JPH03285770A - Manufacture of large diameter steel pipe excellent in sour gas resistance - Google Patents

Manufacture of large diameter steel pipe excellent in sour gas resistance

Info

Publication number
JPH03285770A
JPH03285770A JP8439990A JP8439990A JPH03285770A JP H03285770 A JPH03285770 A JP H03285770A JP 8439990 A JP8439990 A JP 8439990A JP 8439990 A JP8439990 A JP 8439990A JP H03285770 A JPH03285770 A JP H03285770A
Authority
JP
Japan
Prior art keywords
less
toughness
low
weld metal
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8439990A
Other languages
Japanese (ja)
Other versions
JPH0698500B2 (en
Inventor
Yoshinori Ogata
尾形 佳紀
Hiroshi Tamehiro
為広 博
Masanobu Yamaguchi
山口 昌伸
Koichi Shinada
功一 品田
Hiroaki Masui
増井 浩昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2084399A priority Critical patent/JPH0698500B2/en
Publication of JPH03285770A publication Critical patent/JPH03285770A/en
Publication of JPH0698500B2 publication Critical patent/JPH0698500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To obtain the large diameter steel pipe excellent in sour gas resistance by subjecting base metals having specified chemical composition to one-pass submerged arc welding on the inside and outside by using low oxygen-base flux and an extra low carbon-base high Mn-low N-Ti-base welding wire to obtain weld metal having specified composition. CONSTITUTION:In the UOE steel pipe, the chemical composition of the base metals contains, by weight %, 0.02-0.05% C, 0.01-0. 05% Nb, 0.01-0.025% Ti, 0.002-0.005% Ca, 0.05-0.3% Mo and 0.01-0.08% V and ESSP of the expression I satisfies 1.5-6.0. These base metals are subjected to one-pass submerged arc welding on the inside and outside by using the low oxygen-base flux end the extra low carbon-base high Mn-low N-Ti-base welding wire. The weld metal contains 0.02-0.06% C, Ti, Al, Mo, B, etc., and PWM of the expression II is regulated to 0.13-0.16 and alpha of the expression III is regulated to (-10)-(+10). Consequently, the maximum hardness of a weld zone is suppressed and high toughness thereof is attained.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は耐サワーガス性に優れた大径鋼管の製造法に関
するものであり、とくに、該鋼管を海底等に敷設する場
合の現地における鋼管の円周溶接(以下現地溶接、およ
びガース溶接と云う。)においで、大径鋼管シーム溶接
部の交差部(通常、便宜上この部分をT−クロスとも云
う。)の低硬化性と、該シーム溶接金属に対して優れた
靭性を具備する前記大径鋼管の溶接製造法に係わるもの
である。 (従来の技術) 近年、海底ガス井や油田の開発に敷設されるUOライン
パイプは、サワーガス環境下での使用を前提に、高強度
・高靭性および耐HIC性加え、耐SSC性か要求され
ている。ラインパイプの海底敷設にはレイバージ下洗が
採用され、ガース溶接には高能率なガスメタルアーク溶
接が通常用いられる。しかしこの溶接法は溶接入熱が低
い上に、大幅な能率向上を目的とするため、予熱フリー
が要求される結果、ガース溶接と鋼管シーム溶接の交差
部の硬度が上昇し、且つガース溶接で再加熱された潜弧
溶接(SAW)金属の硬度上昇が著しく、その部分が最
高硬度を示す。このような溶接部の硬度」1昇は、SS
C感受性を高める方向に作用し好ましくない。従って耐
SSC性の観点から溶接部の最高硬さを規制するのか通
例となっている。 一般に該溶接部の硬度を低くせしめる方法としで、ガー
ス溶接部を後熱処理する方法、あるいはシーム溶接金属
の再加熱部の硬度上昇を抑えるため、シーム溶接金属成
分の合金を低くする方法などが挙げられる。しかし、前
者の方法は現地での作業能率の低下、高コスト面から現
実的でない。 また、後者の方法は成分調整によって合金成分を低める
方向、すなわち溶接金属の焼入れ性を極力小さくする方
法であり、最も現実的な方法とならしむる可能性がある
。しかし、溶接金属の焼入れ性を低くした場合、低硬度
化は可能であっても他の重要な特性である靭性の低下が
懸念される。通常、溶接金属は鋼材の製造とは異なり、
凝固ままで鋼材と同程度の特性が要求されるため、特に
強度、靭性面から母材成分以上の高合金設計とし、すな
わち焼入れ性を窩めることによってその特性が達成され
ている。 溶接部の切欠靭性を向上するために溶着金属の成分を調
整する方法が特公昭57’−+ 7637号公報に開示
されている。すなわち溶着金属中に微量のBまたはTi
を添加し、鋼中の酸素、窒素をTiで固定し、Bを固溶
させることにより切欠靭性の向上を図るものである。し
かし該公報には、溶接部の硬度については触れていない
。 (発明か解決しようとする課題) 前記したように、耐サワーガス用大径鋼管のガース溶接
部は、特に硫化水素にもとすく応力腐食割れ感受性を低
ドさせるために、硬度を抑える必要があり、現状ではH
v (10kg) max≦248が耐SSC性の面か
ら要求されるのか通例である。 特に造管シームとガース溶接部の交差部において冷却速
度の速いガース溶接表層部、および造管シーム溶接金属
のガース溶接によって再加熱を受けた熱影響部部分では
、最高硬度となりやすいために上記要求は大きい。 しかし、硬度を抑えることは、靭性も低下することにな
りこれでは目的とする低硬化性と高靭性を同時に具備し
た耐サワーガス性の優れた大径鋼管を得ることはできな
い。 本発明は、このような相反する特性を改善するものであ
っで、溶接部の最高硬さHv(10kg)を248以下
になるように抑えると共に、更に高靭性化させることを
特徴とする、耐サワーガス性に優れた大径鋼管を提供す
ることを1」的とするものである。 (課題を解決するための手段) 本発明者らは、UOE法で製造した鋼管のガース溶接部
、特にUO造管ンーム溶接部とガース溶接の交差部(以
下T−クロス部という)における低硬度化と造管シーム
溶接金属の高靭性化について次のような知見を得た。 すなわち、ガース溶接部によって得た溶接部、特にT−
クロス部における表層溶接部(潜弧溶接金属のガース溶
接によって再加熱され、かつ後熱を受けない部分)が急
速に冷却され、また後熱もないことから焼入れ組織とな
って硬度が上昇する。 従って硬度を下げるためには焼の入りにくい組織にすれ
ばよく、■そのためには溶接金属中の成分パラメーター
(本発明ではPMWて表示)を低く調整すると共にCB
)濃度を可能な限り低くすることが有効であること、ま
た、このような低硬度化に伴う靭性低下を防ぎ、さらに
高靭化を達成するために■溶接部靭性劣化の原因となる
[:O] ffiを、Tiて固溶しうる範囲まで下げる
こと、すなわちTiを添加してTi2O3を形成すると
、オーステナイト→フェライトへの変態時にオーステナ
イト粒内にこのTi2O3を核として微細なアシキュラ
ーフェライトの生成に役立つため、かかるT1□03の
生成に必要な
(Field of Industrial Application) The present invention relates to a method for manufacturing large-diameter steel pipes with excellent sour gas resistance, and particularly relates to circumferential welding (hereinafter referred to as on-site welding) of steel pipes on-site when the steel pipes are laid on the seabed, etc. , and girth welding), low hardening of the intersection of large-diameter steel pipe seam welds (usually referred to as T-cross for convenience) and excellent toughness for the seam weld metal. The present invention relates to a welding manufacturing method for the large-diameter steel pipe, comprising: (Conventional technology) In recent years, UO line pipes installed in the development of offshore gas wells and oil fields are required to have high strength, high toughness, and HIC resistance, as well as SSC resistance, based on the assumption that they will be used in sour gas environments. ing. Raybarge underwashing is used for laying line pipes on the seabed, and highly efficient gas metal arc welding is usually used for girth welding. However, this welding method has a low welding heat input and is intended to significantly improve efficiency, so it requires free preheating, which increases the hardness of the intersection between girth welding and steel pipe seam welding, and The hardness of reheated submerged arc welded (SAW) metal increases significantly, with the highest hardness in that area. The hardness of such a welded part "1 increase" is SS
This is not preferable because it acts to increase C sensitivity. Therefore, it is customary to regulate the maximum hardness of welded parts from the viewpoint of SSC resistance. In general, methods for reducing the hardness of the weld include post-heat treatment of the girth weld, or methods of lowering the alloy content of the seam weld metal to suppress the increase in hardness of the reheated seam weld metal. It will be done. However, the former method is impractical due to lower on-site work efficiency and higher costs. In addition, the latter method is a method of lowering the alloy components through component adjustment, that is, a method of minimizing the hardenability of the weld metal, and may become the most practical method. However, if the hardenability of the weld metal is lowered, even if it is possible to lower the hardness, there is a concern that the toughness, which is another important property, will decrease. Usually, welding metal is different from manufacturing steel materials.
Since it is required to have properties comparable to those of steel even when solidified, these properties are achieved by designing alloys that are higher than those of the base material in terms of strength and toughness, that is, by improving hardenability. Japanese Patent Publication No. 57'-+ 7637 discloses a method of adjusting the composition of the weld metal in order to improve the notch toughness of the weld. In other words, there is a trace amount of B or Ti in the weld metal.
The purpose is to improve notch toughness by adding Ti, fixing oxygen and nitrogen in the steel with Ti, and dissolving B as a solid solution. However, this publication does not mention the hardness of the welded portion. (Problem to be solved by the invention) As mentioned above, the girth welded part of large diameter steel pipes for sour gas resistance needs to have a low hardness, especially in order to be resistant to hydrogen sulfide and to reduce the susceptibility to stress corrosion cracking. , currently H
v (10 kg) max≦248 is generally required from the viewpoint of SSC resistance. In particular, the surface layer of the girth weld where the cooling rate is fast at the intersection of the pipe-making seam and the girth weld, and the heat-affected zone where the pipe-making seam weld metal is reheated by girth welding tend to have the highest hardness, so the above requirements are met. is big. However, reducing the hardness also reduces the toughness, making it impossible to obtain a large-diameter steel pipe that simultaneously has the desired low hardenability and high toughness and has excellent sour gas resistance. The present invention aims to improve these contradictory characteristics, and is characterized by suppressing the maximum hardness Hv (10 kg) of the welded part to 248 or less and further increasing the toughness. The objective is to provide a large-diameter steel pipe with excellent sour gas properties. (Means for Solving the Problems) The present inventors have discovered that the girth welds of steel pipes manufactured by the UOE method, particularly the intersections of the UO tube welds and the girth welds (hereinafter referred to as T-cross parts), have low hardness. The following knowledge was obtained regarding the improvement of the toughness of pipe-making seam weld metal. That is, welds obtained by girth welds, especially T-
The surface welding part (the part that is reheated by girth welding of submerged arc welding metal and does not receive afterheating) at the cross section is rapidly cooled, and since there is no afterheating, it becomes a quenched structure and increases in hardness. Therefore, in order to lower the hardness, it is necessary to create a structure that is difficult to harden.■ To achieve this, the component parameters (in the present invention, expressed as PMW) in the weld metal should be adjusted to a low value, and the CB
) It is effective to reduce the concentration as low as possible, and to prevent the decrease in toughness that accompanies such a decrease in hardness, and to achieve even higher toughness. O] By lowering ffi to a range where Ti can form a solid solution, that is, by adding Ti to form Ti2O3, fine acicular ferrite is formed in the austenite grains with this Ti2O3 as a core during the transformation from austenite to ferrite. necessary for the generation of such T1□03.

〔0〕濃度までとすることが好ましいこと
。および■前記した微量CB)を有効に活用し、溶接金
属中に固溶させ、変態時のオーステナイト結晶粒界での
フェライト発生を抑制して粗大組織となるのを防ぐと共
に、■剥除(Ti)による脆化を防止するためにTiの
添加量を〔Aρ)、  [0)、  (N)とのバラン
スを考慮して狭い範囲とすることが重要であることがわ
かった。 本発明は、かかる知見に基づいて完成したものであっで
、その要旨は以下の構成の通りである。 ナなイつち、 UOE鋼管においで、母材の化学成分が重量%で、 C:0.020〜O,[]550% Sl・05%以下
、Mn:1.0〜1,5%、   P :0.02%以
下、S  :0.0OL5%v)X)、     Nb
:O,0L.05%、Ti:0.010〜0.025%
、 Al:0.05%以下、N :0.005%以下、
   O:0.0025%臥1、Ca:0.002〜0
.005%を含み、さらにMo、Vの]一種または2種
以上であっで、Mo:0.05〜0.30%、   ■
:0.旧−o、og%、を含有し、かつ下式のESSP
が1.5〜6.0を満足し、残部不iJ避不純物および
Fcからなり、上記母材を低酸素系フラックスおよび極
低炭素系高Mn−低N−Ti系溶接ワイヤーを用いて内
外面に1パス潜弧溶接を行い、 重量%で、 C:0.020〜0.060%、Si:0.5%以下、
Mn:1.35〜1.85%、  P  :0.03%
以下、S  :0.006%呟下、  Tj:0.00
5〜0.025%、Al:0.005〜0.030%、
Mo:0.30%以下、B :0.0004〜0.00
12%、0・0.015〜0.025%、N :0.0
04%以下を含有し1、 かつ、下式のPWMが0.13〜0.16であり、下式
のαか−10〜+10を満足し、残部不可避不純物およ
びFeからなる溶接金属を得ることを特徴とする耐サワ
ーガス性に優れた大径鋼管の製造方法。 ESSP=Ca  N、−124(0) )/1.25
SPWM  =C+Si/30+ (Mn+Cu+Cr
)/20十N+/60+MO/+5+V/10 α= C1,,5(0〜0,89Al) +3.4N−
Tt〕XIO3上記母材成分には必要に応じNi:0.
05〜0.3%、Cu:0.05−0.30%、Cr:
0.05−1.0%、の1種または2種以上を含有させ
ることができる。 以下に本発明の詳細な説明する。 本発明によって製造する大径鋼管は、工場内でUOE成
形し、シーム部を潜弧溶接等により接合して造管される
ところの耐サワーガス特性の優れた鋼管であってAPI
規格Xシリーズで規定されるX−65以上の高靭性高張
力鋼を母材とする。 すなわち、所望の強度靭性を付与するために合金元素を
所定量添加すると共に炭素を低くした低合金鋼であり、
また溶接部熱影響部の靭性を向上するためにTiを添加
し、鋼中に含有する酸素をTl2O3等の酸化物と
[0] It is preferable to keep the concentration up to. and () the above-mentioned trace amounts of CB) can be effectively utilized and dissolved in the weld metal to suppress the generation of ferrite at the austenite grain boundaries during transformation and prevent the formation of a coarse structure. ), it was found that it is important to keep the amount of Ti added within a narrow range by considering the balance between [Aρ), [0), and (N)]. The present invention was completed based on this knowledge, and its gist is as follows. In UOE steel pipes, the chemical composition of the base metal in weight% is C: 0.020~O, []550% Sl, 05% or less, Mn: 1.0~1.5%, P: 0.02% or less, S: 0.0OL5%v)X), Nb
:O,0L. 05%, Ti: 0.010-0.025%
, Al: 0.05% or less, N: 0.005% or less,
O: 0.0025% Bo 1, Ca: 0.002-0
.. 005%, and further contains one or more kinds of Mo and V, Mo: 0.05 to 0.30%,
:0. ESSP containing old-o, og%, and of the following formula
satisfies 1.5 to 6.0, and the remainder consists of unavoidable impurities and Fc. One-pass submerged arc welding was performed, and in weight percent, C: 0.020 to 0.060%, Si: 0.5% or less,
Mn: 1.35-1.85%, P: 0.03%
Below, S: 0.006% below, Tj: 0.00
5-0.025%, Al: 0.005-0.030%,
Mo: 0.30% or less, B: 0.0004 to 0.00
12%, 0.0.015-0.025%, N: 0.0
To obtain a weld metal containing 0.04% or less, and having a PWM of the following formula of 0.13 to 0.16, satisfying α of the following formula of -10 to +10, and the remainder consisting of unavoidable impurities and Fe. A method for manufacturing large diameter steel pipes with excellent sour gas resistance. ESSP=CaN, -124(0))/1.25
SPWM =C+Si/30+ (Mn+Cu+Cr
)/2010N+/60+MO/+5+V/10 α= C1,,5 (0~0,89Al) +3.4N-
Tt]XIO3 The above base material components include Ni: 0.
05-0.3%, Cu: 0.05-0.30%, Cr:
One or more types of 0.05-1.0% can be contained. The present invention will be explained in detail below. The large-diameter steel pipe manufactured by the present invention is a steel pipe with excellent sour gas resistance properties that is manufactured by UOE forming in a factory and joining the seam part by submerged arc welding, etc.
The base material is high toughness and high tensile strength steel of X-65 or higher specified by the standard X series. In other words, it is a low-alloy steel with a predetermined amount of alloying elements added and a low carbon content in order to impart the desired strength and toughness.
In addition, Ti is added to improve the toughness of the heat-affected zone of the weld, and the oxygen contained in the steel is converted into oxides such as Tl2O3.

【7
て有害酸素を除去すると共に、該Ti2O3が溶接冷却
過程でのオーステナイト→フェライト変態点、オーステ
ナイト粒内の初析フェライト生成核となり、組織を微細
化している。 一方鋼中のSはMnとMnSを形成するが、このMnS
は水素と結合しやすく、この部分で硫化水素となって応
力腐食割れの原因となる。本発明ではSができるだけM
nと結合するのを防ぐためCaを添加し、硫化物の形態
を変えるようにしている。Caは酸素と結合するが、あ
まり多量に添加すると他の介在物かできたり、大型化す
るため好ましくない。そこで、残存する酸素と結合する
量の外にSを固定するに十分な量とする必要がある。そ
のために、本発明ではE S S P (El″rec
tiveSulfide 5hape Paramet
er)を設けて管理することに特徴がある。 本発明は上記母材よりUOE法で大径管を製造し、これ
を現地で接合するものであるが、海底等に敷設し、硫化
水素を含むいわゆるサワー性のガ] 1 2 スやオイルの輸送にあたって母材より接合部および熱影
響部の方がSSC感受性か高い。すなわち硬度が高いか
らであり、特にT−クロス部には、前記したように最高
硬度が出現する。鋼管同志の接合でガース溶接をする場
合に、開先内部側は、多層盛りで層毎に加熱され、靭性
は回復するが円周外、内面(最外層)は、冷却が早い。 しかも小人熱溶接であることも原因するがこの溶接部の
硬度は上昇する。特に鋼管シーム溶接部と交差部(T−
クロス)では、シーム溶接金属が再び加熱され、しかも
、小人熱溶接のため急冷とあいまってその部分の硬さが
著しく高くなる。 本発明は、このT−クロス部における硬度を下げ、しか
も、それに伴って起こる靭性の低下を防(ための最低限
の焼入性指標であるPWMの範囲を設定すると共に、組
織微細化元素を有効に利用するα値を設定し、すなイつ
ちAl−Ti −0〜Nの濃度バランスを狭い範囲に調
整することによって構成させることに最大の特徴を有す
る。 上記特徴を有するT−クロス部の溶接金属を得るための
溶接材料はフラックスとしては低炭素系を選択し、また
溶接棒には極低炭素高Mn−低N−Ti系ワイヤーの使
用が好ましい。 低酸素系フラックスとしては特公平1−18836号公
報に開示されている成分からなるものを採用するもので
あり、このようにフラックス系として低炭素系が望まし
い理由は、酸素量が多過ぎると、介在物を増加させ、靭
性に悪影響を及はすからである。 また溶接ワイヤーの成分は以下のものが好ましい。すな
わち重量%としで、 c  :0.01〜0.10%、 Si:0.5%以下
、Mn : 1.5〜3.5%、 Pro、旧%以下、
S  :0.01%以下、  Ni  :0.1〜2.
0%、Ti  二0.01〜0.2%、 Aj7+0.
5%以下、N  +o、+%以下、 残部Feおよび不可避的不純物からなる。 本発明に使用する溶接ワイヤーを上記成分範囲とした理
由を以下に説明する。 C:Cは溶接金属中の焼入れ性を最も高める元素であり
、少ないほど低硬度化の達成を容易にするか、あまり少
なずぎるとCO反応が弱まり大気中のNを巻き込み、N
の悪影響によって溶接金属の靭性か劣化すること、およ
び溶接ワイヤー製造上の問題が生じてくるため上記の範
囲とした。 Si:Siは主成分でなく使用フラックスや、母材希釈
によって溶接金属中に入ってくるしので、高靭性を得る
ためには0.5%以下が好ましい。 Mn+Mnは本発明溶接金属の主成分の1つである。即
ちC量を低く抑え、靭性に必要な焼入れ性をMnで補う
ことを狙いとしている。したがってMlが低すぎると必
要な焼入れ性を確保できず、また逆に多過ぎるとCと同
様に焼入れ性を高めるため上記の範囲とした。 P、S−P、Sは不純物として含まれるもので極力少な
い程好ましく、0.01%以下か好ましい。 Ti:TiはOと結びつかせTl2O3を形成させ、高
靭性化を得るための本発明溶接金属を得るための主要成
分の1つで、TINが少な過ぎると必要なTl2O3が
不足し、また多過ぎると過剰Tjによる靭性劣化が懸念
されるため上記範囲とした。 Ag:AgはTiと同様に脱酸材であるが、上記したよ
うに本発明溶接金属ではTl2O3の形成が非常に重要
で、低酸素フラックスとの組合せにおいては、むしろΔ
Ω量が少ない方か好ましく0.5%以下とした。 N :Nはその量が多いと靭性を低下させるため、上限
を0.1%以下とした。 本発明においてPWMを0.13〜0.】6の範囲に制
限し設定したのは以下の理由による。PWMは、CE(
炭素当量)と同様に焼入れ性を示す式であり、その数値
が大きいはと焼入れ性が高く、すなわち高硬度であるこ
とを示すが、本発明者らは、溶接金属の硬さと成分の関
係について種々検討した結果、CEよりもPWMO方が
適切であることを確認した。PWMの値が0.13以下
では十分な焼] 5 入れ性が得られず、低硬度化の達成は容易であるが、必
要な靭性を確保できない。逆にPWM値が016以上で
は焼入れ性か過剰となるため、低硬度化の達成(Hv 
(1,0kg) max≦248)は期待できない。 なお、上記PWM値を013〜0.16の範囲とするこ
とによって硬度の目標Hv (IOkg) maX≦2
48は可能であるが、しかし溶接金属の靭性は必ずしも
満足できるものではない。靭性を高位に安定させるため
には、さらに組織の微細化が必要である。 本発明では高靭化の方法としで、Tj−Bの利用を骨子
とするが、特にBは溶接金属の焼入れ性を著しく高める
作用があり、粒界のフェライト生成を抑制する効果があ
る。本発明者らは、このBを微量、かつ有効に利用する
ことを前提として高靭性化を試みた。すなイつち、α値
(式)の導入によっで、限られたPWM値の範囲内にお
いで、溶接金属の高靭性化を画期的に向上した。 その理由は以下による。 αはO,N、Ag、およびTiの元素から構成6 され、過剰T1による脆化を防ぐための指標とすること
かできる。すなわち、本式は、0.N。 Ag、TI との化学量論的な過不足をTi当量として
示すものである。つまり、例えばα値が+側に大幅にず
れることはAg、N量が0JfLに対して不足すること
を示し、過剰のOは他の元素とも結びつき、介在物など
を増加させ、高靭性は期待できない。また、逆に一側に
大幅にずれることは、O量に対して八Ω、Tjmが過剰
であることを示し、過剰のTiがCと結びついてTiC
を形成するなど、高硬度化を助長する好ましくない結果
となる。 以下本発明の成分を限定した理由について説明する。 母材成分についで、 Cは母材に所望の強度を確保するために0.020%以
上必要であるが、量か多くなると溶接性、HAZ靭性が
劣化する。また母材の低温靭性に影響が現われるので0
.050%を上限とした。 Stは脱酸上鋼に含まれる元素であるが人世に添加する
とHAZ靭性を劣化させる。そのために0.5%以下と
した。 Mnは強度、靭性を確保するために必要な元素であり、
そのために1.0%以上添加する。またMnはγ粒界に
粗大な初析フェライトを生成するのを抑制し、HAZ靭
性を改善する効果を有するが多量になると焼入れ性が増
大し、溶接性、HAZ靭件靭性化をもたらす。従って上
限を1.5%におさえた。 Pは不純物として含まれ、ミクロ偏析による溶接部靭性
、割れなどの発生を防止することからできるだけ低い含
有量とすべきてあり0.02%以下とする。 Sも不純物元素であるが、これの多量の含有は粗大な硫
化物系介在物を形成し、母材の靭性を低下させる。特に
MnSを形成して水素を吸着し、割れの原因となるので
耐サワーガス性を要求する鋼には有害である。そのため
にてきるだけ少なくすることが好ましく、0.00+、
5%以下とした。 Nl)は優れたHAZ靭性を得るために必須な元素であ
り、γ粒界に生成するフェライトを抑制し、Ti20.
を核とする微細なアシキュラーフェライトの生成を促進
させる効果がある。そのために0、旧%以上か必要であ
る。しかし、0.05%を超えて多くなると、前記効果
を妨げる傾向になる。 Tiは鋼中で微細なTiNを形成し、スラグ加熱時のオ
ーステナイト粒粗大化を抑制して母材靭性、HAZ靭性
の改善に効果かあるが、0,01%以下では効果が期待
できない。しかしあまり多過ぎるとTiCなどを形成し
て悪影響をもたらす。そのため上限を0.025%とし
た。 Agは通常脱酸剤として添加されるが、脱酸はTi、S
jでも可能であり、必すしも添加する必要はない。むし
ろAg量が0.05%を超えるとAg系非金属介在物か
増加して鋼の清浄度を害するので上限を0.05%とし
た。 Nは不純物元素であり、これは少ない方かよく0.00
5%は許容の上限を示したものである。 Oも不可避的に混入する元素である。前述したようにA
g、Si、Ti舌て脱酸するのであるか、] 9 0 多量に存在すると各種の大型介在物(酸化物)を作り、
特性、特にHAZ靭性に大きな影響を及ぼす。従って少
ない程よく、許容量として0.0025%以下とする。 Caは本発明母材成分の特徴のひとつであり、低温靭性
の向上、耐水素誘起割れ性の改善に有効な元素である。 Sは通常Mnと化合し、MnSを形成するが、MnSに
は水素が入りやすく、H2Sを生成して鋼を脆化する。 CaはこのMnSの形態を制御し脆化を防止して上記効
果を付与する。このために0.002%は必要である。 Ca添加量は酸素含有量とのかね合いて決める。 すなわちCaは同時に脱酸作用も強く、脱酸に添加Ca
が消費される量以上必要なことは、前述(ESSPの説
明)した通りであるが、これがあまり多量になると大型
介在物となり、鋼の靭性のみならず、清浄度も害し、溶
接性にも悪影響が出る。そのために0.005%以下と
した。 Mo、Vは母材強度を高め、靭性にも有効に作用するが
、そのためには0.05.0.旧%以上必要とするが、
逆に多量の添加は母材、溶接部の靭性劣化を招き、溶接
性にも好ましくない。従ってそれぞれ0.3.0.08
%を上限とし、これらは何れか1種又は2種を必要に応
じて選択、併合添加する。 Ni 、Cu、Crは必要に応じて添加する元素であり
、N1は母材強度靭性を向上させるため、Cuは更に耐
食性、耐水素誘起割れ性なとにも有効であり、またCr
は、母料及び溶接部の強度を高める元素であり、これら
のためにそれぞれ0,05%以上添加するが、その上限
は溶接性やHAZ靭性の劣化を起さないようにそれぞれ
0.3%、0.3%、1.0%以下にする。 次に溶接金属の成分を特定した理由は以下の通りである
。C,Si、MnやMoについては前記母材成分の添加
理由と同様でありこれらの元素の上下限が母材とは多少
異なるもの\、これらは溶接金属を制約したPWM範囲
の成分とすればよいからである。すなわち上記各元素の
添加量を013≦PMW≦0,16にすることによっで
、溶接金属の硬さを本発明の目標上限値であるHv(1
0kg)≦248に抑えることが可能となる。 N、Oは溶接金属中に不可避的に混入する元素であるか
、これらが多量に混入することは溶接金属中の靭性を著
しく劣化する。そのためNは0 、004%以下のでき
るたけ少い量とし、Oも0.025%以下にする必要か
ある。これらの元素、特にOはTiで脱酸する場合に、
Af!等とのバランスを考慮して小量の添加T1とはゾ
当量となる程度に低含有量としておくことか好ましく、
これにより靭性向」二に必要な固溶Bを確保することか
できる。Oの下限を0.001.5%としたのは、Ti
、03を形成するために必要であるからである。 AIは脱酸元素であり、N、  0を固定し、微細Al
N、Al203を形成し溶接金属の靭性を向上させるた
めに0.005〜0.030%とする。このAIはT1
とバランスさせて添加させる必要かある。 Tiは、脱酸、脱窒元素であるが、本発明溶接金属構成
成分の特徴の一つであっで、特に微細、分散するTi2
O3を形成し、溶接金属のγ−α変態時に、γ粒内にT
i20.を核として粒内初析フェライトを微細に生成さ
せで、靭性を向上させる効果を有する。そのためにAl
、 N、 Oとのバランスで所用量添加する。しかし、
0.005%未満では効果なく.025%を超える過剰
Ti量になると溶接金属を脆化する。 BはTi と共に本発明溶接金属の特徴成分であり、前
記α値内でバランスさせるTiにより(O〕、  CN
)を十分に固定しで、溶接金属中のBを固溶させる。固
溶Bはγ−α変態時、γ粒界より生成する粗大フェライ
トを抑制し、Ti2O3を核とするγ粒内変態による微
細針状フェライトの生成を促進する。すなわち上記針状
フェライトの生成には成る程度の焼入れ性が必要であり
、固溶Bは、この焼入れ性を確保するためにも役立って
いる。この結果、微細組織となって高靭性が得られる。 」1記した効果をもたらすためにB添加量は最低0.0
004%必要であり、あまり多量になると焼入れ性の過
剰による高硬度化にっな3 4 がるので、0.0012%を上限とした。 尚、P、Sは不可避不純物であり、上述した母材成分と
同様の理由で、できるたけ低く抑えるべきであるが、許
容上限としてそれぞれ0.03%0.006%とした。 上記溶接金属成分は使用する溶接ワイヤーおよび、フラ
ックスの成分によって可変であるか上述した溶接ワイヤ
ーおよびフラックス成分範囲の調整で特定範囲内とする
ことかできる。 (実 施 例) 次に本発明の実施例について述べる。 第1表に示す現場出鋼した鋼])、 2) (板厚12
.27 +nm t 44’)を用い、第2表に示す低
酸素系フラックス、および比較フラックス、さらに第3
表に示す極低炭素系高Mn〜低N−Ti系溶接ワイヤー
の組合せによってUOT場で大径管を製造する場合と同
じ方法て内外面1パス潜弧溶接を行ない溶接継手を作製
した。ただし継手の溶接にあたり、上記表のみの組合せ
ては溶接金属成分を変化させることが限られるため、特
に微量成分の影響検討用としてそれぞれ狙い成分となる
ように、あらかじめ開先内に炭素粉末、Ti、All線
、その他の金属粉末を散布もしくは置いて試験を行なっ
た。該溶接継手の外面側から溶接金属部の衝撃試験片と
、現地溶接部の最高硬さをシュミレートするため第1図
に示すようなサイズの試験片を採取した。 最高硬さ試験の方法を第1図に示す。すなわち最高硬さ
試験は、外面側の潜弧溶接ビード余盛を板面まで削除し
、潜弧溶接ビード部(A)にクロスするようにCO2溶
接で溶接部熱かl0kJ/cmの試験ビード(B)をお
き、さらに、その試験溶接部から硬さ測定試料(C)を
採取した。硬さの測定位置は潜弧溶接部(B)の表面、
および試験溶接によって再加熱された潜弧溶接部の熱影
響部(D)で且つ溶接境界部からマイクロビッカース硬
さ測定による正旋の対角線距離内を狙った位置を測定し
、最も高硬度の値を最高硬さとして評価した。第4表に
溶接金属成分と溶接金属の靭性、および現地溶接部の最
高硬さシミュレーション結果を示す。 特開平 3 285770 (8) 特開平 3 285770 (9) 不発明方で得られた溶接金属成分系では良好な靭性と低
い硬さを備えた溶接金属の特性が得られた。しかし本発
明によらない従来の溶接金属成分ては、その特性が両立
せず耐サワー用としては適切ではない。 従来の溶接金属において実施No、 I IはCmが多
すぎるためMnを低くしても溶接金属のPWMか大きく
なり、靭性の確保は可能であるが硬化性が著しく高い。 また実施No、12.13はCmを低くし、Mn量の比
較的高いレベルでも同様にPWMか高くなり高硬度とな
っている。No、14はPWMの値は良好で一30°C
での靭性も問題ないが硬さが本発明溶接金属よりも高い
レベルを示した。これはBJiが発明金属に比べて高く
、溶接金属の焼入れ性を高める方に作用したためで硬化
性の面から適切ではない。No、15.16も同様にP
WMの値は適正レベルで且つ靭性も良好であるがNo、
14と同様に高硬度で適正ではない。これはα値がマイ
ナス側へ行き過ぎたためで、酸素量に対してNo、 I
 5はTi過剰、No、 ] 8はAρ過剰による析出
脆化が溶接金属の高硬度化に作用したためである。逆に
No、 I 7は適正なPWM値で硬度も低いか靭性が
大幅に低い結果を示した。不実施No、材のみフラック
スを比較フラックスで試験を行なったもので、他の結果
に比較して高酸素となっている。従ってO量に対してT
iおよびへΩ量が少ないため過剰酸素による靭性の大幅
な低下をきたし、本発明溶接金属の特性に及ばない。さ
らにNo、 + 8はPWM値が低過ぎるため、低硬度
化は達成されるものの溶接金属の焼入れ性不足のため靭
性か低位である。 (発明の効果) 以上説明したように、本発明方法によって得たUOE法
大径鋼管のガース溶接部は、目標硬さであるHv (1
0kg) max≦248を充分に達成するところの低
硬度特性を有すると共に、本来ならばこのような低硬度
化に伴って生じる靭性の劣化を起すことなく、むしろ高
靭性となっている。従って入熱量の小さい現地でのガー
ス溶接でも極めて安定した継手部(特にT−クロス部)
をもつ耐サワーガス性に優れた大径鋼管を得ることかで
きる。 9 0
[7
In addition to removing harmful oxygen, the Ti2O3 becomes the austenite→ferrite transformation point during the welding cooling process, and becomes pro-eutectoid ferrite formation nuclei within the austenite grains, thereby refining the structure. On the other hand, S in steel forms Mn and MnS, but this MnS
easily combines with hydrogen, forming hydrogen sulfide in this region, causing stress corrosion cracking. In the present invention, S is reduced to M as much as possible.
Ca is added to prevent it from combining with n, thereby changing the form of the sulfide. Ca combines with oxygen, but adding too much is not preferable because other inclusions may be formed or the size may increase. Therefore, in addition to the amount that binds to the remaining oxygen, it is necessary to make the amount sufficient to fix S. For this purpose, in the present invention, E S S P (El″rec
tiveSulfide 5shape Parameter
er) is established and managed. In the present invention, large-diameter pipes are manufactured using the UOE method from the above-mentioned base material, and these are joined on-site. During transportation, joints and heat-affected zones are more susceptible to SSC than the base material. That is, this is because the hardness is high, and the maximum hardness appears particularly in the T-cross portion as described above. When girth welding is used to join steel pipes, the inner side of the groove is heated layer by layer in a multi-layer build-up, and toughness is restored, but the outer circumference and inner surface (outermost layer) cool quickly. Moreover, the hardness of this weld increases due to the fact that it is a dwarf heat weld. Especially steel pipe seam welds and intersections (T-
(Cross), the seam weld metal is heated again, and combined with rapid cooling due to dwarf heat welding, the hardness of that part increases significantly. The present invention aims to reduce the hardness of this T-cross part and prevent the accompanying decrease in toughness by setting a range of PWM, which is the minimum index of hardenability, and by adding elements for refining the structure. The greatest feature is that it is configured by setting an α value to be used effectively and adjusting the concentration balance of Al-Ti -0 to N within a narrow range. For the welding material to obtain the weld metal of the part, a low carbon flux is selected, and it is preferable to use an extremely low carbon high Mn-low N-Ti wire for the welding rod. A flux consisting of the components disclosed in Publication No. 1-18836 is adopted.The reason why a low carbon type flux is preferable is that too much oxygen increases inclusions and reduces toughness. In addition, the components of the welding wire are preferably as follows: c: 0.01 to 0.10%, Si: 0.5% or less, Mn: 1 .5 to 3.5%, Pro, below old %,
S: 0.01% or less, Ni: 0.1-2.
0%, Ti20.01-0.2%, Aj7+0.
5% or less, N + o, +% or less, the balance consisting of Fe and unavoidable impurities. The reason why the welding wire used in the present invention is set in the above component range will be explained below. C: C is the element that most improves the hardenability in the weld metal.The smaller the amount, the easier it is to achieve lower hardness, or if the amount is too small, the CO reaction weakens and N in the atmosphere is drawn in.
The toughness of the weld metal deteriorates due to the adverse effects of oxidation, and problems arise in the manufacture of welding wires, so the above range was set. Si: Si is not a main component and enters the weld metal through the flux used or dilution of the base material, so in order to obtain high toughness, it is preferably 0.5% or less. Mn+Mn is one of the main components of the weld metal of the present invention. That is, the aim is to keep the C content low and to supplement the hardenability necessary for toughness with Mn. Therefore, if Ml is too low, the necessary hardenability cannot be ensured, and if it is too high, the hardenability is improved like C, so the above range was set. P, S-P, and S are contained as impurities and are preferably as small as possible, preferably 0.01% or less. Ti: Ti combines with O to form Tl2O3, and is one of the main components for obtaining the weld metal of the present invention to obtain high toughness.If TIN is too low, the necessary Tl2O3 will be insufficient, or if it is too high. Since there is a concern that toughness may deteriorate due to excessive Tj, the above range was set. Ag: Ag is a deoxidizer like Ti, but as mentioned above, the formation of Tl2O3 is very important in the weld metal of the present invention, and in combination with a low oxygen flux, it is more likely that Δ
It is preferable that the amount of Ω is less than 0.5%. N: Since a large amount of N reduces toughness, the upper limit was set to 0.1% or less. In the present invention, the PWM is 0.13 to 0. ] The reason why the range is limited to 6 is as follows. PWM is CE (
This is a formula that indicates hardenability similar to carbon equivalent (carbon equivalent), and a large value indicates high hardenability, that is, high hardness. As a result of various studies, it was confirmed that PWMO is more appropriate than CE. If the PWM value is 0.13 or less, sufficient quenching property cannot be obtained] 5. Hardenability cannot be obtained, and although it is easy to achieve low hardness, necessary toughness cannot be ensured. On the other hand, if the PWM value is 016 or more, the hardenability becomes excessive, so it is difficult to achieve low hardness (Hv
(1,0kg) max≦248) is not expected. In addition, by setting the above PWM value in the range of 013 to 0.16, the target hardness Hv (IOkg) maX≦2
48 is possible, but the toughness of the weld metal is not necessarily satisfactory. In order to stabilize the toughness at a high level, it is necessary to further refine the structure. The present invention uses Tj-B as a method of increasing toughness, and in particular, B has the effect of significantly increasing the hardenability of the weld metal and has the effect of suppressing the formation of ferrite at grain boundaries. The present inventors attempted to increase the toughness on the premise of effectively utilizing a small amount of B. In other words, by introducing the α value (formula), the toughness of weld metal has been dramatically improved within a limited range of PWM values. The reason is as follows. α is composed of the elements O, N, Ag, and Ti, and can be used as an index for preventing embrittlement due to excessive T1. That is, this formula is 0. N. The stoichiometric excess or deficiency between Ag and TI is shown as Ti equivalent. In other words, for example, a significant shift in the α value to the + side indicates that the amount of Ag and N is insufficient for 0 JfL, and excessive O combines with other elements, increases inclusions, etc., and high toughness is not expected. Can not. On the other hand, a large deviation to one side indicates that 8Ω, Tjm is excessive with respect to the amount of O, and the excess Ti combines with C to form TiC.
This results in unfavorable results such as the formation of hardness. The reasons for limiting the components of the present invention will be explained below. Concerning the base metal components, 0.020% or more of C is required to ensure the desired strength of the base metal, but if the amount increases, weldability and HAZ toughness deteriorate. Also, since it affects the low-temperature toughness of the base material,
.. The upper limit was set at 0.050%. St is an element contained in deoxidized steel, but when added to steel, it deteriorates HAZ toughness. Therefore, the content was set at 0.5% or less. Mn is an element necessary to ensure strength and toughness,
For this purpose, add 1.0% or more. Furthermore, Mn suppresses the formation of coarse pro-eutectoid ferrite at the γ grain boundaries and has the effect of improving HAZ toughness, but when the amount is large, hardenability increases, resulting in improved weldability and HAZ toughness. Therefore, the upper limit was set at 1.5%. P is contained as an impurity, and in order to prevent weld toughness and cracking due to micro-segregation, the content should be kept as low as possible, and should be 0.02% or less. Although S is also an impurity element, the inclusion of a large amount of S forms coarse sulfide-based inclusions and reduces the toughness of the base material. In particular, it forms MnS and adsorbs hydrogen, causing cracking, which is harmful to steel that requires sour gas resistance. Therefore, it is preferable to reduce it as much as possible, 0.00+,
It was set to 5% or less. Nl) is an essential element for obtaining excellent HAZ toughness, suppresses ferrite generated at the γ grain boundaries, and suppresses Ti20.
It has the effect of promoting the formation of fine acicular ferrite with . For that purpose, it is necessary to have 0, old% or more. However, if the amount exceeds 0.05%, the above effects tend to be hindered. Ti forms fine TiN in steel, suppresses austenite grain coarsening during slag heating, and is effective in improving base metal toughness and HAZ toughness, but no effect can be expected if it is less than 0.01%. However, if the amount is too large, TiC and the like will be formed, resulting in negative effects. Therefore, the upper limit was set at 0.025%. Ag is usually added as a deoxidizing agent, but Ti, S
j is also possible, and it is not necessary to add sushi. On the contrary, if the Ag content exceeds 0.05%, Ag-based nonmetallic inclusions will increase and impair the cleanliness of the steel, so the upper limit was set at 0.05%. N is an impurity element, which is less than 0.00.
5% indicates the upper limit of tolerance. O is also an element that is inevitably mixed. As mentioned above, A
90 When present in large amounts, various large inclusions (oxides) are formed,
It has a great influence on properties, especially HAZ toughness. Therefore, the less the content, the better, and the allowable amount should be 0.0025% or less. Ca is one of the characteristics of the base material component of the present invention, and is an effective element for improving low-temperature toughness and hydrogen-induced cracking resistance. S usually combines with Mn to form MnS, but hydrogen easily enters MnS, producing H2S and making the steel brittle. Ca controls the morphology of this MnS, prevents embrittlement, and provides the above effects. For this purpose, 0.002% is necessary. The amount of Ca added is determined in consideration of the oxygen content. In other words, Ca also has a strong deoxidizing effect, and Ca added to deoxidizing
As mentioned above (in the explanation of ESSP), it is necessary to exceed the amount consumed, but if the amount is too large, it will become large inclusions, which will harm not only the toughness of the steel but also its cleanliness, which will also have a negative effect on weldability. coming out. Therefore, the content was set at 0.005% or less. Mo and V increase the strength of the base material and effectively act on toughness, but for this purpose, the amount of 0.05.0. Although it requires more than the old %,
On the other hand, addition of a large amount leads to deterioration of the toughness of the base metal and welded zone, which is also unfavorable for weldability. Therefore 0.3.0.08 respectively
%, and one or two of these may be selected and added together as required. Ni, Cu, and Cr are elements that are added as necessary.N1 improves the strength and toughness of the base metal, and Cu is also effective for corrosion resistance and hydrogen-induced cracking resistance.
are elements that increase the strength of the base metal and weld zone, and are added at least 0.05% each for these purposes, but the upper limit is 0.3% each to avoid deterioration of weldability and HAZ toughness. , 0.3%, 1.0% or less. Next, the reason for specifying the components of the weld metal is as follows. Regarding C, Si, Mn, and Mo, the reason for adding them is the same as the above-mentioned base metal component, and the upper and lower limits of these elements are slightly different from those of the base metal. Because it's good. That is, by setting the addition amount of each of the above elements to 013≦PMW≦0,16, the hardness of the weld metal can be adjusted to Hv (1
0kg)≦248. N and O are elements that are unavoidably mixed into the weld metal, or their mixing in large amounts significantly deteriorates the toughness of the weld metal. Therefore, it is necessary to keep the amount of N as low as possible, below 0.004%, and the amount of O, below 0.025%. When these elements, especially O, are deoxidized with Ti,
Af! Considering the balance with etc., it is preferable to keep the content low enough to be equivalent to a small amount of addition T1,
This makes it possible to secure the solid solution B required for toughness. The lower limit of O was set at 0.001.5% because Ti
, 03. AI is a deoxidizing element that fixes N, 0 and fine Al
The content is 0.005 to 0.030% to form N and Al203 and improve the toughness of the weld metal. This AI is T1
Is it necessary to add it in balance? Ti is a deoxidizing and denitrifying element, and is one of the characteristics of the weld metal constituents of the present invention.
O3 is formed, and T is formed in the γ grains during the γ-α transformation of the weld metal.
i20. This has the effect of improving toughness by producing fine intragranular pro-eutectoid ferrite with ferrite as the nucleus. For that purpose, Al
, N, and O in the required amount. but,
Less than 0.005% has no effect. If the excess Ti amount exceeds 0.025%, the weld metal becomes brittle. B is a characteristic component of the weld metal of the present invention together with Ti, and by adjusting Ti to balance within the α value, (O), CN
) is sufficiently fixed to form a solid solution of B in the weld metal. Solid solution B suppresses coarse ferrite generated from γ grain boundaries during γ-α transformation, and promotes the formation of fine acicular ferrite through γ intragranular transformation with Ti2O3 as a nucleus. That is, a certain degree of hardenability is required to generate the above-mentioned acicular ferrite, and the solid solution B also serves to ensure this hardenability. As a result, a fine structure is formed and high toughness is obtained. In order to bring about the effects described in 1., the amount of B added must be at least 0.0.
0.004% is necessary, and if the amount is too large, the hardness will increase due to excessive hardenability. Therefore, the upper limit was set at 0.0012%. Note that P and S are unavoidable impurities and should be kept as low as possible for the same reason as the base material components described above, but the allowable upper limit is set to 0.03% and 0.006%, respectively. The above-mentioned weld metal components can be varied depending on the welding wire and flux components used, or can be kept within a specific range by adjusting the welding wire and flux component ranges described above. (Example) Next, an example of the present invention will be described. Steel tapped on site shown in Table 1]), 2) (Plate thickness: 12
.. 27 +nm t 44'), the hypoxic flux shown in Table 2, the comparative flux, and the third
Welded joints were produced by performing one-pass submerged arc welding on the inner and outer surfaces using the combinations of ultra-low carbon high Mn to low N-Ti welding wires shown in the table in the same manner as when manufacturing large diameter pipes in the UOT field. However, when welding joints, it is limited to changing the weld metal components by using only the combinations shown in the table above. Therefore, in order to study the influence of trace components, it is necessary to prepare carbon powder, Ti, etc. , All wire, and other metal powders were sprinkled or placed in the test. An impact test piece of the welded metal part and a test piece of the size shown in FIG. 1 were taken from the outside of the welded joint in order to simulate the maximum hardness of the on-site weld part. The method for the maximum hardness test is shown in Figure 1. In other words, for the maximum hardness test, remove the latent arc weld bead reinforcement on the outer surface side to the plate surface, and apply a test bead (10kJ/cm) using CO2 welding to cross the latent arc weld bead part (A) at a temperature of 10 kJ/cm. B) was placed, and a hardness measurement sample (C) was taken from the test weld. The hardness measurement position is the surface of the submerged arc weld (B),
The heat affected zone (D) of the submerged arc weld reheated by test welding was measured at a position within the diagonal distance of the normal rotation from the weld boundary by micro-Vickers hardness measurement, and the highest hardness value was measured. was evaluated as the highest hardness. Table 4 shows the weld metal components, weld metal toughness, and maximum hardness simulation results of the on-site weld. JP-A-3 285770 (8) JP-A-3 285770 (9) In the weld metal component system obtained by the uninvented method, weld metal properties including good toughness and low hardness were obtained. However, conventional weld metal components that are not based on the present invention have incompatible properties and are not suitable for sour resistance. In conventional weld metals, implementation No. II has too much Cm, so even if Mn is lowered, the PWM of the weld metal increases, and although toughness can be ensured, hardenability is extremely high. Furthermore, in Example No. 12.13, Cm was lowered, and even with a relatively high Mn content, the PWM was similarly high and the hardness was high. No. 14 has a good PWM value of -30°C
Although the toughness was not a problem, the hardness was higher than that of the weld metal of the present invention. This is because the BJi was higher than that of the invention metal and acted to increase the hardenability of the weld metal, which is not appropriate from the viewpoint of hardenability. No. 15.16 is also P
Although the WM value is at an appropriate level and the toughness is good, No.
Like No. 14, it has high hardness and is not suitable. This is because the α value went too far to the negative side, and No, I
5 is excessive Ti, No. 8 is because precipitation embrittlement due to excessive Aρ acts to increase the hardness of the weld metal. On the other hand, No. I7 showed an appropriate PWM value and low hardness or significantly low toughness. No. No. Only the material was tested using a comparative flux, and the oxygen content was higher than the other results. Therefore, T for the amount of O
Since the amounts of i and Ω are small, the toughness is significantly reduced due to excess oxygen, and the properties are not as good as those of the weld metal of the present invention. Further, in No. + 8, the PWM value is too low, and although a reduction in hardness is achieved, the toughness is low due to insufficient hardenability of the weld metal. (Effects of the Invention) As explained above, the girth welded portion of the UOE method large-diameter steel pipe obtained by the method of the present invention has a target hardness of Hv (1
0kg) It has a low hardness characteristic that satisfactorily achieves max≦248, and has high toughness without causing the deterioration in toughness that would normally occur with such a reduction in hardness. Therefore, the joint part (especially the T-cross part) is extremely stable even during girth welding on site where the heat input is small.
It is possible to obtain large diameter steel pipes with excellent sour gas resistance. 9 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶接継手部の硬さ試験用祠を示す図、第2図は
第1図より切り出した硬さ試験試片を示す図である。
FIG. 1 is a diagram showing a hardness test hole for a welded joint, and FIG. 2 is a diagram showing a hardness test specimen cut out from FIG. 1.

Claims (1)

【特許請求の範囲】[Claims] (1)UOE鋼管において、母材の化学成分が重量%で
、 C:0.020〜0.050%、Si:0.5%以下、
Mn:1.0〜1.5%、P:0.02%以下、S:0
.0015%以下、Nb:0.01〜0.05%、Ti
:0.010〜0.025%、Al:0.05%以下、
N:0.005%以下、O:0.0025%以下、Ca
:0.002〜0.005%を含み、 さらにMo、Vの1種または2種以上であって、Mo:
0.05〜0.30%、V:0.01〜0.08%、を
含有し、かつ下式のESSPが1.5〜6.0を満足し
、残部不可避不純物およびFeからなり、上記母材を低
酸素系フラックスおよび極低炭素系高Mn−低N−Ti
系溶接ワイヤーを用いて内外面に1パス潜弧溶接を行い
、 重量%で、 C:0.020〜0.060%、Si:0.5%以下、
Mn:1.35〜1.65%、P:0.03%以下、S
:0.006%以下、Ti:0.005〜0.025%
、Al:0.005〜0.030%、Mo:0.30%
以下、B:0.0004〜0.0012%、O:0.0
15〜0.025%、N:0.004%以下を含有し、 かつ、下式のPWMが0.13〜0.16であり、下式
のαが−10〜+10を満足し、残部不可避不純物およ
びFeからなる溶接金属を、得ることを特徴とする耐サ
ワーガス性に優れた大径鋼管の製造方法。 ESSP=Ca〔1−124(O)〕/1.25SPW
M=C+Si/30+(Mn+Cu+Cr)/20+N
i/60+Mo/15+V/10 α=〔1.5(O−0.89Al)+3.4N−Ti〕
×10^3(2)UOE鋼管において、母材の化学成分
が重量%で、 C:0.020〜0.050%、Si:0.5%以下、
Mn:1.0〜1.5%、P:0.02%以下、S:0
.0015%以下、Nb:0.01〜0.05%、Ti
:0.010〜0.025%、Al:0.05%以下、
N:0.005%以下、O:0.0025%以下、Ca
:0.002〜0.005%を含み、 さらにMo、Vの1種または2種以上であって、Mo:
0.05〜0.30%、V:0、01〜0.08%、を
含有し、さらに Ni:0.05〜0.30%、Cu:0.05〜0.3
0%、Cr:0.05〜1.0%の1種または2種以上
を含有し、かつ下式のESSPが1.5〜6.0を満足
し、残部不可避不純物およびFeよりなり、上記母材を
低酸素系フラックスおよび極低炭素系高Mn−低N−T
i系溶接ワイヤーを用いて内外面に1パス潜弧溶接を行
い、 重量%で、 C:0.020〜0.060%、Si:0.5%以下、
Mn:1.35〜1.65%、P:0.03%以下、S
:0.006%以下、Ti:0.005〜0.025%
、Al:0.005〜0030%、Mo:0.30%以
下、B:0.0004〜0.0012%、O:0.01
5〜0.025%、N:0.004%以下を含有し、 かつ、下式のPWMが0.13〜0.16であり、下式
のαが−10〜+10を満足し、残部不可避不純物およ
びFeからなる溶接金属を得ることを特徴とする耐サワ
ーガス性に優れた大径鋼管の製造方法。ESSP=Ca
〔1−124(O)〕/1.25SPWM=C+Si/
30+(Mn+Cu+Cr)/20+Ni/60+Mo
/15+V/10 α=〔1.5(O−0.89Al)+3.4N−Ti〕
×10^3
(1) In UOE steel pipes, the chemical components of the base metal are: C: 0.020 to 0.050%, Si: 0.5% or less,
Mn: 1.0-1.5%, P: 0.02% or less, S: 0
.. 0015% or less, Nb: 0.01-0.05%, Ti
: 0.010 to 0.025%, Al: 0.05% or less,
N: 0.005% or less, O: 0.0025% or less, Ca
: 0.002 to 0.005%, and further contains one or more of Mo and V, Mo:
0.05 to 0.30%, V: 0.01 to 0.08%, and the ESSP of the following formula satisfies 1.5 to 6.0, the balance consists of inevitable impurities and Fe, and the above The base material is low oxygen flux and ultra-low carbon high Mn-low N-Ti.
One-pass submerged arc welding was performed on the inner and outer surfaces using a system welding wire, and in weight percent, C: 0.020 to 0.060%, Si: 0.5% or less,
Mn: 1.35-1.65%, P: 0.03% or less, S
: 0.006% or less, Ti: 0.005 to 0.025%
, Al: 0.005-0.030%, Mo: 0.30%
Below, B: 0.0004-0.0012%, O: 0.0
15 to 0.025%, N: 0.004% or less, and PWM of the following formula is 0.13 to 0.16, α of the following formula satisfies -10 to +10, and the remainder is unavoidable. A method for producing a large-diameter steel pipe with excellent sour gas resistance, the method comprising obtaining a weld metal containing impurities and Fe. ESSP=Ca[1-124(O)]/1.25SPW
M=C+Si/30+(Mn+Cu+Cr)/20+N
i/60+Mo/15+V/10 α=[1.5(O-0.89Al)+3.4N-Ti]
×10^3 (2) In UOE steel pipe, the chemical composition of the base material is in weight%: C: 0.020 to 0.050%, Si: 0.5% or less,
Mn: 1.0-1.5%, P: 0.02% or less, S: 0
.. 0015% or less, Nb: 0.01-0.05%, Ti
: 0.010 to 0.025%, Al: 0.05% or less,
N: 0.005% or less, O: 0.0025% or less, Ca
: 0.002 to 0.005%, and further contains one or more of Mo and V, Mo:
Contains 0.05 to 0.30%, V: 0, 01 to 0.08%, and further Ni: 0.05 to 0.30%, Cu: 0.05 to 0.3.
0%, Cr: 0.05 to 1.0%, and ESSP of the following formula satisfies 1.5 to 6.0, the remainder consists of inevitable impurities and Fe, and the above-mentioned The base material is low oxygen flux and ultra-low carbon high Mn-low N-T.
One-pass submerged arc welding was performed on the inner and outer surfaces using an i-series welding wire, and in weight percent, C: 0.020 to 0.060%, Si: 0.5% or less,
Mn: 1.35-1.65%, P: 0.03% or less, S
: 0.006% or less, Ti: 0.005 to 0.025%
, Al: 0.005-0030%, Mo: 0.30% or less, B: 0.0004-0.0012%, O: 0.01
5 to 0.025%, N: 0.004% or less, and PWM of the following formula is 0.13 to 0.16, α of the following formula satisfies -10 to +10, and the remainder is unavoidable. A method for producing a large-diameter steel pipe with excellent sour gas resistance, characterized by obtaining a weld metal containing impurities and Fe. ESSP=Ca
[1-124(O)]/1.25SPWM=C+Si/
30+(Mn+Cu+Cr)/20+Ni/60+Mo
/15+V/10 α=[1.5(O-0.89Al)+3.4N-Ti]
×10^3
JP2084399A 1990-03-30 1990-03-30 Method for manufacturing large diameter steel pipe with excellent sour gas resistance Expired - Fee Related JPH0698500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2084399A JPH0698500B2 (en) 1990-03-30 1990-03-30 Method for manufacturing large diameter steel pipe with excellent sour gas resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2084399A JPH0698500B2 (en) 1990-03-30 1990-03-30 Method for manufacturing large diameter steel pipe with excellent sour gas resistance

Publications (2)

Publication Number Publication Date
JPH03285770A true JPH03285770A (en) 1991-12-16
JPH0698500B2 JPH0698500B2 (en) 1994-12-07

Family

ID=13829503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2084399A Expired - Fee Related JPH0698500B2 (en) 1990-03-30 1990-03-30 Method for manufacturing large diameter steel pipe with excellent sour gas resistance

Country Status (1)

Country Link
JP (1) JPH0698500B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200583A (en) * 1992-01-23 1993-08-10 Nippon Steel Corp Welding structure excellent in hic resistance and ssc resistance
JPH05279738A (en) * 1992-04-02 1993-10-26 Nippon Steel Corp Manufacture of wear resistant steel pipe
WO1997024203A1 (en) * 1995-12-28 1997-07-10 Kawasaki Steel Corporation Method of manufacturing large diameter welded steel pipe having high strength and toughness
WO2010117074A1 (en) 2009-04-10 2010-10-14 新日本製鐵株式会社 Highly basic fused flux for submerged arc welding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632588A (en) * 1986-06-23 1988-01-07 Kawasaki Steel Corp Welded steel pipe waving excellent site weldability
JPS6414965A (en) * 1987-07-08 1989-01-19 Nec Corp Charge transfer device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632588A (en) * 1986-06-23 1988-01-07 Kawasaki Steel Corp Welded steel pipe waving excellent site weldability
JPS6414965A (en) * 1987-07-08 1989-01-19 Nec Corp Charge transfer device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200583A (en) * 1992-01-23 1993-08-10 Nippon Steel Corp Welding structure excellent in hic resistance and ssc resistance
JPH05279738A (en) * 1992-04-02 1993-10-26 Nippon Steel Corp Manufacture of wear resistant steel pipe
WO1997024203A1 (en) * 1995-12-28 1997-07-10 Kawasaki Steel Corporation Method of manufacturing large diameter welded steel pipe having high strength and toughness
US5837956A (en) * 1995-12-28 1998-11-17 Kawasaki Steel Corporation Method of fabricating high strength and high toughness large-diameter welded steel pipe
WO2010117074A1 (en) 2009-04-10 2010-10-14 新日本製鐵株式会社 Highly basic fused flux for submerged arc welding

Also Published As

Publication number Publication date
JPH0698500B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
JP5251089B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
KR100925608B1 (en) Ultra High Strength Welding Joint of 950??? grade Having Excellent Low Temperature Toughness
WO1996023909A1 (en) High-strength line-pipe steel having low yield ratio and excellent low-temperature toughness
JPH10237583A (en) High tensile strength steel and its production
JP2003138340A (en) Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method
JP5137032B2 (en) Steel plate for submerged arc welding
JPWO2018185851A1 (en) Vertical seam welded steel pipe
JP2009185368A (en) Base material for clad steel plate having high strength and weld heat affected zone toughness, and method for producing the same
JP2006233263A (en) Method for producing high strength welded steel tube having excellent low yield ratio and weld zone toughness
JP2001001148A (en) GAS SHIELD ARC WELDING OF THICK HIGH TENSILE STRENGTH STEEL PLATE OF AT LEAST 900 MPa CLASS
JP3770106B2 (en) High strength steel and its manufacturing method
JPS60158995A (en) Mig welding wire for high-tension steel
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP4523908B2 (en) Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof
JPH09194991A (en) Welded steel tube excellent in sour resistance and carbon dioxide gas corrosion resistance
KR20090068868A (en) Steel for welding structure having welded joint with superior ctod properties in weld heat affected zone
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JPH03285770A (en) Manufacture of large diameter steel pipe excellent in sour gas resistance
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPH09296253A (en) Extremely thick high strength steel pipe excellent in low temperature toughness
JP4522042B2 (en) Steel with excellent high-pass temperature weldability and its welded joint
JP2596868B2 (en) Welded structure with excellent HIC resistance and SSC resistance
JP2005272854A (en) Method for producing high-tensile steel excellent in refractoriness and toughness in welded heat affected part
JP2000096187A (en) High-strength welded steel tube
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees