fを開き管路d内の原料水を管路aに導入
する。この水は蛇管A内を螺旋状に旋回しながら上昇し
ていくが、今起動時について考えてみると、燃料電池シ
ステムとしてもつとも早く熱が入ってくる部分(図では
燃焼ガス導出路42)に水蒸気発生器(図の蛇管A)が
設けられていることになるので、速やかに水蒸気が発生
することとなる。そしてその水蒸気を管路℃.i経出で
気水分離器hに導入して系全体の加温に利用したり、或
は管路j経出で改質用原料として改質装置内に導入する
こともできる。向上記で述べた負荷率50%については
一応の目安に過ぎず、設備規模を考慮して適宜設定すれ
ば良いことである.また高負荷時に蛇管Aへの給水行な
わないのは、改質装置全体の熱収支を考えたとき、原料
ガス導入路2内の原料ガスを十分に加熱しようとすれば
、該加熱と水蒸気生戒の為の熱エネルギー総量を増加さ
せなければならず、電池排燃料(燃焼バーナー3に供給
される燃料の多くは燃料電池排燃料である)以外の市販
燃料を使用しなければならなくなるからである。
[Operations and Embodiments] FIG. 1 shows the device shown in FIG. 4, which has been improved based on the idea of the present invention, in which a steam generating serpentine pipe A is attached to the combustion gas outlet path 42. A raw water introduction pipe a is connected to the lower part of this flexible pipe A, and a raw steam discharge pipe b is connected to the upper part. On the other hand, outside the system, there is a water pump C, a pipe line d, and a dedicated steam generator (for example, one that uses exhaust heat from a fuel cell).
The pipe d branches into the raw water inlet pipe a, and the raw water inlet pipe a is provided with a switching valve f.The generated steam discharge pipe b is connected to a steam separator h via a check valve g. It is branched into a pipe i connected to the inlet pipe 21 and a pipe j connected to the introduction pipe 21. Also, regarding the steam generated by the steam generator e,
It is configured so that it can be fed to the introduction pipe 21 via the pipe h. During steady operation, especially when operating at a load factor of 50% or more, the switching valve f is shut off, and all raw water entering the pipe d from the water supply bomb C is sent to the steam generator e, where it is generated. The steam is sent from pipe k to the introduction pipe 21 and introduced into the reformer in a mixed state with the raw material gas, but when the load factor becomes less than 50% or when starting the fuel cell, the Valve f is opened and raw water in pipe d is introduced into pipe a. This water rises while spiraling inside the corrugated pipe A, but if we think about it now when it is started up, the part where heat enters quickly (combustion gas outlet path 42 in the figure) Since a steam generator (corresponding pipe A in the figure) is provided, steam will be generated quickly. The water vapor is then passed through the pipe to a temperature of ℃. It can also be introduced into the steam separator h through the i outlet and used for heating the entire system, or can be introduced into the reformer as a raw material for reforming through the pipe j outlet. The 50% load factor mentioned in the improvement note is only a rough guideline, and should be set as appropriate, taking into account the scale of the equipment. In addition, the reason why water is not supplied to the corrugated pipe A during high loads is that when considering the heat balance of the entire reformer, if the raw material gas in the raw material gas introduction path 2 is to be sufficiently heated, it is necessary to avoid this heating and steam generation. This is because the total amount of thermal energy must be increased, and commercially available fuel other than battery waste fuel (most of the fuel supplied to the combustion burner 3 is fuel cell waste fuel) must be used. .

次に燃料電池の負荷が低減したときであるが、本発明で
はこの時点でも蛇管At.:給水して水蒸気を発生させ
る。従って改質装置全体として見れば、燃焼バーナー3
からの供給熱量が低負荷によって過剰になった分だけ水
蒸気発生に利用されることとなり、熱収支のバランスが
とれる。そのも従来の如く改質装置冷却の為の空気導入
を考える必要がなくなり、燃料電他システムの複雑化を
回避することができる。また別の効果として、蛇WAで
生成した水蒸気を前述の如く管路j経出で改質用原料と
して供給できるので、低負荷だからといって系全体の水
蒸気量が不足することは避けられる。
Next, when the load on the fuel cell is reduced, in the present invention, even at this point, the flexible pipe At. : Supply water and generate steam. Therefore, when looking at the reformer as a whole, combustion burner 3
The excess amount of heat supplied by the system due to the low load will be used for steam generation, and the heat balance will be balanced. There is also no need to consider introducing air for cooling the reformer as in the past, and it is possible to avoid complication of the fuel electric system and other systems. Another effect is that the steam generated in the snake WA can be supplied as a raw material for reforming through the pipe j as described above, so that it is possible to avoid a shortage of steam in the entire system even if the load is low.

更に蛇管Aは燃焼排ガス側の伝熱促進体としても鞘き得
るので、これを水蒸気発生器として利用していないとき
であっても、燃焼排ガス側の伝熱係数を高めるという作
用を発揮していることになる。従って本実施例装置であ
れば、第4.5図の如き充填物Bを装入する必要性はな
くなる.尚蛇管Aとして管外にローフィン或はハイフィ
ンを設けたものは伝熱効率において更に優れたものとな
る。但し本発明は蛇管Aで例示した水蒸気発生器そのも
のの構造を限定するものではない。
Furthermore, since the corrugated pipe A can also be used as a heat transfer accelerator on the combustion exhaust gas side, even when it is not used as a steam generator, it exerts the effect of increasing the heat transfer coefficient on the combustion exhaust gas side. There will be. Therefore, with the apparatus of this embodiment, there is no need to charge the filler B as shown in Fig. 4.5. Incidentally, a flexible tube A having low fins or high fins outside the tube has even better heat transfer efficiency. However, the present invention does not limit the structure of the steam generator itself as exemplified by the flexible pipe A.

[発明の効果] 本発明は上記の様に構成されているので、先頭発明によ
って達成された諸効果の他に、起動時間を短縮すること
ができ、更には低負荷運転時においても熱バランスのと
れた安全且つ安定した運転を行なうことができ、燃料電
池システムの複雑化、大型化を回避することができる。
[Effects of the Invention] Since the present invention is configured as described above, in addition to the various effects achieved by the leading invention, the startup time can be shortened, and the heat balance can be maintained even during low-load operation. Therefore, the fuel cell system can be operated safely and stably, and the complexity and size of the fuel cell system can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す断面説明図、第2.3図
は、並行流方式及び対向流方式の改質装置における燃料
ガスと原料ガスの温度変化パターンを示すグラフ、第4
,5図は先願発明に係る実施例を示す断面図である。 l・・・反応管     2・・・原料ガス導入路3・
・・燃焼バーナー  4・・・燃焼ガス誘導路5・・・
炉体      1l・・・内筒l2・・・中筒   
   13・・・外筒l4・・・内層通路    15
・・・外層通路42・・・燃焼ガス導出炉 S・・・融
媒A・・・蛇管(水蒸気発生器) 第1図
Fig. 1 is a cross-sectional explanatory diagram showing an embodiment of the present invention, Figs. 2 and 3 are graphs showing temperature change patterns of fuel gas and raw material gas in parallel flow type and counter flow type reformers,
, 5 is a sectional view showing an embodiment according to the invention of the prior application. l... Reaction tube 2... Raw material gas introduction path 3.
... Combustion burner 4 ... Combustion gas guideway 5 ...
Furnace body 1l...inner cylinder l2...middle cylinder
13...Outer cylinder l4...Inner layer passage 15
... Outer layer passage 42 ... Combustion gas derivation furnace S ... Melting medium A ... Serpentine pipe (steam generator) Fig. 1

Claims (1)

【特許請求の範囲】[Claims]  同心状に配設されると共に一方端において互いに連通
する多層環状通路構成からなると共に改質用原料ガス入
口部及び改質済みガス出口部を備え、上記通路内に改質
用触媒の充填された反応管と、該多層通路の最内層に内
接する燃焼ガス誘導路と、該多層通路の最外層に外接す
ると共に前記燃焼ガス誘導路に連通される燃焼ガス導出
路と、該燃焼ガス導出路に外接すると共に前記多層通路
の改質用原料ガス入口部に連通する改質用原料ガス導入
路とを有し、且つ燃焼ガス導出路に水蒸気発生用管路を
設けてなることを特徴とする燃料電池用炭化水素改質装
置。
It consists of a multi-layered annular passage arranged concentrically and communicating with each other at one end, and includes an inlet of a raw material gas for reforming and an outlet of reformed gas, and the passage is filled with a reforming catalyst. a reaction tube, a combustion gas guide path inscribed in the innermost layer of the multilayer passage, a combustion gas outlet path circumscribed to the outermost layer of the multilayer passage and communicated with the combustion gas guide path; A fuel characterized in that it has a reforming raw material gas introduction passage that circumscribes and communicates with the reforming raw material gas inlet portion of the multilayer passage, and a steam generation pipe is provided in the combustion gas outlet passage. Hydrocarbon reformer for batteries.
JP1165620A 1989-06-27 1989-06-27 Hydrocarbon modifying device for fuel cell Pending JPH0328620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1165620A JPH0328620A (en) 1989-06-27 1989-06-27 Hydrocarbon modifying device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1165620A JPH0328620A (en) 1989-06-27 1989-06-27 Hydrocarbon modifying device for fuel cell

Publications (1)

Publication Number Publication Date
JPH0328620A true JPH0328620A (en) 1991-02-06

Family

ID=15815824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1165620A Pending JPH0328620A (en) 1989-06-27 1989-06-27 Hydrocarbon modifying device for fuel cell

Country Status (1)

Country Link
JP (1) JPH0328620A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531085A (en) * 2000-04-17 2003-10-21 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Fuel processor
JP2007091584A (en) * 2005-09-27 2007-04-12 Samsung Sdi Co Ltd Fuel reforming apparatus
JP2008266125A (en) * 2007-04-24 2008-11-06 Samsung Sdi Co Ltd Fuel reforming apparatus, method of driving the apparatus and fuel cell system
JP2009107881A (en) * 2007-10-30 2009-05-21 Ebara Ballard Corp Reformer, fuel cell system, and starting method for reformer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531085A (en) * 2000-04-17 2003-10-21 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Fuel processor
JP2007091584A (en) * 2005-09-27 2007-04-12 Samsung Sdi Co Ltd Fuel reforming apparatus
JP2008266125A (en) * 2007-04-24 2008-11-06 Samsung Sdi Co Ltd Fuel reforming apparatus, method of driving the apparatus and fuel cell system
US8003269B2 (en) 2007-04-24 2011-08-23 Samsung Sdi Co., Ltd. Fuel reforming apparatus and its method of driving and fuel cell system including the apparatus
JP2009107881A (en) * 2007-10-30 2009-05-21 Ebara Ballard Corp Reformer, fuel cell system, and starting method for reformer

Similar Documents

Publication Publication Date Title
US6481207B2 (en) Single-pipe cylinder type reformer and method of operating the same
US5516344A (en) Fuel cell power plant fuel processing apparatus
US7494516B2 (en) Highly integrated fuel processor for distributed hydrogen production
JP4090097B2 (en) Natural gas type hydrogen generator
US5164163A (en) Hydrocarbon reforming apparatus
CN100457252C (en) Compact steam reformer
US5811065A (en) Burner exhaust gas collection assembly for a catalytic reformer
JP4073960B2 (en) Hydrocarbon steam reforming method
JPH0333002A (en) Hydrogen producing device
JP2003300703A (en) Fuel reformer
KR20040058180A (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
KR100286620B1 (en) Steam reforming type hydrogen production method and apparatus
TW201936487A (en) Hydrogen generator
JPH0283028A (en) Reforming apparatus for hydrocarbon
JPH0328620A (en) Hydrocarbon modifying device for fuel cell
JP2004323353A (en) Single tube cylindrical reformer and operating method therefor
JP3405839B2 (en) Converter
JP2002053306A (en) Device for producing hydrogen and fuel cell system using the same
JPH01264903A (en) Apparatus for reforming hydrocarbon
WO2005077822A1 (en) Fuel reforming apparatus and method for starting said fuel reforming apparatus
KR101316042B1 (en) Integrated Reformer System for a Fuel Cell
KR20170135189A (en) Fuel reforming divice
JPH01305802A (en) Fuel reformer
JP2517658B2 (en) Hydrocarbon reformer
JPS6274448A (en) Reformer of fuel cell